P1709R1: Graph Library

Date: 2019-06-17

Project: ISO JTC1/SC22/WG21: Programming Language C++
Audience: SG19, WG21

Authors: Phillip Ratzloff (SAS Institute)

Richard Dosselmann (U of Regina)
Michael Wong (Codeplay)

Contributors: N/A

Emails: phil.ratzloff@sas.com

dosselmr@cs.uregina.ca
michael@codeplay.com

Reply to: phil.ratzloff@sas.com

Introduction

This document proposes the addition of a (general) graph algorithms and data structure to the
C++ containers library to support machine learning (ML), as well as other applications. ML is
a large and growing field, both in the research community and industry. Artificial
intelligence (Al), a subset of ML, in particular has received a great deal of attention in recent
years.

A graph G = (V, E) is a set of vertices, points in a space, and edges, links between these
vertices. Edges may or may not be oriented, that is, directed or undirected, respectively.
Moreover, edges may be weighted, that is, assigned a value. Both static and dynamic
implementations of a graph exist, specifically a (static) matrix, (static) array and (dynamic) list,
each having the typical advantages and disadvantages associated with static and dynamic data
structures.

This paper presents an interface of the proposed graph algorithms and data structures. This
should be considered a proof of concept.

Revision History

mailto:phil.ratzloff@sas.com
mailto:dosselmr@cs.uregina.ca
mailto:michael@codeplay.com
mailto:phil.ratzloff@sas.com

Revision Description

P1709R1 Rewrite with a focus on a pure functional design, emphasizing the algorithms
and graph API. Also added concepts and ranges into the design.

Addressed concerns from Cologne review to change to functional design.

P1709R0 [Focus on object-oriented API for data structures and example code for a few
algorithms.

Motivation

A graph data structure, used in ML and other scientific domains, as well as industrial and
general programming, does not presently exist in the C++ standard. In ML, a graph forms the
underlying structure of an Artificial Neural Network (ANN). In a game, a graph can be used to
represent the map of a game world. In business, an Entity Relationship Diagram (ERD) or Data
Flow Diagram (DFD) is a graph. In the realm of social media, a graph represents a social

network.

Impact on the Standard

This proposal is a pure library extension.

Design Proposals

Goals & Background

Graphs are used in a wide variety of situations. To meet the varied demands there are a
number of different characteristics with different behavior and performance to meet
requirements. This section identifies the different types of graphs and introduces the goals of
this proposal. The remaining sections provide the details.

The characteristics that are often used to describe graphs include the following:
1. Property Graphs: The user can define properties, or values, on edges, vertices and the
graph itself.
This proposal supports optional user-defined types for edge, vertex and graph
types. Any C++ type is allowed, including class, struct, union, tuple, enum and scalers.

2. Directed (forward-only and bi-directional) and Undirected Graphs: Edges can
represent a direction, in-vertex and out-vertex, or can be undirected. Directed graphs
also have a designation of forward-only or bi-directional.

This proposal supports directed forward-only, directed bi-directional, and
undirected graphs.

3. Adjacency List | Adjacency Array | Adjacency Matrix: How edges are
represented/implemented has an impact on performance when modifying the graph or
executing algorithms, often conflicting with each other. These are design decisions made
by developers for their situation.

An Adjacency List uses linked lists to store edges and adapts to change well, an
Adjacency Array stores all edges in a single “array” (e.g. std::vector) with a balance
between change and good performance, and Adjacency Matrix stores all combinations
of edges in a dense 2-dimensional array for performance and space advantages for
dense graphs.

All forms are supported in this proposal.

4. Single-edge and Multi-edge Graphs (multigraphs): Each pair of vertices can have
one or more edges between them.

This proposal supports both single- and multi-edge graphs. No special attention
is given to prevent multiple edges between two vertices. The Adjacency Matrix prevents
multiple edges by its nature.

5. Acyclic and Cyclic Graphs: Cyclic graphs include paths that trace one or more edges
from one vertex back to itself, while acyclic graphs have no such paths.

This proposal supports both acyclic and cyclic graphs. No special attention is
given to prevent cyclic graphs. Detection of cycles requires the Connected Components
(undirected graphs) or Strongly Connected Components (directed graphs) algorithms.

The goal of any graph library is to be able to be as flexible as possible, making necessary

compromises as needed. A challenge is to manage the list of various combinations, while
recognizing that some are not possible.

Example

Concepts

The concepts shown in this section are a work in progress. They exhibit useful concepts when
using a graph but not all definitions are defined yet. Other concepts may be added as more
algorithms and patterns of requirements are discovered.

All concepts defined in this paper are distinguished with a “_c” suffix.

template<typename G>
concept graph _c¢ = requires(G&& g) {

vertices(qg);
edges (g) ;
//value(qg); // value is optional

template<typename G> concept directed graph c;
template<typename G> concept bidirected graph c;
template<typename G> concept undirected graph c;

template<typename G> concept sparse_graph c;
template<typename G> concept dense_graph c; // e.g. adjacency matrix

template<typename V> concept vertex c;
template<typename V> concept edge_c;

template<typename V> concept vertex iterator_c;
template<typename V> concept edge_ iterator c;

template<typename V> concept eraseable c; // items can be erased
// (e.g. vertices or edges)

template<typename T> concept arithmetic ¢ requires is arithmetic v<T>;
// for DFS, BFS & TopoSort iterators

template<typename SI> concept search_ iterator c
requires { forward iterator<T> && depth(SI); };

Type Traits

template<graph c G>
struct is_adjacency_list;

template<graph c G>
inline constexpr bool is_adjacency list v = is adjacency list<G>::value;

template<graph c G>
struct is_adjacency_array;

template<graph c G>
inline constexpr bool is_adjacency array v = is adjacency array<G>::value;

template<graph c G>
struct is_adjacency matrix;

template<graph c G>
inline constexpr bool is_adjacency matrix v = is adjacency matrix<G>::value;

Types
In edges are only valid for graphs that have them.

template <graph c G>
using graph value_t = typename G::graph user value;

template <graph c G>
using vertex_key t = typename G::vertex key type;

template <graph c G>

using vertex_value_t = typename G::vertex user value;

template <graph c G>
using vertex range_ t = typename G::vertex range;

template <graph c G>
using vertex iterator_ t = typename G::vertex iterator;

template<graph c G>

using vertex_sentinal t typename G::vertex sentinal;

template <graph c G>
using vertex_size_t = typename G::vertex size t;

template <graph c G>
using edge_size t = typename G::edge size t;

template <graph c G>
using edge_value_t = typename G::edge user value;

template <graph c G>
using edge_range t = typename G::edge_ range;

template <graph c G>
using edge_ iterator_ t

typename G::edge iterator;

template<graph c G>
using edge_sentinal t = typename G::edge sentinal;

template <graph c G>
using edge_size_t = typename G::edge size type;

template <graph c G>
using out_edge range t = typename G::out edge range;

template <graph c G>
using out_edge iterator_ t = typename G::out edge iterator;

template <graph c G>

using out_edge sentinal t = typename G::out edge sentinal;

template <graph c G>

using out_edge_size t = typename G::out edge size type;

template <graph c G>

using in_edge_range t = typename G::in edge range;

template <graph c G>
using in_edge_iterator t = typename G::in edge iterator;

template <graph c G>
using in_edge_sentinal t = typename G::in edge sentinal;

template <graph c G>

using in_edge_size t = typename G::in edge size type;

Graph Functions

Common Functions

template <typename T>
auto value (T& gve) -> decltype(get user value(gve));

Vertex Functions

template <graph c G>
auto vertex key (vertex t<G>& u) -> vertex key t<G>&;

template<graph c G>
auto out_edges (G& g, vertex t<G>& u) -> out edge range t<G>;

template<graph c G>
auto out_size (G& g, vertex t<G>& u) -> out edge size t<G>;

template<graph c G>
auto out_degree (G& g, vertex t<G>& u) -> out edge size t<G>;

template<graph c G>
void clear_out_edges (G& g, vertex t<G>& u);

template<graph c G>
auto in_edges (G& g, vertex t<G>& u) -> in edge range t<G>;

template<graph c G>
auto in_size (G& g, vertex t<G>& u) -> in edge size t<G>;

template<graph c G>
auto in_degree (G& g, vertex t<G>& u) -> in edge size t<G>;

template<graph c G>
void clear_in_edges (G& g, vertex t<G>& u);

template<graph c G>
auto create_ vertex (G& g) -> pair<vertex iterator<G>,bool>;

template<graph c G>
auto create_vertex (G& g, vertex value t<T>g)
-> pair<vertex iterator<G>,bool>;

template<graph c G>
auto create_vertex (G& g, vertex value t<T>&&)
-> pair<vertex iterator<G>,bool>;

template<graph c G>
void erase_ vertices (G& g, vertex range t<T>&);

template<graph c G>
void erase_vertex (G& g, vertex iterator t<T>§&);

template<graph c G>
void erase vertex (G& g, vertex key t<T>&);

template<graph c G>
void clear vertex (G& g, vertex iterator t<T>g&);

template<graph c G>
auto find vertex(G& g, vertex key t<T>&) -> vertex iterator t<G>;

Edge Functions

template<graph c G>

auto out_vertex (G& g, edge iterator t<G>) -> vertex iterator<G>;

template<graph c G>
auto out_vertex (G& g, out edge iterator t<G>) -> vertex iterator<G>;

template<graph c G>
auto out_vertex (G& g, in edge iterator t<G>) -> vertex iterator<G>;

template<graph c G>
auto in_vertex (G& g, edge iterator t<G>) -> vertex iterator<G>;

template<graph c G>
auto in_vertex (G& g, out edge iterator t<G>) -> vertex iterator<G>;

template<graph c G>
auto in_vertex(G& g, in edge iterator t<G>) -> vertex iterator<G>;

template<graph c G>
auto create_edge (G& g, vertex iterator t<G>, vertex iterator t<G>);

template<graph c G>

auto create_edge (G& g,
vertex iterator t<G>,
vertex iterator t<G>,
edge value t<G>&);

template<graph c G>

auto create_edge (G& g,
vertex iterator t<G>,
vertex iterator t<G>,
edge value t<G>&&);

template<graph c G>
auto create_edge (G& g, vertex key t<G>&, vertex key t<G>§&);

template<graph c G>

auto create_edge (G& g,
vertex key t<G>¢g,
vertex key t<G>é&,
edge value t<G>&);

template<graph c G>
auto create_edge (G& g,
vertex key t<G>¢&,

vertex key t<G>¢&,
edge value t<G>&é&);

template<graph c G>
void erase_ edges (G& g, edge range t);

template<graph c G>
void erase_edges (G& g, out edge range t);

template<graph c G>
void erase_edges (G& g, in edge range t);

template<graph c G>
void erase_edge (G& g, vertex iterator t<G> u, vertex iterator t<G> v);

template<graph c G>
void erase_edge (G& g, vertex key t<G>& ukey, vertex key t<G>& vkey);

template<graph c G>
void erase_edge (G& g, edge iterator t<G> uv);

template<graph c G>
void erase_ edge (G& g, out edge iterator t<G> uv);

template<graph c G>
void erase_edge (G& g, in edge iterator t<G> uv);

template<graph c G>
auto find edge (G& g, vertex iterator t<G> u, vertex iterator t<G> v) ->
edge iterator<G>;

template<graph c G>
auto find edge (G& g, vertex key t<G>& ukey, vertex key t<G>& vkey) ->
edge iterator<G>;

template<graph c G>
auto find out_edge (G& g, vertex iterator t<G> u, vertex iterator t<G> v) ->
out edge iterator<G>;

template<graph c G>
auto find out_edge (G& g, vertex key t<G>& ukey, vertex key t<G>& vkey) ->
out edge iterator<G>;

template<graph c G>
auto find in edge (G& g, vertex iterator t<G> u, vertex iterator t<G> v) ->
in edge iterator<G>;

template<graph c G>
auto find in edge (G& g, vertex key t<G>& ukey, vertex key t<G>& vkey) ->
in edge iterator<G>;

Graph Functions

template<graph c G>
auto vertices (G& g) —-> vertex range t;

template<graph c G>
auto vertices_size (G& g) -> vertex size t<G>;

template<graph c G>
auto edges (G& g) -> edge range t;

template<graph c G>
auto edges_size (G& g) —-> edge size t<G>;

template<graph c G>
void clear (G& g);

template<graph c G>
void swap(G& a, G& b);

template<graph c G>
auto create_adjacency list(G::allocator t alloc=G::allocator t()) -> G*;

template<graph c G>
auto create_adjacency list(const graph value t<G>g,
G::allocator t alloc=G::allocator t()) -> G*;

template<graph c G>
auto create_adjacency list(graph value t<G>&g,
G::allocator t alloc=G::allocator t()) -> G*;

template<graph c G>

auto create_adjacency_array(G::allocator_t alloc=G::allocator t()) -> G*;
template<graph c G>

auto create_adjacency_array (const graph value t<G>¢,

G::allocator t alloc=G::allocator t()) -> G*;

template<graph c G>

auto create_adjacency_ array (graph value t<G>&s,
G::allocator t alloc=G::allocator t()) -> G*;

template<graph c G>
auto create_adjacency matrix (G::size type vtx cnt,
G::allocator t alloc=G::allocator t()) -> G*;

template<graph c G>
auto create_adjacency matrix (G::size type vtx cnt,
const graph value t<G>& gval,
G::allocator t alloc=G::allocator t()) -> G*;

template<graph c G>
auto create_adjacency matrix (G::size type vtx cnt,
graph value t<G>&& gval,
G::allocator t alloc=G::allocator t()) -> G*;

lterators

Example Graph
struct route {
string from;
string to;
int km = 0;

route (string consté& from city, string consté& to city, int kilometers)
from(from city), to(to_city), km(kilometers) {}

bi

vector<route> routes{
{"Frankfiirt", "Mannheim", 85}, {"Frankfirt", "Wirzburg", 217},
{"Frankflirt", "Kassel", 173}, {"Mannheim", "Karlsruhe", 80},
{"Karlsruhe", "Augsburg", 250}, {"Augsburg", "Munchen", 84},
{"Wirzburg", "Erfurt", 186}, {"Wirzburg", "Nirnberg", 103},
{"NUirnberg", "Stuttgart", 183}, {"Nirnberg", "Minchen", 167},
{"Kassel", "Minchen", 502}};

using Gl = adjacency list<name value, weight value, empty value,
edge type undirected, edge link double,
map vertex set proxy>;

auto gl = create adjacency 1ist<Gl>();

for (auto& r : routes)

create edge(g, r.from, r.to, r.km);

frankfurt

Numberg

502 km

Munchen

(Diagram and example from Wikipedia article on Breadth-first search)

Depth First Search (DFS)

template<graph c G>
class dfs_iterator; // forward iterator

template<graph c G>
class dfs_range; // forward range

template<graph c G, vertex iterator c I>
auto depth_first search(I) -> dfs range<G>;

Example
for (auto city : depth first search(find vertex("Frankfirt")))
cout << string(depth(city) * 2) << vertex key(*city) << '\n';

/* Output

https://en.wikipedia.org/wiki/Breadth-first_search

Frankfurt
Mannheim
Karlsruhe
Augsburg
Munchen
Wurzburg
Erfurt
Nirnberg
Stuttgart
Minchen
Kassel
Minchen

*/

Breadth First Search (BFS)

template<graph c G>
class bfs_iterator; // forward iterator

template<graph c G>
class bfs_range; // forward range

template<graph c G, vertex iterator c I>
auto bread first search(I) -> bfs range<G>;

Example
for (auto city : breadth first search(find vertex ("Frankfirt")))
cout << string(depth(city) * 2) << vertex key(*city) << '\n';
/* Output
Frankfurt
Mannheim
Wirzburg
Kassel
Karlsruhe
Erfurt
Nirnberg
Augsburg
Stuttgart
Minchen

*/

Topological Sort (TopoSort)

template<graph c G>
class topological sort_ iterator; // forward iterator

template<graph c G>
class topological sort range; // forward range

template<graph c G, vertex iterator c I>
auto topological sort(vertex iterator c) -> topological sort range<G>;

lterator Functions
These functions take BFS, DFS and TopoSort iterators.

template<vertex iterator c Search, typename I>
auto depth (Search) -> I; // distance from starting (root) iterator

template<vertex iterator c Search>
bool is_first visit(Search); // first time a vertex is visited?

template<vertex iterator c Search>
bool is_last visit(Search); // last time a vertex will be visited?

Algorithms

Algorithms deliver the value of graphs and are the primary focus. They follow the established
STL design of working with iterators independent of the graph container.

The algorithms have been selected for a balance of their usefulness without being overly
complex for their implementation.

Concurrency and parallelism are not included because they are difficult or impossible to do in a
general way. In particular, shared vertices between edges are difficult to provide significant
performance benefits.

Shortest Paths Algorithms

Shortest paths algorithms find the distance of the shortest path between vertices and return the
results to an output iterator. If no out edges exist on a vertex then no paths exist. Each algorithm
is distinguished by the type of weight it supports.

Two variants are supplied for each algorithm, one for a single source vertex and another as a
range of vertex sources.

A shortest path between two vertices is described by a tuple as follows.

template<Iterator vtx iter t, arithmetic c distance t>

using shortest path = tuple<vtx iter t, vtx iter t, distance t>;
// tuple<from, to, distance>

Example

using G = adjacency list<name value, double, empty value,
edge type directed fwddir>;

auto g create adjacency 1ist<G>();

// (£ill graph)

vector <tuple<vertex iterator t<G>, vertex iterator t<G>, int> short paths;
bellman ford shortest paths(

g

g.vertices () .begin(),

[] (edge _value t<G>& uv) -> ptrdiff t

{ return value (uv) .weight; },

back inserter (short paths));

// short paths hold a collection of shortest paths

Bellman-Ford Shortest Paths
weight_fnc is a function object that returns either negative or positive weight for an edge.
template<
graph c G,
typename WEnc,
arithmetic c¢ Dist = decltype (WFnc),
OutputIterator<shortest path<vertex iterator t<G>, Dist>> Outlter
>
void bellman ford shortest paths(
Gé& gy
vertex iterator t<G> start vertex,

WEnc weight fnc
= [] (edge value t<G>&) -> ptrdiff t {return 1;},
OutlIter result iter);
template<
graph c G,
typename WEnc,

arithmetic c¢ Dist = decltype (WFnc),
OutputIterator<shortest path<vertex iterator t<G>, Dist>> Outlter
>
void bellman ford shortest paths/(
G& g,
vertex range<G> start vertices,
WEnc, weight fnc

= [] (value_t<G>&) -> ptrdiff t { return 1; },
OutIter result iter);

Dikstra’s Shortest Paths

weight_fnc is a function object that returns a non-negative weight for an edge. Signed integers
and floating point types are allowed and it is the callers responsibility to assure they are
non-negative.

template<
graph c G,
typename WEFnc,

arithmetic c¢ Dist=decltype (WFnc),
OutputIterator<shortest path<vertex iterator t<G>, Dist>> Outlter
>
void dijkstra_ shortest paths(
Gé& 9r
vertex iterator t<G> start vertex,

WEnc weight fnc
= [] (edge value t<G>&) -> size t {return 1;},
Outlter result iter);
template<
graph c G,
typename WEFnc,

arithmetic c¢ Dist = decltype (WFnc),
OutputIterator<shortest path<vertex iterator t<G>, Dist>> Outlter
>
void dijkstra_shortest paths(
G g,
vertex range<G> start vertices,
WEnc, weight fnc
= [] (edge value t<G>&) -> size t { return 1; 1},
OutIter result iter);

Connected Components
A connected component is a collection of all vertices that are joined by edges in an undirected
graph.

template<Iterator vtx iter t, integralComp = size t>
using component = tuple<Comp, vtx iter t>;

template<
undirected graph ¢ G,

OutputIterator<component<Comp, vertex iterator t<G>>> Outlter,
integral Comp = size t

>
void connected components (G& g,
vertex iterator t<G> start,
OutIter result iter);
template<

undirected graph ¢ G,
OutputIterator<component<Comp, vertex iterator t<G>>> Outlter,
integral Comp = size t
>
void connected components (
Gé& g,
vertex range t<G> start,
OutIter result iter);

Strongly Connected Components

A strongly connected component is a collection of all vertices that are joined by directed edges
in a directed graph.

template<
directed graph c G,
OutputIterator<component<Comp, vertex iterator t<G>>> Outlter,
integral Comp = size t
>
void strongly connected components (
Gé& g,
vertex iterator t<G> start,
OutIter result iter);

template<
directed graph ¢ G, // directed
OutputIterator<component<Comp, vertex iterator t<G>>> Outlter,
integral Comp = size t
>
void strongly connected components (
Gé& g,
vertex range t<G> start,
OutIter result iter);

Biconnected Components

template<Iterator vtx iter t, integralComp = size t>
using bicomponent = tuple<Comp, vtx iter t>;

template<
undirected graph ¢ G,
OutputIterator<bicomponent<Comp, edge iterator t<G>>> OutIlter,
integral Comp = size t
>
void biconnected components (
G& g
vertex iterator t<G> start,
OutIter result iter);

template<
undirected graph ¢ G,
OutputIterator<bicomponent<Comp, edge iterator t<G>>> Outlter,
integral Comp = size t
>
void biconnected components (
G& gr
vertex range t<G> start,
OutlIter result iter);

Articulation Points

template<
undirected graph c G,
OutputIterator<vertex iterator t<G>> Outlter,
integral Comp = size t
>

void articulation_points(
G& gy
vertex iterator t<G> start,

OutIter result iter);
template<
undirected graph c G,
OutputIterator<vertex iterator t<G>> OutIlter,
integral Comp = size t

>

void articulation points(
G& g,
vertex range t<G> start,
OutIter result iter);

Transitive Closure

template<
undirected graph ¢ G,

OutputIterator<tuple<vertex iterator t<G>,vertex iterator t<G>>>

>

Outlter

void transitive closure (
Gé& g,
Outlter result iter);

erase & erase _|f

We also propose the addition of non-member functions erase and erase if to remove

specified vertices and edges, that is, uniform container erasure.
Uniform container erasure is not supported because the graph is needed for all erase functions.

Additional Algorithms

The following algorithms have been identified for consideration in an additional paper(s):
Minimum spanning tree
Maximum flow
Matching

Bipartite matching
Min-cost network flow
Isomorphism

Subgraph isomorphism
Centrality

9. Minimum cut

10. Cycle detection

11. Path enumeration

12. Community detection
13. Clique enumeration

14. Find triangles

©®NOoOOhWN -~

Graph Data Structures

This proposal recognizes common capabilities and representations of graphs and
provide the user the ability to select all reasonable combinations that do not conflict. It also
enables the user to extend the vertex, edge and graph implementations beyond those provided.
For instance, the user can store vertices in a different container than those supplied by the
standard by defining their own vertex set.

Attention should be given to keeping object sizes to the minimum needed to provide the
required functionality. For instance, edges in an adjacency matrix should only be as big as the
user-defined edge value, and for an adjacency array should be the size of user-defined edge
value and in and out vertex references (vertex_id or pointer).

A common interface between different graphs is also a priority whenever possible,
allowing for easier learning and transitioning between different characteristics of graphs.

Graph Template Parameters

All adjacency types are defined as a templatized graph class used to define and customize the
graph.

The parameters shown here and in the adjacency template definitions should be considered
proof-of-concept. They may vary slightly as refinements are made in future papers.

Parameter | Valid Values Description

GV (user-defined) The graph value type defined by the user.
It can be most valid C++ value type
including class, struct, tuple, union, enum,
array, reference or scalar value. If no
value is needed then the empty_value
struct can be used. See the User Values
section for more information.

VV (user-defined) The vertex value type. (See GV.)

VSP vector_vertex_set_proxy The vertex set proxy used to define the
deque_vertex_set_proxy container used to store vertices. The user
ordered_map_vertex_set_proxy can define their own vertex set as long as

unordered_map_vertex_set_proxy | they support the common interface.
(user-defined)

EV (user-defined) The edge value type. (See GV.)

EDIR edge_type_directed_fwddir Edge directionality. fwddir supports
edge_type_directed_bidir directed outgoing edges, bidir supports
edge_type_undirected incoming and outgoing edges, and

undirected supports undirected edges.
Bidir is a superset of fwddir. This has the
biggest impact on the interface available.

ELNK edge_link_double Use doubly- or singly-linked lists for
edge_link_single edges. This only applies when linked lists
edge_link_none are used.

A allocator<char> A standard C++ allocator. Rebind is used
to redefine for both vertex and edge
types.

Graph Types

adjacency_list

An adjacency_list is the most compact data structure for sparse graphs. Edge instances are
stored in the outgoing edges of a vertex. When in-edges are included, they are intrusive
containers embedded in the outgoing edges and are limited to a linked-list node-based
container.

template <class VV = empty value,
class EV = empty value,
class GV = empty value,

class EDIR = edge type directed fwddir,
class ELNK = edge link single,
class VSP = vector vertex set proxy,
class A = allocator<char>>

using adjaceny list;

adjacency_array

An adjacency_array is defined by edges stored in a single container. Use of contiguous or
semi-contiguous containers such as vector and deque will favor edge-oriented algorithms. Out
and In edges of vertices will be additional containers that refer to the edges.

template <class VV = empty value,
class EV = empty value,
class GV = empty value,

class EDIR = edge type directed fwddir,
class ELNK = edge link single,
class VSP = vector vertex set proxy,
class A = allocator<char>>

using adjaceny array;

adjacency_matrix

An adjacency_matrix is defined by edges stored in a 2-dimensional square array, where the size
of the dimensions are the number vertices.

The number of vertices is passed during construction of the adjacency matrix when all vertices
and edges are also constructed. Vertices and edges cannot be created or erased after the
graph is constructed.

template <class VV = empty value,

class EV = empty value,

class GV = empty value,

class VSP = vector vertex set proxy,

class A = allocator<char>>

using adjaceny matrix;

User Values

User-defined types can be used to define values for a vertex, edge and graph. Given

following definition:

struct name_value {

string name;

name value () = default;

name value (name value consté&) = default;

name value& operator=(name value consté&) = default;

name value (string consté& s) : name(s) {}

name value (string&& s) : name(move(s)) {}

}r

struct weight value {

int weight = 0;

weight value ()
weight value (weight value consté)

default;
default;

weight value& operator=(weight value consté&) = default;

weight value (int consté& w) : weight(w) {}

}s

using G = adjacency list<name value, weight value>;

G g;

auto& [iter, successful] = g.create vertex(name("a"));
auto& [uid, u] = *iter;

auto& [vid, v] = *g.create vertex(name("b")).first;

auto& uv_iter = g.create edge(uid, vid, weight value(42));
auto& uv = *iter;

string nm = u.name; // nm == "a"

int W

uv.weight; // w == 42

the

A class is also usable. There’s no limit on the number of values in the struct used. The
requirements are that it be default constructible, copy constructible and assignable. Move
constructible is also supported.

Non-struct & non-class types can also be used, including scaler, array, union and enum. In
those cases they are assigned the member name of “value” on the vertex.

using weight t = int;

using G = adjacency list<name value, weight t>;

(create vertices u & v as before)

auto& uv_iter = g.create edge (uid, vid, 42);
auto& uv = *uv_iter;

int w = u.value; // w == 42
int w2 = u.user value(); // w2 == 42

The reason for using “value” is that vertex inherits from it's property value and some types, like
“int”, are not a valid base class, nor are union, array, union or enum which all use “value”. The
benefit is that empty-base optimization is used when no value is needed.

The empty_value struct is used when no value is needed.

struct empty value {};

Here is a simplified version of the vertex class to demonstrate how the value is defined as well
as the graph_value_needs_wrap<> definition.
template <class ADJ, class VV, class VMEM, class EV, class EDIR, class ELNK,
class EMEM>
class vertex
public conditional t<graph value needs wrap<VV>::value,
graph value<vv>, VV>
{ .}

template <class T>
struct graph value needs wrap
integral constant<bool,
is_scalar<T>::value || is_array<T>::value ||
is union<T>::value || is_ reference<T>::value> {};

The benefit of using inheritance is that no memory is used when empty_value is used because
of the empty base optimization.

Design Notes

A class-based design was considered but was rejected. Assume all edges for the graph are
stored in a single vector. A vertex would need to keep indexes into its outgoing edges (using an
edge iterator would be unstable when edges are added). To get an iterator to an edge, the
vertex would either need to store a pointer to the edge container, or the out edges container
would have to include a parameter for the graph in the begin() and end() methods. Neither
option is good. Using a pure function interface provides an abstraction that avoids this issue.
The internal implementation can still use classes but the public interface will be free functions.

User-defined graph structures can be used by defining the graph functions for the user-defined
graph, vertex and edge types.

Acknowledgements

This paper is the result of the discussions of SG19 Machine Learning.

Michael Wong’s work is made possible by Codeplay Software Ltd., ISOCPP Foundation,
Khronos and the Standards Council of Canada.

References

1. Implementations
a. The Boost Graph Library (BGL)

b. JgraphT
c. The Stanford cslib package

d. dlib.net graph
2. Data sets
a. Graph500
b. GAP Benchmark Suite
3. Algorithm References
a. Algorithms in C++ 3rd Edition, Part 5 Graph Algorithms by Robert Sedgewick
b. The Boost Graph Library User Guide and Reference, by Jeremy G. Siek,
Lie-Quan Lee, Andrew Lumsdaine

wikipedia.org
Introduction to Algorithms, by Thomas H. Cormen, Charles E. Leiserson, Ronald
L. Rivest

https://www.boost.org/doc/libs/1_70_0_beta1/libs/graph/doc/index.html
https://jgrapht.org/
https://stanford.edu/~stepp/cppdoc/BasicGraph-class.html
http://dlib.net/
https://graph500.org/
http://gap.cs.berkeley.edu/benchmark.html

