
Document number:	

 N4149	

Date:	

 2014–09–25	

Reply to:	

 David Krauss	

(david_work at me dot com)	

Categorically qualified classes!

1. Abstract
Some classes only work in certain contexts: scope guards are usually useless as subexpressions,
and expression template placeholders malfunction as local variables. An unused function result
may signal that the caller intends to follow a different protocol, such as with std::async. This
proposal extends class definitions to prevent such errors, and adds a mechanism to automatically
resolve them by type substitution, such as a value type for an expression template. Additionally,
generation of non-movable objects becomes more tractable.	

The added functionality includes that of the “auto evaluation” proposals . This proposal1

intends to be more expressive, more broadly applicable, and easier to adopt and use.	

2. Semantics
template< typename cleanup >!
class scope_guard & { … };! // & qualifier: never a temporary! !
template< enum opcode, typename ... operand >!
class expression && {! // && qualifier: never a persistent object!
! // A conversion applicable to lvalues fixes persistent objs:!
! operator double ();!
! // Conversions applicable only to temporaries do not apply:!
! operator other_expression () &&;!
};!!
template< typename lhs, typename rhs >!
expression< opcode::add, lhs, rhs > plus(lhs &&, rhs &&);!!
auto sum = plus(3.0, 5);! // Implicitly convert to double!

Considering the current language, a subexpression naming a preexisting variable is always an
lvalue. A subexpression generating a temporary whose life ends at the semicolon is always a
prvalue. Since C++11, most users identify lvalues and rvalues with the & and && punctuators.
By adding such qualifiers to a class definition as illustrated, objects of the class become
forbidden from direct usage as a temporary or a persistent object, respectively.	

���1

 N3748, N4035 Implicit Evaluation of "auto" Variables and Arguments, Gottschling, Falcou, Sutter.1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3748.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4035.pdf

Forbidden usage is ill-formed, but the object in question gets a second chance if it may be
contextually implicitly converted to another type. Any conversion function will do, even 2

operator void, except one that converts to a similarly-qualified class type . To ensure that 3

the author can nominate a particular conversion for this duty, the conversion function lookup 4

ignores any candidate with a ref-qualifier matching the violated class qualifier. The function
which is found determines the conversion to perform, but it will not be called except as required
by that conversion.	

Usage as a persistent object is prohibited by the rvalue qualifier, &&. This includes instantiating a
complete object which has any storage duration or is an exception object .	

5 6

Usage as a temporary is prohibited by the lvalue qualifier, &. Temporary in this sense is defined
as the complementary opposite of the preceding paragraph, regardless of the official terminology.
This constraint is not applied to an expression which is the initializer of an object; an lvalue 7

qualified class may form temporaries for this purpose. This includes function arguments passed
by value, constructor calls with one argument passed by value or by reference, and full-
expressions in return statements. Constraints on the return value itself are applied to the
function call postfix-expression, because that context determines its storage duration.	

If the qualifiers are used in tandem, && &, both constraints apply. As a result, an object of such a
class can only be used as an initializer in conversion (i.e., to represent the value of an object that
does not yet exist), or as a subobject. It cannot be persistent nor represent a discarded-value
expression, and one can seldom bind to a reference except when passed to a unary constructor.	

A temporary of lvalue qualified type is replaced if it has a unique conversion function as
described above. It is converted to the type named by the conversion function as if by a
static_cast expression. The result is used as the value of any expression that the original
object had represented. The original object remains a normal temporary in terms of lifetime.	

If an object of rvalue qualified, contextually implicitly convertible type initializes a persistent
object without a concrete declared type, the type of the latter is determined as if the initializer
had the type named by the conversion function. The initialization then proceeds normally,
without adjusting the value category of the initializer. In direct initialization, a converting
constructor in the deduced type will be used in preference to the conversion function, and the
latter may even be deleted.	

An object of rvalue qualified type which would be granted storage duration by a reference bound
to its subobject must be diagnosed. It would be impossible to apply a conversion.	

���2

 [conv] §4/5. All standard references are to the C++14 FCD, N3936.2

 This could implicitly invoke two or more user-defined conversions.3

 This paper will follow a convention that the user is the client of a library written by the author.4

 [basic.stc] §3.7. CWG DR 1634 Temporary storage duration may create a new storage duration for 5

temporaries, but currently such a concept does not exist.

 [except.throw] §15.1/3. Perhaps an “exception storage duration” would also be appropriate.6

 [dcl.init] §8.5/27

A conversion function which may nominate a class qualification conversion to cv void or a
reference to reference-compatible type shall be defined as deleted. An implementation may wish
to warn in other cases where the conversion would still be well-formed if the conversion function
were defined as deleted, but it is not.	

2.1. Introspection	

As it models “by-value argument passing,” std::decay should include the constraint of 8

rvalue qualification and the associated conversion. If the qualifier exists but not the conversion
function, the member typedef type shall not exist.	

A new metafunction std::as_temporary<T> produces a member typename type which is	

• T, if it is not a class type defined with the lvalue qualifier, else	

• the return type of the conversion function used to obtain a temporary, else	

• it is not declared.	

3. Rationale	

The qualifiers express a contract which is easily understood by both the library author and the
user. Libraries should be able to add class qualifiers without affecting any valid user code, yet
specifically fixing or diagnosing invalid usage. Users can read a class interface and tell that it is
unsuitable for scoped-variable or subexpression-value semantics. Enforcing this contract, the
implementation should provide diagnoses helpfully pointing to the qualifier (and any
accompanying library source comment). The syntax packs high-value exposition into an
unobtrusive package. The combined && & qualifier is ugly, but its uses are limited to library
internals, so users might as well be discouraged from naming or directly using such a class.	

The constraints are expressed as prohibitions rather than prescriptions, because the problem to be
solved is that certain easily accessible usages produce defects, not necessarily that only certain
narrow usages are ever valid. The rules are strong enough to catch all the accidents, without
obstructing library implementation.	

Since instantiation of objects is constrained, not variable declaration in general, reference
binding and perfect forwarding are unaffected, reducing the need for workarounds to restore
normal type deduction. Subobjects are unconstrained by class qualification, so if the author needs
to remove qualification, a derived wrapper class will do. These traits contrast with the
mechanism of operator auto and its successors, which must either forbid or permit
reference deduction, and suggests that derived classes inherit the conversion semantic.	

Opting into the diagnostics should only require adding qualifiers to affected classes and, for
expression templates (ETs), their conversion functions. In cases other than ETs, conversions may
add new capabilities at incremental cost, such as a guard adding alternative semantics when it is
not retained.	

���3

 [meta.trans.other] §20.10.7.6 table 57 (the specification of std::decay)8

3.1. Exemptions	

Subobjects are unconstrained. Although non-static members have names and persist beyond their
initialization, a non-static member or base subobject is no more or less temporary than its
complete object, from the user’s perspective. The complete object is responsible for its own
instantiation requirements. Moreover, auto deduction of non-static members is not likely ever
to be added to C++ , so the motivating case of ETs does not apply to members.	

9

Classes that otherwise cannot form temporaries are allowed to do so to initialize other objects.
This is in the expectation that the temporary will be converted with move semantics, and after
the conversion the temporary will be moved-from, empty, and inconsequential. It is also
necessary to support copy-initialization, which is a popular way to initialize persistent objects.	

If the initialization exemption is problematic, and a class must truly never form a temporary, the
author may hinder such an object from initializing anything. Copy- or move-construction is
forbidden naturally by making the class non-movable. Meaningful conversions may be prevented
by hiding the value of the class behind access control. Still, the user can leverage the public
interface to convert an exempted temporary into a device of their own creation. As for
encapsulation, it is probably just as well for the language to err on the side of openness.	

If some aspect of temporariness is problematic besides lack of persistence, such as that using a
function result in a subexpression is dangerously poor style, implicit conversion to void may
ensure that is either retained or discarded.	

3.2. Conversions	

Conversion of an existing object is chosen over outright elimination and substitution of another
object. Such a solution would need to instantiate a completely different type from the initializer,
necessitating compatible construction semantics in that type. It would be incompatible with
existing ET architectures and possibly couldn’t solve the ET problem at all. This is a non-starter.	

New initialization semantics are avoided. Conversion functions indicate what conversion to
attempt, but it still must be accomplished by copy- or direct-initialization. This avoids
complicating an already inscrutable part of the language. Also, conversion functions to class type
have the bad characteristic of returning by value. Unless it binds to a reference, the return value
must be moved, which requires movability and may incur additional overhead.	

Because qualification-induced conversion follows conventional rules, the user can always
substitute a deduced type for auto or decltype(auto), or static_cast to a deduced
type. This proposal adds no overhead or subtle performance advantage to implicit notation.	

If a class is typically used for persistent objects, then rvalue access is unusual, so an rvalue-
qualified conversion will be unobtrusive. Such a function has permission to move the contents of
its object into a new object. This interface provides a perfect handle to the problem and the
perfect environment for its solution.	

A conversion function is also used to determine the type of a persistent object with an rvalue-
qualified initializer. Likewise, that function is identified by applicability to the forbidden case.

���4

 N3897 Auto-type members, Voutilainen.9

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3897.html

Actually calling an lvalue-qualified conversion function with the expectation that it will move
from its object may be inappropriate, though. Also, persistent objects are often non-movable, in
which case initialization by conversion function is not allowed. Such a conversion (as in ETs)
should be either const or deleted. Deleted, “&” ref-qualified conversions may be odd, but they
should never interfere with anything. Destructive conversion may be performed by a
corresponding “&&” ref-qualified override or by a converting constructor in the deduced type.	

Overload resolution fails with ambiguity if a conversion function and a converting constructor
are both candidates. Copy-initialization considers conversion functions, but direct-initialization
only does so in the absence of a converting constructor. Thus ambiguity can only occur with
copy-initialization. In each identified use case, either the constructor is inappropriate, or only
direct-initialization is allowed. To interpolate a general rule, defining the conversion function 10

is idiomatic, except for conversion to non-movable types, which do not support copy-
initialization and require a converting constructor.	

Reserving the meaning of conversion functions of lvalues of ET type is less than perfectly
elegant. It could possibly break something deep in an ET implementation, but not in the public
interface, which never sees intermediate result lvalues. Such breakage can be fixed by replacing
implicit conversions of lvalue expressions with explicit constructs. This is stylistically superior.	

The lvalue conversion function lookup rule is sufficiently redeemed by its harmlessness and
analogous uniformity with the rest of this proposal. In most cases, ET authors may nominate a
conversion by omitting the conversion function ref-qualifier, and other applications will not need
another conversion function, obviating the need for a ref-qualifier. Nothing untoward is apparent.	

3.3. Alternative: conversion upon auto deduction	

N4035 proposes to use a “using auto =” tag to override deduction in non-reference
declarators. This is roughly equivalent to the present proposal that a conversion function should
decide the deduction of auto. In comparison to the present proposal:	

1. Only the “fixed persistent variable” case is addressed for ETs and similar value proxies.

There is no provision for merely forbidding persistence.	

2. The described semantics only cover declaration-statements. Other deduced contexts such as

function parameters remain as future work. Other contexts that might disagree with value
proxies such as throw-expressions are outside the scope.	

Scenario
(example §)

Qualifier Copy-
initialization

Converting constructor
in destination class type

Conversion function in
qualified class type

Expression
template (4.1)

&& To value type No: Value type may be
unaware of ET type.

Defined: This is how typical
ETs work.

Scope guard
(4.2)

& To unguarded
resource type

No: Destination must be
movable anyway.

Defined, no ref-qualifier.

Value
prototype (4.4)

&& & No: destination
is not movable

Yes: Destination is closely
integrated with prototype.

Deleted, no ref-qualifier.

���5

 Defining, but not as deleted.10

3. Reference declarators disable implicit evaluation, even when lifetime extension applies. This
fails compatibility with range-for loops. Many users similarly declare auto && “universal
references” idiomatically, leaving unfixed cases.	

4. It is strictly an added feature, which requires an on/off switch. Although it is designed to fix
ill-formed programs, by design it must allow a user to temporarily opt out, because the
conversions are not intrinsically limited to cases where their absence would be ill-formed.	

5. The tag looks like a member. Although it modifies the usage of the entire class, it may be
buried within its definition.	

6. As a seeming member, it would be surprising if the tag were not inherited. If a base class
uses the feature, a derived class cannot avoid it. For example, an author might wish to derive
a class from an ET intermediary and provide backing storage for its internal references to
form a self-contained object.	

7. The sense of auto membership suggests that foo::auto may be a valid qualified-id.	

The present proposal satisfies the goals and consistency requirements stated in N4035, and goes
further with richer functionality and a deeper level of specification.	

3.4. Alternative: qualified constructors or destructors	

Several times the std-discussion list has seen suggestions that constructors be allowed to
discriminate between persistent and temporary usage using ref-qualifiers. Deleting a ref-qualified
constructor would prevent the corresponding usage. When both alternatives are implemented,
though, the information is more useful at the end of the object lifetime. Also, lifetime extension
makes it impossible to know whether a function return value is persistent or temporary.	

Applying the same idea to destructors seems a tempting alternative, but it is very dangerous to
complicate destruction semantics, and there is still no provision for conversion to another type.	

The overload-selection aspect of constructors may also be favorable, to let a class select
temporary behavior when constructed from an rvalue. Idiomatically, such is currently done by
preferring a factory function interface over a public constructor; different overloads of a factory
function like std::ref may return differently qualified classes or specializations. If in the
future such functions are superseded by a mechanism for deducing class template parameters
from constructor arguments , this proposal should help that apply to category semantics as well.  11

���6

 EWG 60, N3602 Template parameter deduction for constructors, Spertus and Vandevoorde11

http://cplusplus.github.io/EWG/ewg-active.html#60
http://www.open-std.org/JTC1/sc22/wg21/docs/papers/2013/n3602.html

4. Examples	

These are thrown together for the sake of illustration. They are not additional proposals.	

4.1. Expression template	

template< typename lhs_type, typename rhs_type >!
class addition &&!
! lhs_type & lhs;!
! rhs_type & rhs;! !
! addition(lhs_type & l, rhs_type & r)!
! ! : lhs(l), rhs(r) {}!
public:!
! operator decltype(!
! ! ! std::declval< std::decay_t< lhs_type > >()!
! ! + std::declval< std::decay_t< rhs_type > >()) {!
! ! auto evaluated_lhs = std::forward< lhs_type >(lhs);!
! ! auto evaluated_rhs = std::forward< rhs_type >(rhs);!
! ! return evaluated_lhs + evaluated_rhs;!
! }! !
! friend addition add<>(lhs_type &&, rhs_type &&);!
};!!
template< typename lhs, typename rhs >!
addition< lhs, rhs > add(lhs && l, rhs && r)!
! { return { l, r }; }! !
// Client code!!
// Usual evaluation.!
auto a = add(1, add(2, 3));!!
// Persistent references carry value semantics.!
auto && b = add(a, a);!!
// Pass by value causes immediate evaluation.!
template< typename value >!
auto double(value v) { return v + v; }!

With a mere sprinkling of && qualifiers, any ET class with only a single member conversion
function becomes auto-friendly, computing values for local variables and pass-by-value
parameters.	

Separately ref-qualified conversion functions additionally make it safe for the user to define
functions over ETs. Destructive or expensive evaluation may be defined only over rvalues to

���7

ensure that each evaluation occurs only once. The above generic addition evaluator is destructive
because it forwards its stored operands. Lvalue ref-qualified, non-destructive evaluation may be
defined as deleted, or allowed like this:	

! operator decltype(!
! ! ! std::declval< std::decay_t< lhs_type > >()!
! ! + std::declval< std::decay_t< rhs_type > >()) & {!
! ! auto evaluated_lhs = lhs;!
! ! auto evaluated_rhs = rhs;!
! ! return evaluated_lhs + evaluated_rhs;!
! }!

With such support, the user can attempt to refactor ET expressions out of local scope:	

// Pass by reference preserves ETs; ref-qualifiers add safety.!
template< typename evaluable >!
decltype(auto) double(evaluable && v)!
! { return v + v; } // Error if evaluation is destructive.! !
template< typename evaluable >!
decltype(auto) one_more(evaluable && v)!
! { return std::move(v) + 1; } // Always OK.!

4.2. std::async	

The controversy over async arises from its return value representing a resource with real 12

economic value, namely a thread of execution consuming memory and processor cycles.
(Pedantically, it represents the result of the thread.) Users are safer if the thread or process calling
async cannot be hijacked to spawn endless new threads. Furthermore, when async is used
with lambda captures by reference from a local scope, the lambda object is invalid when that
scope exits. There is a motivation to provide “local” threads which aren’t too asynchronous.	

The current solution is to add a flag to the result object, triggering wait synchronization (like
join) upon destruction. Since this flag is part of the object’s value, it may be exported to
another scope or thread, significantly weakening the safety guarantees, and adding unexpected,
nondeterministic locking patterns, leading to deadlock if an async task owns its own future.
(For example, the user may wish to use future<void> for selective synchronization.)	

The wait-on-destroy semantic also embarrassingly and confusingly erases the gains of
multithreading when the result is not retained, so that it gets destroyed immediately.	

!

���8

 N3451 async and ~future, Sutter, N3780 Why Deprecating async() is the Worst of all Options, 12

Josuttis, and various other papers in the 2013-05 and 2013-09 mailings.

http://open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3451.pdf
http://open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3780.pdf

A solution enabled by this proposal would be a new lvalue-qualified class, encapsulating the
wait but only applying to the local scope. This semantic can be moved to another guard, but
vanishes when ownership is transferred to a temporary. Furthermore, such a transfer occurs
implicitly if no guard existed in the first place.	

template< typename Result >!
struct guarded_future!
! & // If named, the guard scope persists as long as the task.!
! // If temporary, decay to a normal future.!
! : future< Result > {!
! operator future< Result > () &&!
! ! { return std::move(* this); }! !
! ~ guarded_future()!
! ! { if (valid()) wait(); }!
};!

In addition to conventional, local guards, this class is suitable for the heap as well. However, it
should be noted that a future (temporary or not) should never initialize a guarded_future,
especially one on the heap, because any exception such as bad_alloc would destroy the
unguarded object and break the guard guarantee.	

4.3. Scope guard	

Scope guards are afflicted with the possibility that the user will forget to declare a variable.	

make_guard([&]() noexcept { work_items.clear(); }); // oops!

The author can request a diagnostic with the likes of __attribute__((warn_unused_-
result)), but unless the programmer already understands the problem, his reflex may be to
idiomatically suppress the warning with a cast to void.	

This is handily fixed with an lvalue qualifier:	

struct scope_guard_base {};!
typedef scope_guard_base && scope_guard;!!
template< typename cleanup >!
auto make_guard(cleanup in) {!

class scope_guard_impl!
! & // Usage: “scope_guard g = make_guard(…);”!
! : public scope_guard_base {!
! cleanup action;!
public:!
! scope_guard_impl(cleanup in)!
! ! : action(std::move(in)) {}!
! scope_guard_impl(scope_guard_impl &&) = delete;!
! ~ scope_guard_impl ()!
! ! { action(); }!

���9

};!
return { std::move(in) };!

}!

Any invalid usage is an error, and the diagnostic should print the line from the library containing
the & qualifier, which should explain the issue and correct usage.	

4.4. Graph node	

Node objects in directed graph structures are non-movable without a list of incoming edges.
Even if this condition is met, extraneous move operations will slow an intensive graph algorithm,
and they can seldom be completely optimized away when neighboring nodes are modified.	

Graphs are not particularly programmer-friendly, but C++ forces an additional trade-off:	

1. Implement non-movable nodes on the heap. The user cannot have a local node variable but

only a node handle, usually a naked pointer. Any function can produce a node, but SBRM is
impossible and allocator overhead is incurred per node.	

2. Implement movable nodes. Each node contains an additional list of incoming edges, which
are adjusted to reflect move operations. The allocator overhead is replaced with a likely
greater cost in time and space.	

3. Implement non-movable nodes with no factory functions. Constructing a node requires
supplying all its raw ingredients to a constructor. This process cannot be encapsulated. This
is compatible with #1 but the interface is usually only suitable internally to the library.	

4. Implement non-movable nodes with two-phase initialization. A factory function may return a
node, but it is not validated with incoming edges until the client confirms that the object has
been moved into its final location. In the meantime, a description of the incoming edges must
be hidden within the object.	

#3 and #4 are the most efficient, but unsafe and onerous to use. It would be nice to have an idiom
for a class that describes the values of another class, without troubling the user about multi-step
initialization. Enter the && & prototype qualifier:	

typedef std::vector< struct graph_node * > node_list;!!
struct graph_node_descriptor!
! && & // This class generates graph_nodes. Not for direct use.!
! {!
! node_list incoming, outgoing;!
! !
! operator graph_node () = delete;!
};!!
struct graph_node {!
! std::size_t source_count;!
! node_list outgoing;! !

���10

! graph_node(graph_node_descriptor && in)!
! ! : source_count(in.incoming.size())!
! ! , outgoing(std::move(in.outgoing)) {!
! ! for (auto * source : in.incoming) {!
! ! ! source.outgoing.push_back(this);!
! ! }!
! }! !
! graph_node(graph_node &&) = delete;! !
! ~ graph_node() {!
! ! for (auto * sink : outgoing) -- sink.source_count;!
! ! if (source_count != 0) {!
! ! ! // There’s an indestructible node out there.!
! ! ! try { std::cerr << "dangling sources\n"); }!
! ! ! catch (...) {}!
! ! ! std::abort();!
! ! }!
! } !
};!!
// Factory function.!
graph_node_descriptor make_root(graph & g) {!
! node_list outgoing;!
! for (graph_node & n : g) {!
! ! if (n.source_count == 0) outgoing.push_back(& n);!
! }!
! return { {}, std::move(outgoing) };!
}!

The factory function make_root can initialize a local node object, a subobject, or a parameter
passed by reference. (Passing by value would be impossible anyway.) The user never needs to
know about the graph_node_descriptor class, except perhaps to define a custom factory
function.	

5. Further work	

This proposal has not yet been prototyped. The next step is to implement it and test with popular
ET and scope guard libraries. Formal standardese may follow.	

operator void is required here to be deleted, but it may possibly represent a useful feature.
The effect of defining (and calling) operator void would be similar to that of converting to
a proxy class which takes some action in its destructor. The difference is whether that action
occurs upon an exception, during unwinding. Prototypes might consider allowing nontrivial
operator void, to see if something may be done with it.	

���11

When a given class definition may require qualification depending on template parameters,
conditional qualification could be helpful. This proposal suggests deriving a qualified class and
adapting the interface as necessary — if that means no adjustment, the derived class only
declares forwarding constructors. It may be cleaner to offer a Boolean hook, as there is for
function noexcept(constant-expression) specifiers.	

Class qualification with const might also be interesting, particularly for a class with only
implicit constructors and destructors. Such a class would never be observed to be non-const by
the user, so the implementation could safely assume that every instance is immutable. This may
be investigated in a followup proposal.	

6. Acknowledgements	

Ville Voutilainen helpfully guided me away from the dead end of destructor overloading.	

Falcou, Gottschling, and Sutter’s work on operator auto inspired the extension of this idea
beyond scope guards.

���12

