
1

Document Number: P0162R0

Date: 2015-11-06
Reply To: Christopher Kohlhoff <chris@kohlhoff.com>
Audience: LEWG

A response to “P0055R0: On Interactions
Between Coroutines and Networking Library”

1 Introduction
P0055R0 On Interactions Between Coroutines and Networking Library outlines design changes to,
ostensibly, improve the performance of the proposed technical specification P0112R1
Networking Library. P0055R0 makes the claim that the overhead “can be made even lower if
[the networking library] can take advantage of coroutines”. P0055R0 claims to achieve this by
using the coroutine’s “stack” as a place to store per operation state, as opposed to this state
being allocated for each operation.

This claim is not borne out by benchmarks. The property of coroutines that allows us to
optimise allocation is that a coroutine represents a strictly sequential chain of event handlers.
This property is not unique to coroutines. In fact, a similar optimisation has been available to
users of the Boost.Asio library since 2005 through a custom allocation mechanism. Since 2013,
this has been automatically enabled for the most common usage patterns even when no
custom allocator is specified.

The proposed networking library TS provides a custom allocation mechanism based on this
field experience.

In addition:

• The proposed design in P0055R0 breaks the conceptual design model where
asynchronous operations mirror the semantics of normal synchronous functions.

• The proposed design in P0055R0 restricts the implementation freedom of authors of
asynchronous operations, and indeed inhibits the development of low overhead
abstractions.

Consequently, the author is of the opinion that the design changes proposed in P0055R0
should not be adopted.

2 Description of existing design

2.1 Transformation of CompletionToken into return type and value

In the proposed networking TS, asynchronous operations are launched using initiating
functions. An initiating function has the following form:

template<class	MutableBufferSequence,	class	CompletionToken>	
		DEDUCED	async_receive(const	MutableBufferSequence&	buffers,	
																								socket_base::message_flags	flags,	
																								CompletionToken&&	token);	

Completion signature: void(error_code	ec,	size_t	n).

The Completion signature element specifies the form of the asynchronous operation result. A
completion signature is to an asynchronous operation as a return type is to a normal function.

P0162R0 – A response to P0055R0

2

The initiating function’s final argument is a completion token. The completion token is used to
specify how the user of the asynchronous operation would like to receive the result. The
transformation from completion token to the DEDUCED return type is performed using the
async_result trait:

async_result<std::decay_t<CompletionToken>,	Signature>::return_type	

or, using the async_completion convenience wrapper:

async_completion<CompletionToken,	Signature>::return_type	

The result of the completed asynchronous operation is passed back from implementation to
user via a completion handler. The completion handler is a function object, constructed from
the completion token, that conforms to the completion signature.

Finally, the return value of the initiating function is determined using the async_result
trait’s get() member function. Thus, a complete initiating function looks like:

template<class	MutableBufferSequence,	class	CompletionToken>	
		typename	async_result<std::decay_t<CompletionToken,	void(error_code,	size_t)>>::return_type	
				async_receive(const	MutableBufferSequence&	buffers,	
																		socket_base::message_flags	flags,	
																		CompletionToken&&	token)	
{	
		typename	async_result<std::decay_t<CompletionToken,	
				void(error_code,	size_t)>>::completion_handler_type	
						completion_handler(forward<CompletionToken>(token));	
		async_result<CompletionToken,	void(error_code,	size_t)>	result(completion_handler);	
		//	do	something	to	call	completion_handler	when	the	operation	completes	
		return	result.get();	
}	

More commonly, an initiating function will make use of the async_completion convenience
wrapper, so that it is simply:

template<class	MutableBufferSequence,	class	CompletionToken>	
		auto	async_receive(const	MutableBufferSequence&	buffers,	
																					socket_base::message_flags	flags,	
																					CompletionToken&&	token)	
{	
		async_completion<CompletionToken,	void(error_code,	size_t)>	init(token);	
		//	do	something	to	call	init.completion_handler	when	the	operation	completes	
		return	init.result.get();	
}	

2.2 Associated allocators

Asynchronous operations may allocate memory, such as a data structure to store copies of the
completion handler object and the initiating function's arguments. To allow this allocation to
be customised, the P0112R1 networking library says that every completion handler has an
associated allocator. The implementation of an asynchronous operation is expected (or
required, in the case of the asynchronous operations in the TS) to use the associated allocator
to obtain memory.

The simplest way to specify an associated allocator is for a completion handler type to
provide a nested typedef, allocator_type, and a member function get_allocator. For
example:

struct	my_completion_handler	
{	
		typedef	my_custom_allocator	allocator_type;	
		allocator_type	get_allocator()	const	noexcept;	
		void	operator()()	{	/*	...	body	of	handler	...	*/	}	
};	

P0162R0 – A response to P0055R0

3

Specialising the associated_allocator associator trait enables the creation of more complex
association relationships. By default, the trait uses the typedef and member function above, if
they are present, with a default allocator to fall back to if they are not. Thus, completion
handlers are not required to specify an associated allocator.

To obtain the associated allocator, an asynchronous operation implementation calls the
get_associated_allocator function:

auto	alloc	=	net::get_associated_allocator(completion_handler);	

This single-argument form defaults to std::allocator<void> when the completion handler
does not have an associated allocator. To specify a different default, a two-argument form is
used:

auto	alloc	=	net::get_associated_allocator(completion_handler,	my_allocator<void>());	

Finally, the asynchronous operation is required to de-allocate all memory obtained from the
associated allocator prior to invoking the completion handler. As we shall see below, this
requirement is a key element of the design.

3 P0055R0’s proposed mechanism
P0055R0 proposes to combine the two customisation points:

• return type and value
• allocation of memory

into a single customisation point as shown below:

template<class	CompletionToken>	
auto	async_xyz(T1	t1,	T2	t2,	CompletionToken&&	token)	noexcept(auto)	
{	
		return	completion_token_transform<void(R1	r1,	R2	r2)>(
							forward<CompletionToken>(token),	
							[=](auto	typeErasedHandler)	{	async_xyz_impl_raw(t1,	t2,	typeErasedHandler);	});	
}	

4 Benchmarks

4.1 Tests

The following three approaches are benchmarked:

• Callbacks with custom allocation strategy. This test uses chains of completion
handlers, implemented in terms of the proposed networking TS’s existing design.
Each handler has a custom associated allocator.

• Callbacks with default allocation strategy. This test uses chains of completion
handlers, implemented in terms of the proposed networking TS’s existing design.
The handlers do not provide a custom allocator, but instead the implementation
provides a default allocator that is optimised for asynchronous operations. This is
based on the allocation strategy that has been employed in the Boost.Asio library for
a number of years, and it is assumed that networking TS implementations will
employ a similar strategy.

• Coroutine using P0055R0 approach. This test uses coroutines with a stack allocation
strategy as proposed in that document.

P0162R0 – A response to P0055R0

4

4.2 Design

To accurately compare the performance of the approaches, we need to avoid high cost system
calls. The execution times of these system calls are several orders of magnitude more than the
facilities being tested, and consequently they may obscure the performance differences.

To this end, we will emulate asynchronous operating system facilities using a C-like API with
a lightweight implementation. This API is based on the general shape described in P0055R0:

using	OsResultType	=	int;	
struct	OsContext	{	};	
	
using	CallbackFnPtr	=	void(*)(OsResultType	r,	OsContext*);	
OS_DECL	void	os_associate_completion_callback(CallbackFnPtr	cb);	
OS_DECL	void	os_trigger_completion();	
	
using	ParamType	=	int;		
OS_DECL	void	os_xyz(ParamType	p,	OsContext*	o);	
	
	

This C-like API is then wrapped in a C++ asynchronous operation to test each of the
approaches. The pattern for each test is:

• At program start, register a persistent callback using the function
os_associate_completion_callback.

• Wrap the os_xyz function in a C++ asynchronous operation, async_xyz. The
async_xyz function allocates an OsContext-derived object to be passed to os_xyz. It is
the method of allocation that is being benchmarked.

• Start 10 independent flows-of-control (i.e. callback chains or coroutines), which make
repeated calls to async_xyz.

• Measure the time to make 1,000,000,000 calls to os_trigger_completion.

Finally, the tests are built in two separate modes:

• OS as DLL. The operating system emulation is built as a separate dynamically linked
library. This inhibits optimisation across the OS boundary and more accurately
reflects how operating system facilities are exposed to user programs.

• OS as static library. The operating system emulation is linked directly into the test
executable, and link-time optimisation is enabled.

The complete test programs may be obtained from https://github.com/chriskohlhoff/p0162-
bench.

4.3 Results

The following results show the time per triggered completion, using each of the approaches.
The tests were compiled as 64-bit executables with Microsoft Visual C++ 2015 and run on
Windows 7, using an Intel Core i7-3770, with hyper-threading and turbo boost disabled. Each
test program was run at high priority and pinned to a specific CPU.

 OS as DLL OS as static library

Callback with custom allocation strategy 16.4 ns 5.6 ns

Callback with default allocation strategy 16.5 ns 5.6 ns

Coroutine using P0055R0 approach 18.0 ns 6.1 ns

Registers a persistent
callback function

Invokes the persistent callback with the next queued OsContext

Emulates an asynchronous operation
by enqueuing the specified OsContext

P0162R0 – A response to P0055R0

5

4.4 Analysis

These test results show that coroutines do not in fact make the overhead lower. However,
except perhaps in the OS as DLL case, the differences are negligible.

As described above, a key requirement of the associated allocator mechanism is that an
asynchronous operation deallocates the memory prior to invoking the completion handler.
This ensures that the memory is immediately available for reallocation, so that if the
completion handler launches another asynchronous operation, the memory may be reused.

If we structure our asynchronous control flow as sequential chains of completion handlers,
then the same memory may be reused again and again.

Thus, it is having a strictly sequential chain of completion handlers that enables the
optimisation. Coroutines are one way of representing a strictly sequential chain, but of course
they are not the only such representation.

Furthermore, since sequential chains are the common case for asynchronous operations,
experience shows that a library implementation can provide a default allocation strategy that
enables this optimisation by default. Callbacks need not provide custom allocators to have
low overhead. Indeed, the associated allocator mechanism allows implementers to specify an
appropriate default, and it is expected that networking TS implementations will also take
advantage of this to optimise the common case.

5 Design impacts of P0055R0
By combining the two customisation points:

• return type and value
• allocation of memory

into a single customisation point, P0055R0’s approach has a number of disadvantages. We
will explore these below.

Handler
A

Handler
B

Handler
C

Handler
D

Handler
E

1. Memory is allocated as the
asynchronous operation begins

2. Memory is freed when
the operation ends, prior to

the handler invocation

3. The same memory may
be reused for subsequent
asynchronous operations

P0162R0 – A response to P0055R0

6

5.1 All asynchronous operations must share a common base class

As specified, P0055R0’s design requires all asynchronous operations to be implemented in
terms of a common, type-erased type. This might be true if we limit our scope to some subset
of operations, such as the overlapped I/O operations on Windows.

The intent of P0112R1’s asynchronous model is to allow different types of asynchronous
operations to be integrated. For example, the implementation of an asynchronous socket
operation on a particular platform may be completely different from the implementation of a
timer operation.

However, this is not necessarily an inherent limitation of the P0055R0 approach. It may be
possible to adapt the approach to support different base types.

5.2 Asynchronous operations are restricted to one fixed-size allocation

P0055R0’s mechanism is designed to allow the “allocated” object to reside on the coroutine
stack. Consequently, the size of object must be known at compile time and we are limited to
just one such object.

The proposed networking TS’s associated allocator builds on the standard allocator facilities
to enable allocation of arbitrary objects. For example, in addition to the memory for the
completion handler, an asynchronous operation’s implementation may require a
std::vector, std::string, or other container. The associated allocator may also be used for
this.

5.3 Allocation is forced on all asynchronous operations

Under the networking TS’s asynchronous model we can write lightweight, efficient layers of
abstraction. For example:

template	<class	DynamicBuffer,	class	InnerHandler>	
struct	on_dyn_read_done	
{	
		typedef	associated_executor_t<InnerHandler>	executor_type;	
		executor_type	get_executor()	const	noexcept	{	return	get_associated_executor(handler_);	}	
	
		DynamicBuffer	buffer_;	
		InnerHandler	handler_;	
	
		void	operator()(error_code	ec,	size_t	n)	
		{	
				buffer_.commit(n);	
				handler_(ec,	n);	
		}	
};	
	
template	<class	Stream,	class	DynamicBuffer,	class	CompletionToken>	
auto	async_dyn_read(
				Stream&	stream,		
				DynamicBuffer	buffer,	
				CompletionToken&&	token)	
{	
		async_completion<CompletionToken,	void(error_code,	size_t)>	init(token);	
		auto	b	=	buffer.prepare(1024);	
		stream.async_read_some(b,	
						on_dyn_read_done{	
								std::move(buffer),	
								std::move(init.completion_handler)});	
		return	init.result.get();	
}	

P0162R0 – A response to P0055R0

7

Here, async_dyn_read is a thin layer of abstraction that provides dynamic buffer semantics
atop a raw, byte-oriented stream. The abstraction layer is not required to allocate storage of
its own. Many of the existing freestanding “algorithms” in the networking TS are
implemented in this way.

By combining allocation into the completion token mechanism, we are unable to write an
efficient callback based composition like that above. With P0055R0’s proposed design,
allocations are forced to the asynchronous API boundaries. If implemented in terms of the
proposed completion_token_transform, both the async_dyn_read and
stream.async_read_some functions will separately allocate memory for the operation. For
each layer of abstraction we add, we introduce an additional allocation.

5.4 Encodes internals of operation into return type of initiating function

As described in section 2.1, the networking TS’s completion token mechanism is designed as
a regular model that mirrors that of normal functions. The result of an asynchronous
operation is specified purely in terms of its completion signature. Put another way, the
completion signature is to an asynchronous operation as a return type is to a normal function.
The implementation of a function has no bearing on its return type or completion signature.

On the other hand, P0055R0’s design means that the internals of an asynchronous operation
may influence its return type. That is, the lambda passed to completion_token_transform
may be encoded into its return type.

template<class	CompletionToken>	
auto	async_xyz(T1	t1,	T2	t2,	CompletionToken&&	token)	noexcept(auto)	
{	
		return	completion_token_transform<void(R1	r1,	R2	r2)>(
							forward<CompletionToken>(token),	
							[=](auto	typeErasedHandler)	{	async_xyz_impl_raw(t1,	t2,	typeErasedHandler);	});	
}	
	
	

This is a deliberate design choice of P0055R0, and has a couple of negative consequences.

5.4.1 Inhibits composition

If we have two normal functions that return the same type:

int	a();	
int	b();	

we can compose them into a third function that also returns that same type:

int	c()	
{	
		if	(some_condition)	
				return	a();	
		else	
				return	b();	
}	

We may likewise compose asynchronous operations that use the completion token model. For
example:

template	<class	CompletionToken>	
auto	throttled_post(CompletionToken&&	token)	
{	
		if	(throttle_required())	
				return	my_simple_timer.async_wait(std::forward<CompletionToken>(token));	
		else	
				return	post(std::forward<CompletionToken>(token));	
}	

This lambda may be encoded into the return type

P0162R0 – A response to P0055R0

8

where both my_simple_timer.async_wait() and post() have a completion signature of
void().

Or this example:

class	http_client	
{	
		bool	encrypt_;	
		ssl::stream<tcp::socket>	encrypted_;	
		tcp::socket	unencrypted_;	
	
		template	<class	Buffers,	class	CompletionToken>	
		auto	async_read_some(Buffers	buffers,	CompletionToken&&	token)	
		{	
				if	(encrypt_)	
						return	encrypted_.async_read_some(buffers,	std::forward<Token>(token));	
				else	
						return	unencrypted_.async_read_some(buffers,	std::forward<Token>(token));	
		}	
};	

where all async_read_some operations share the completion signature void(error_code,	
size_t).

As P0055R0’s completion_token_transform may encode an asynchronous operation
implementation into its return type, we can no longer compose operations in this way. For
example, we can no longer assume that two different async_read_some operations return the
same type.

5.4.2 Increases risk of ABI breakage

As P0055R0’s model encodes implementation details into return types, there is a higher risk
of making ABI breaking changes. For example, when a library implementer fixes a bug in the
lambda passed to completion_token_transform, it may change size, and the return type of
the asynchronous operation is similarly affected.

6 Conclusion
In summary, benchmarking shows that P0055R0’s proposed design offers no tangible
performance benefit over existing facilities. Moreover, the conflation of the two customisation
points:

• return type and value
• allocation of memory

into a single customisation point carries significant design costs. Consequently, the design
changes proposed in P0055R0 should not be adopted by the proposed networking TS.

7 Acknowledgements
The author would like to thank: Arash Partow for extensive discussion, feedback, and for his
assistance in designing and running the benchmarks; and Jamie Allsop for providing
feedback on drafts of this paper.

8 Appendix: Benchmark results
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_custom_alloc.exe		
5543	ms	for	1e9	iterations,	which	is	5.543	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_custom_alloc.exe		

P0162R0 – A response to P0055R0

9

5549	ms	for	1e9	iterations,	which	is	5.549	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_custom_alloc.exe		
5577	ms	for	1e9	iterations,	which	is	5.577	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_custom_alloc.exe		
5646	ms	for	1e9	iterations,	which	is	5.646	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_custom_alloc.exe		
5644	ms	for	1e9	iterations,	which	is	5.644	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_custom_alloc.exe		
5513	ms	for	1e9	iterations,	which	is	5.513	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_custom_alloc.exe		
5513	ms	for	1e9	iterations,	which	is	5.513	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_custom_alloc.exe		
5707	ms	for	1e9	iterations,	which	is	5.707	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_custom_alloc.exe		
5556	ms	for	1e9	iterations,	which	is	5.556	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_custom_alloc.exe		
5581	ms	for	1e9	iterations,	which	is	5.581	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_default_alloc.exe		
5545	ms	for	1e9	iterations,	which	is	5.545	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_default_alloc.exe		
5536	ms	for	1e9	iterations,	which	is	5.536	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_default_alloc.exe		
5526	ms	for	1e9	iterations,	which	is	5.526	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_default_alloc.exe		
5679	ms	for	1e9	iterations,	which	is	5.679	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_default_alloc.exe		
5548	ms	for	1e9	iterations,	which	is	5.548	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_default_alloc.exe		
5600	ms	for	1e9	iterations,	which	is	5.600	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_default_alloc.exe		
5551	ms	for	1e9	iterations,	which	is	5.551	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_default_alloc.exe		
5534	ms	for	1e9	iterations,	which	is	5.534	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_default_alloc.exe		
5563	ms	for	1e9	iterations,	which	is	5.563	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\callback_default_alloc.exe		
5699	ms	for	1e9	iterations,	which	is	5.699	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\coroutine.exe		
6075	ms	for	1e9	iterations,	which	is	6.075	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\coroutine.exe		
6076	ms	for	1e9	iterations,	which	is	6.076	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\coroutine.exe		
6066	ms	for	1e9	iterations,	which	is	6.066	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\coroutine.exe		

P0162R0 – A response to P0055R0

10

6075	ms	for	1e9	iterations,	which	is	6.075	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\coroutine.exe		
6102	ms	for	1e9	iterations,	which	is	6.102	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\coroutine.exe		
6065	ms	for	1e9	iterations,	which	is	6.065	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\coroutine.exe		
6076	ms	for	1e9	iterations,	which	is	6.076	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\coroutine.exe		
6076	ms	for	1e9	iterations,	which	is	6.076	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\coroutine.exe		
6066	ms	for	1e9	iterations,	which	is	6.066	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_static\coroutine.exe		
6074	ms	for	1e9	iterations,	which	is	6.074	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_custom_alloc.exe		
16581	ms	for	1e9	iterations,	which	is	16.581	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_custom_alloc.exe		
16230	ms	for	1e9	iterations,	which	is	16.230	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_custom_alloc.exe		
16236	ms	for	1e9	iterations,	which	is	16.236	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_custom_alloc.exe		
16615	ms	for	1e9	iterations,	which	is	16.615	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_custom_alloc.exe		
16632	ms	for	1e9	iterations,	which	is	16.632	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_custom_alloc.exe		
16632	ms	for	1e9	iterations,	which	is	16.632	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_custom_alloc.exe		
16303	ms	for	1e9	iterations,	which	is	16.303	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_custom_alloc.exe		
16294	ms	for	1e9	iterations,	which	is	16.294	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_custom_alloc.exe		
16278	ms	for	1e9	iterations,	which	is	16.278	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_custom_alloc.exe		
16297	ms	for	1e9	iterations,	which	is	16.297	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_default_alloc.exe		
16409	ms	for	1e9	iterations,	which	is	16.409	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_default_alloc.exe		
16431	ms	for	1e9	iterations,	which	is	16.431	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_default_alloc.exe		
16518	ms	for	1e9	iterations,	which	is	16.518	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_default_alloc.exe		
16424	ms	for	1e9	iterations,	which	is	16.424	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_default_alloc.exe		
16397	ms	for	1e9	iterations,	which	is	16.397	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_default_alloc.exe		

P0162R0 – A response to P0055R0

11

16395	ms	for	1e9	iterations,	which	is	16.395	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_default_alloc.exe		
16501	ms	for	1e9	iterations,	which	is	16.501	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_default_alloc.exe		
16507	ms	for	1e9	iterations,	which	is	16.507	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_default_alloc.exe		
16509	ms	for	1e9	iterations,	which	is	16.509	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\callback_default_alloc.exe		
16425	ms	for	1e9	iterations,	which	is	16.425	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\coroutine.exe		
18084	ms	for	1e9	iterations,	which	is	18.084	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\coroutine.exe		
18117	ms	for	1e9	iterations,	which	is	18.117	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\coroutine.exe		
17980	ms	for	1e9	iterations,	which	is	17.980	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\coroutine.exe		
18017	ms	for	1e9	iterations,	which	is	18.017	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\coroutine.exe		
17975	ms	for	1e9	iterations,	which	is	17.975	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\coroutine.exe		
18039	ms	for	1e9	iterations,	which	is	18.039	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\coroutine.exe		
17968	ms	for	1e9	iterations,	which	is	17.968	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\coroutine.exe		
17969	ms	for	1e9	iterations,	which	is	17.969	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\coroutine.exe		
18088	ms	for	1e9	iterations,	which	is	18.088	ns	per	iteration	
	
C:\build>start	/b	/wait	/high	/affinity	2	os_dll\coroutine.exe		
18136	ms	for	1e9	iterations,	which	is	18.136	ns	per	iteration	

