
An Extensible Approach to Obtaining Selected Operators

Document #: WG21 P0436R0
Date: 2016-10-10
Project: JTC1.22.32 Programming Language C++
Audience: EWG ⇒ CWG
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction 1
2 Principles and prior art 2
3 Proposal 2
4 Library impact 3
5 Examples 4

6 Possible future directions 4
7 Proposed wording 6
8 Acknowledgments 6
9 Bibliography 6
10 Document history 8

Abstract

In light of WG21’s recent rejection of [P0221R2], which proposed default-generated comparison
operators, this paper investigates and proposes operator reinterpretation as a new but slightly
less ambitious approach to the subject. The proposal, which has both opt-in and opt-out fea-
tures, is straightforward to specify, has no immediate impact on the Standard Library, is fully
backwards-compatible with existing well-formed ordinary user code, eliminates the need for
certain boilerplate code, and can in the future be extended to selected other (non-comparison)
operators.

If you can write x < y, you also want x > y, x >= y, and x <= y.

— DAVE ABRAHAMS and JEREMY SIEK

The more I thought about this the more I realized our society is obsessed with
comparisons.

— STEPHANIE HESTER

1 Introduction

At WG21’s Oulu meeting (2016-06), attendees declined to adopt default-generated comparison
operators as proposed by [P0221R2]. Many consider this an unfortunate outcome, as considerable
committee resources had been expended in developing and refining the proposal to reach that
final form; the Bibliography (§9) lists recent (and even some not-so-recent) WG21 papers on the
topic.

From informal discussions with a number of the Oulu WG21 participants, it seems clear
that several parts of the proposal were considered both desirable and relatively uncontroversial.
The present paper proposes to adopt those (and only those) elements via a new approach that
(a) seems to avoid most or all of the controversial issues that accompanied the recent effort and
also (b) provides opportunity for future extension to other operators.

Copyright c© 2016 by Walter E. Brown. All rights reserved.

1

mailto:webrown.cpp@gmail.com

2 P0436R0: An Extensible Approach to Obtaining Selected Operators

In §2, we will review the underlying principles and prior art on which this proposal is based.
The proposal itself is then presented in §3 followed by an analysis (§4) and examples (§5) of its
impact on the Standard Library and on existing well-formed user code. We conclude with a
discussion (§6) of possible future directions, followed in §7 by our proposed wording.

2 Principles and prior art

While the topic has been under discussion for quite some time,1 the first recent paper on the
subject of default-generated comparison operators appears to be [N3950]. Under the heading of
“Correctness,” its author argues:

It is vital that equal/unequal, less/more-or-equals and more/less-or-equal pairs behave
as boolean negations of each other. After all, the world would make no sense if both
operator==() and operator!=() returned false! As such, it is common to implement
these operators in terms of each other: [code omitted].

This position seems relatively uncontroversial,2 as it is fully consistent with the generally-accepted
concepts EqualityComparable and LessThanComparable as conceived by Alexander Stepanov3

and as implemented throughout both today’s Standard Library and the draft future conceptified
version thereof.

It is further a long-accepted de facto principle of the Standard Library that two of the six
comparison operators, namely equal-to and less-than, are in some sense special:

• This can perhaps most obviously be seen in the Library’s std::rel_ops namespace, where
we find implementations of the other four comparison operators in terms of these special
two.

• Moreover, quite a number of Standard Library algorithms are specified in pairs, one specified
in terms of a notional operator== or operator< and the other specified in terms of a
function object having equivalent effect; std::equal exemplifies the former (operator==)
case, while std::sort exemplifies the latter (operator<) case.

• Finally, Boost.Operators4 (which is one of the oldest Boost components) provides templates
less_than_comparable<> and equality_comparable<> that inject the remaining compar-
ison operators, defining them in terms of these special two. This same design is preserved by
Daniel Frey’s The Art of C++/Operators library,5 a modernized (e.g., move-aware) rewrite of
Boost.Operators.

3 Proposal

This paper proposes operator reinterpretation as a new, yet backwards compatible, approach
to obtaining the remaining comparison operators based on the special ones. The proposal is in
two parts, one for each of the two special comparison operators to be relied on:

1See, for example, the 1995 (!) paper [N0618].
2[N4367] and its successors ([P0100R0] and [P0100R1]) do briefly discuss alternative definitions of operator<= and

operator>=. These alternatives, while perhaps providing mathematically superior characteristics, seem inconsistent
with the long-established precedents enshrined in the Standard Library: a “consistent weak ordering” is, where needed,
tacitly assumed throughout. Adoption of these alternatives seems to have introduced some of the concerns that led to
[P0221R2]’s rejection.

3See the SGI STL web sites http://www.sgi.com/tech/stl/EqualityComparable.html and http://www.sgi.com/tech/
stl/LessThanComparable.html.

4See http://www.boost.org/doc/libs/1_61_0/libs/utility/operators.htm.
5See https://github.com/taocpp/operators.

http://www.sgi.com/tech/stl/EqualityComparable.html
http://www.sgi.com/tech/stl/LessThanComparable.html
http://www.sgi.com/tech/stl/LessThanComparable.html
http://www.boost.org/doc/libs/1_61_0/libs/utility/operators.htm
https://github.com/taocpp/operators

P0436R0: An Extensible Approach to Obtaining Selected Operators 3

1. If no suitable operator!= is declared for a use of the form x != y, such an expression is
to be (re)interpreted as if (re)written !(x == y), but only if that operator== is sane (i.e.,
exists and has return type bool). (Thus, only if no suitable operator== is declared, as well
as no suitable operator!=, would the original expression yield an ill-formed program.)

2. If no suitable operators are declared for uses of the forms x > y, x >= y, or x <= y, such an
expression is to be (re)interpreted as if (re)written in terms of operator<, as shown in the
following table, but only if that operator< is sane as defined above.

Expression Reinterpretation

x > y y < x
x >= y !(x < y)
x <= y !(y < x)

It appears that the above approach to obtaining the functionality of (four of) the comparison
operators has not received prior WG21 consideration via any of the papers listed in §9. We believe
that this approach is viable and reasonably straightforward to specify and implement, removes the
need for boilerplate code for these four operators, and completely avoids the known contentious
issues that have to date doomed the previous approaches:

• The proposal is opt-in, in that an operand type must provide sane (i.e., bool-returning)
operator== and/or operator< before this proposal would have any potential effect on the
type’s interface.

• The proposal is also opt-out, in that an operand whose type already provides operator!=,
operator>=, operator<=, and/or operator> would have those operators used in the same
way as has been done since at least C++98.

Note that no existing well-formed ordinary6 program would be affected by the above proposal,
as such a program must already provide each operator that is used.7

4 Library impact

The proposed new reinterpretations have been carefully designed so as to have no net effect on the
behavior of the Standard Library, since the Library already specifies all the comparison operators
appropriate for each Library type.8 However, this status quo may be considered overspecification
under the proposal.9 Accordingly, the Library may in future wish to excise some or all of its
specifications of operator!=, operator>, operator>=, and operator<= and thus implicitly
opt-in to our new core language rule for equivalent behavior.

Independently of such possible simplifications in Library specification, Library implementors
could remove their declarations of these functions as soon as the new rule is implemented in their
compilers and see no change in the behavior of any existing well-formed program.

6We apply the term ordinary to describe programs that do not adjust their behavior after probing via the detection
idiom ([N4502]) or an equivalent technique to determine the validity of a certain expression such as x > y. Some
extraordinary programs, i.e., programs that do perform such inspection and self-adjustment, may have a change in
behavior under the present proposal. This is because a type that has opted-in to this proposal by supplying operator<
would now report that x > y is a valid expression even when a corresponding operator> was not supplied by the user.

Programs making self-adjustments in this manner appear to be exceedingly uncommon. Moreover, in the very few of
these we have seen, the programs undertook such inspection in order to compensate for an operator’s possible absence.
Such compensation would, of course, be no longer needed for most comparison operators once this proposal is adopted.

7Stated differently but equivalently, an existing well-formed program must already avoid using any absent operator.
8The same analysis holds for all existing well-formed ordinary user code, thus rendering the proposal fully backwards-

compatible with such code.
9These comparison operators seem to have been originally specified via [N0967R1] for the Library’s then-existing

types. At the time, it took six single-spaced pages just to identify all these locations, and of course it today takes more
than that in mostly boilerplate specifications to set forth the desired functionality.

4 P0436R0: An Extensible Approach to Obtaining Selected Operators

Finally, we note that the present proposal completely subsumes the functionality provided by
std::rel_ops. Clause [operators] (20.2.1) is thus another candidate for future deprecation and
excision, should this proposal be adopted.

5 Examples

5.1 complex<>
As our first example, consider std::complex<>, which has long specified operator== and
operator!=, but no other comparison operators.

• Under the present proposal, the equality operator’s specification would remain unchanged.
Its presence is necessary to preserve current behavior.

• Under the present proposal, the inequality operator’s existing specification becomes redun-
dant, but its presence is not actively harmful. This specification can, at some future date, be
removed (or not) at the pleasure of the Library Working Group and/or the Project Editor.

• Under the present proposal, and unlike previous proposals, std::complex<> does not
suddenly acquire any additional comparison operators.

Thus, this family of types will, in all cases, retain its present behavior under the present proposal.

5.2 Bizarre comparison functions
Let’s now consider a hypothetical user-provided type U whose comparison operators violate the
usual assumptions in some way. Such behavior can arise only if U explicitly deletes or otherwise
fully defines the corresponding functions. Therefore, U would be unaffected by the present
proposal, as the presence of these bizarre functions constitutes an explicit opt-out for those
operators.

5.3 Comparison defined after use
Suppose we have a user-provided type that provides a comparison operator, but does so only
after an expression that uses that operator has already been reinterpreted as defined above.
This proposal does not countenance such inconsistency, and provides wording (adapted from
[P0221R2]; see §7) to treat any such program as ill-formed.

5.4 struct tm, etc.
Finally, what about types that declare no comparison operator at all? (struct tm is a canonical
example of such a type.) This proposal does not impact such types in any way. To opt-in, a type
must provide, at minimum, operator==, operator<, or both. In their absence, this proposal’s
provisions are inapplicable.

6 Possible future directions

6.1 Generating operator== and operator<
Nothing in the present proposal stands in the way of potential future proposals for compiler-
generated operator== and/or operator<. If anything, such a future proposal would become
somewhat simpler, as the remaining comparison operators would no longer be at issue.

6.2 Reinterpretations for operator families
If the present proposal were adopted, WG21 could in the future consider expanding the list of
operators receiving similar treatment. For example, consider Sutter’s formulations10 of long-
accepted coding guidance regarding C++ overloaded operators:

10Herb Sutter: “GotW #4 Solution: Class Mechanics.” 2013-05-20. https://herbsutter.com/2013/05/20/gotw-4-
class-mechanics/.

https://herbsutter.com/2013/05/20/gotw-4-class-mechanics/
https://herbsutter.com/2013/05/20/gotw-4-class-mechanics/

P0436R0: An Extensible Approach to Obtaining Selected Operators 5

• “If you supply a standalone version of an operator (e.g., operator+), always supply an
assignment version of the same operator (e.g., operator+=) and prefer implementing the
former in terms of the latter.”

• “For consistency, always implement postincrement in terms of preincrement, otherwise your
users will get surprising (and often unpleasant) results.”

These and similar recommendations for C++ programmers have been summarized11 as “Always
provide all out of a set of related operations.” Such rules of thumb seem to provide excellent
starting points for future WG21 deliberation once we obtain sufficient experience with the present
proposal.

6.3 Reinterpretations for some iterator operators
Finally, in a recent posting,12 Matthew Fioravante reacts (favorably) to a CppCon 2016 talk13 that
reimagines iterator interfaces. After summarizing the talk, Fioravante asks, “how can we make
things better?” First among several possible approaches, he proposes to “Add more defaulted
operators” as follows14:

* If T::operator++() is defined and T is copyable, autogenerate T::operator++(int).

* If T::operator--() is defined and T is copyable, autogenerate T::operator--(int).

* If T::operator* is defined and returns an lvalue reference, autogenerate T::operator
->().

* If T::operator* const is defined and returns an lvalue reference, autogenerate
T::operator->() const.

* If T::operator+=(U) is defined, autogenerate operator+(T, U). (or vice-versa)

* If T::operator-=(U) is defined, autogenerate operator-(T, U). (or vice-versa)

* If T::operator+(T,U) is defined and T::operator* is defined, autogenerate T::
operator[](U) (I could see this being problematic)

* If T::operator+(T,U) is defined and T::operator* const is defined, autogenerate
T::operator[](U) const (I could see this being problematic)

* If operator==(T,U) is defined, autogenerate operator!=(T,U). (or vice-versa)

* If operator<(T,U) is defined, autogenerate operator>=(T,U). (or vice-versa)

* If operator>(T,U) is defined, autogenerate operator<=(T,U). (or vice-versa)

* If operator<(T,U) and operator==(T,U) are defined, autogenerate operator>(T,U)

* If operator>(T,U) and operator==(T,U) are defined, autogenerate operator<(T,U)

If “autogenerate” were replaced with “reinterpret” in the above, it seems clear that the present
proposal could provide a reasonably straightforward means of achieving Fioravante’s vision. At
mimimum, it would be interesting to contrast this approach with the well-known “iterator facade”
approach.15

11sbi [pseudonym]: “The Three Basic Rules of Operator Overloading in C++.” 2010-12-12. Revised by Daniel Kamil
Kozar, 2013-06-11. http://stackoverflow.com/questions/4421706/operator-overloading/4421708#4421708.

12Matthew Fioravante: “[std-proposals] The C++ Iterator API is terrible. How can we fix it?” 2016-
10-10. https://groups.google.com/a/isocpp.org/d/msgid/std-proposals/4a6aa8f7-6db6-41af-b128-9848041382ff%
40isocpp.org?utm_medium=email&utm_source=footer.

13Patrick Niedzielski: “From Zero to Iterators: Building and Extending the Iterator Hierarchy in a Modern, Multicore
World.” Presented at CppCon 2016, Bellevue, WA, USA. https://www.youtube.com/watch?v=N80hpts1SSk.

14Minor typos have been corrected and monospace fonts have been added for clarity.
15For example, see “Iterator Facade and Adaptor” in David Abrahams, Jeremy Siek, and Thomas Witt: “The

Boost.Iterator Library.” 2003. http://www.boost.org/doc/libs/1_62_0/libs/iterator/doc/index.html.

http://stackoverflow.com/questions/4421706/operator-overloading/4421708#4421708
https://groups.google.com/a/isocpp.org/d/msgid/std-proposals/4a6aa8f7-6db6-41af-b128-9848041382ff%40isocpp.org?utm_medium=email&utm_source=footer
https://groups.google.com/a/isocpp.org/d/msgid/std-proposals/4a6aa8f7-6db6-41af-b128-9848041382ff%40isocpp.org?utm_medium=email&utm_source=footer
https://www.youtube.com/watch?v=N80hpts1SSk
http://www.boost.org/doc/libs/1_62_0/libs/iterator/doc/index.html

6 P0436R0: An Extensible Approach to Obtaining Selected Operators

7 Proposed wording16

7.1 To provide appropriate context for our subsequent wording adjustments, we first reproduce
the (sole) paragraph currently constituting subclause [over.binary] (13.5.2).

1 A binary operator shall be implemented either by a non-static member function (9.2.1) with one
parameter or by a non-member function with two parameters. Thus, for any binary operator @,
x @ y can be interpreted as either x.operator@(y) or operator@(x,y). If both forms of the
operator function have been declared, the rules in 13.3.1.2 determine which, if any, interpretation
is used.

7.2 Append a new paragraph and accompanying table to [over.binary] (13.5.2) as shown below.
(The second sentence is adapted from similar wording in [P0221R2].)

2 If neither form of the operator function has been declared, then for each binary operator @
appearing in an Expression in Table n, x @ y shall, if it satisfies the corresponding Precondition,
be reinterpreted according to the corresponding Reinterpretation. If an expression is thusly rein-
terpreted in a context whose nearest enclosing namespace is N, and an expression with the same
operator and the same operand types in another context whose nearest enclosing namespace is
also N is not thusly reinterpreted, the program is ill-formed; no diagnostic is required if the two
expressions appear in different translation units.

Table n — Reinterpretations of selected binary expressions [reinterpretations]

Expression Precondition Reinterpretation

x != y decltype(x == y) is bool. !(x == y)
x > y decltype(y < x) is bool. y < x
x >= y decltype(x < y) is bool. !(x < y)
x <= y decltype(y < x) is bool. !(y < x)

7.3 For the purposes of SG10, a feature test macro named __cpp_extended_comparison_
operators is recommended.

8 Acknowledgments

Many thanks to the readers of pre-publication drafts for their careful proofreading and thoughtful
comments. Your contributions in materially improving this paper is greatly and gratefully
appreciated.

9 Bibliography

[N0618] Nathan Myers: “Removing STL Global Operators != > <= >=.” ISO/IEC JTC1/SC22/WG21 doc-
ument N0618 (pre-Austin mailing), 1995-01-26.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1995/n0618.pdf.

[N0967R1] Randy Smithey: “Relational Operators for Standard Library Classes.” ISO/IEC JTC1/SC22/
WG21 document N0967R1 (post-Stockholm mailing), 1996-07-11.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1996/n0967r1.pdf.

16All proposed additions and deletions are relative to the post-Oulu Working Draft [N4606]. Drafting and editorial
notes are highlighted like this .

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1995/n0618.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/1996/n0967r1.pdf

P0436R0: An Extensible Approach to Obtaining Selected Operators 7

[N3950] Oleg Smolsky: “Defaulted comparison operators,” ISO/IEC JTC1/SC22/WG21 document N3950
(post-Issaquah mailing), 2014-02-19.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3950.html.

[N4114] Oleg Smolsky: “Defaulted comparison operators,” ISO/IEC JTC1/SC22/WG21 document N4114
(post-Rappersville mailing), 2014-07-02. Revises [N3950].
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4114.htm.

[N4126] Oleg Smolsky: “Explicitly defaulted comparison operators,” ISO/IEC JTC1/SC22/WG21 docu-
ment N4126 (pre-Urbana mailing), 2014-07-29. Revises [N4114].
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4126.htm.

[N4175] Bjarne Stroustrup: “Default comparisons,” ISO/IEC JTC1/SC22/WG21 document N4175 (pre-
Urbana mailing), 2014-10-11.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4175.pdf.

[N4176] Bjarne Stroustrup: “Thoughts about Comparisons,” ISO/IEC JTC1/SC22/WG21 document
N4176 (pre-Urbana mailing), 2014-10-11.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4176.pdf.

[N4239] Andrew Tomazos, Michael Spertus: “Defaulted Comparison Using Reflection,” ISO/IEC JTC1/
SC22/WG21 document N4239 (pre-Urbana mailing), 2014-10-12.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4239.pdf.

[N4367] Lawrence Crowl: “Comparison in C++,” ISO/IEC JTC1/SC22/WG21 document N4367 (mid-
Urbana-Lenexa mailing), 2015-02-08.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4367.html.

[N4401] Michael Price: “Defaulted comparison operator semantics should be uniform,” ISO/IEC JTC1/
SC22/WG21 document N4401 (pre-Lenexa mailing), 2015-04-07.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4401.html.

[N4436] Walter E. Brown: “Proposing Standard Library Support for the C++ Detection Idiom.” ISO/IEC
JTC1/SC22/WG21 document N4436 (pre-Lenexa mailing), 2015-04-09.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4436.pdf.

[N4475] Bjarne Stroustrup: “Default comparisons (R2),” ISO/IEC JTC1/SC22/WG21 document N4475
(pre-Lenexa mailing), 2015-04-09. Revises [N4175].
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf.

[N4476] Bjarne Stroustrup: “Thoughts about Comparisons (R2),” ISO/IEC JTC1/SC22/WG21 document
N4476 (pre-Lenexa mailing), 2015-04-09. Revises [N4176].
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4476.pdf.

[N4502] Walter E. Brown: “Proposing Standard Library Support for the C++ Detection Idiom, v2.” ISO/
IEC JTC1/SC22/WG21 document N4502 (post-Lenexa mailing), 2015-05-03. Revises [N4436].
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4502.pdf.

[N4532] Jens Maurer: “Proposed wording for default comparisons,” ISO/IEC JTC1/SC22/WG21 docu-
ment N4532 (post-Lenexa mailing), 2015-05-22.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4532.html.

[N4606] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4606 (post-Oulu mailing), 2016-07-12.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4606.pdf.
Same content as “C++17 CD Ballot Document,” ISO/IEC JTC1/SC22/WG21 document N4604
(post-Oulu mailing), http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4604.pdf.

[P0100R0] Lawrence Crowl: “Comparison in C++,” ISO/IEC JTC1/SC22/WG21 document P0100R0 (pre-
Kona mailing), 2015-09-27. Revises [N4367].
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0100r0.html.

[P0100R1] Lawrence Crowl: “Comparison in C++,” ISO/IEC JTC1/SC22/WG21 document P0100R1 (post-
Kona mailing), 2015-11-07. Revises [P0100R0].
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0100r1.html.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3950.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4114.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4126.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4175.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4176.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4239.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4367.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4401.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4436.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4476.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4502.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4532.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4606.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4604.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0100r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0100r1.html

8 P0436R0: An Extensible Approach to Obtaining Selected Operators

[P0221R0] Jens Maurer: “Proposed wording for default comparisons, revision 2,” ISO/IEC JTC1/SC22/
WG21 document P0221R0 (pre-Jacksonville mailing), 2016-02-10. Revises [N4532].
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0221r0.html.

[P0221R1] Jens Maurer: “Proposed wording for default comparisons, revision 3,” ISO/IEC JTC1/SC22/
WG21 document P0221R1 (post-Jacksonville mailing), 2016-03-17. Revises [P0221R0].
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0221r1.html.

[P0221R2] Jens Maurer: “Proposed wording for default comparisons, revision 4,” ISO/IEC JTC1/SC22/
WG21 document P0221R2 (post-Oulu mailing), 2016-06-23. Revises [P0221R1].
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0221r2.html.

10 Document history

Rev Date Changes

0 2016-10-10 • Published as P0436R0.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0221r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0221r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0221r2.html

	Title
	Contents
	Abstract
	1 Introduction
	2 Principles and prior art
	3 Proposal
	4 Library impact
	5 Examples
	6 Possible future directions
	7 Proposed wording
	8 Acknowledgments
	9 Bibliography
	10 Document history

