
Document number: 	 P2774R0

Date: 	 2023-05-08

Project: 	 Programming Language C++

Audience:	 SG1

Reply-to:	 Michael Florian Hava <mfh.cpp@gmail.com>
1

Scoped thread-local storage

Abstract
This paper proposes a library facility for scoped thread-local storage, designed for parallel
algorithms when there is no one-to-one mapping between input and output.

Tony Table

Revisions
R0: Initial version

Motivation
C++17 introduced parallel algorithms to the standard library. The design of said algorithms
embodies the popular fork-join model of parallelization. Combining this structured parallelization
style with the functional aspects of the “STL” was a perfect match for querying (e.g. std::find),
in-place transformations (e.g. std::sort), and one-to-one transformations (e.g.
std::transform).

One class of algorithms the standard library never supported (apart from “abusing”
std::for_each) were one-to-many transformations. Applying the fork-join model to these

Before Proposed
span<Triangle> input = …;

double max_area = …;

mutex m;

unordered_map<thread::id, vector<Triangle>> tmp;

//process in parallel

for_each(execution::par, input.begin(), input.end(),

 [&](const auto & tria) {

 //get thread-specific storage

 auto & ref{[&] -> vector<Triangle> & {

 const auto tid{this_thread::get_id()};

 const lock_guard lock{m};

 const auto it{tmp.find(tid)};

 if(it != tmp.end()) return it->second;

 return *tmp.emplace(tid, {}).first;

 }()};

 //generating unbounded output

 for(const auto & t : split(tria, max_area))

 ref.emplace_back(t);

 }

);

//post-process results sequentially

for(const auto & tria : tmp | views::join)

 process(tria);

//clear content for future parallel processing

tmp.clear();

span<Triangle> input = …;

double max_area = …;

tls<vector<Triangle>> tmp;

//process in parallel

for_each(execution::par, input.begin(), input.end(),

 [&](const auto & tria) {

 //get thread-specific storage

 auto [ref, _]{tmp.local()};

 //generating unbounded output

 for(const auto & t : split(tria, max_area))

 ref.emplace_back(t);

 }

);

//post-process results sequentially

for(const auto & tria : tmp | views::join)

 process(tria);

//clear content for future parallel processing

tmp.clear();

 RISC Software GmbH, Softwarepark 32a, 4232 Hagenberg, Austria, michael.hava@risc-software.at1

1

mailto:mfh.cpp@gmail.com
mailto:michael.hava@risc-software.at

algorithms proves to be difficult as their unbounded nature doesn’t lend itself easily to
aggregating the results in a singular target object without overt locking.

If no singular result object is needed, the issue of locking could be sidestepped by the usage of
thread_local variables - but such an approach has extensive hidden costs for all threads and
transforms a local issue into a global problem.

We propose an alternative approach providing lazily initialized, thread-specific storage bound to a
local object. The proposed std::tls does not require expensive locking for concurrent write
access, nor does it increase the static memory set of a thread.

Design Space
A std::tls<T> composes a concurrent storage for thread-specific instances of T and a
concurrency-safe initialization function for storage entries. Conceptually it is similar to the
following class:

Implementations should use more efficient synchronization mechanisms than locking - our
reference implementation employs atomic operations to represent storage similarly to a
concurrent hash map with separate chaining.

Constructors
A std::tls provides several constructors to specify the initial value a storage entry should be
initialized with. Internally, initialization is handled via an initialization function:

Based on our usage experience with similar classes, we propose that std::tls should be neither
copy- nor movable. Our design rationale for this is as follows: We consider copying a thread-local
storage to be semantically ill-formed. Whilst moving the storage entries would be possible, it was
never necessary for us. Furthermore, it introduces additional implementation overhead in the form
of a moved-from state. Such a state would either have to be equivalent to the empty state or have

template<typename T, typename Allocator = allocator<T>>

class tls {

 mutex m;

 unordered_map<thread::id, T, hash<thread::id>, key_equal<thread::id>, Allocator> storage;

 //NOTE: at the moment none of the standard polymorphic function wrappers has allocator support.

 unmovable_function<Allocator, T() const> init_func;

public:

 // (1) constructors

 tls(Allocator alloc = Allocator{}) noexcept requires is_default_constructible_v<T>;

 tls(T value, Allocator alloc = Allocator{}) requires is_copy_constructible_v<T>;

 tls(auto func, Allocator alloc = Allocator{}) requires is_convertible_v<T, invoke_result_t<decltype(func)>>;

 // (2) not copy- nor moveable

 tls(const tls &) =delete;

 auto operator=(const tls &) -> tls & =delete;

 ~tls() noexcept;

 // (3) modifiers

 [[nodiscard]]

 auto local() -> tuple<T &, bool>; //thread-safe!

 void clear() noexcept;

 // (4) iteration support

 class iterator { … };

 static_assert(forward_iterator<iterator>);

 auto begin() -> iterator;

 auto end() -> iterator;

};

Constructor Initialization function

tls(); [] { return T{}; }

tls(T value); [value{move(value)}] { return value; }

tls(auto func); func

2

to be checked against on every call to local. Depending on the selected implementation strategy
for storage this introduces considerable complexity and may require allocating on move.

Additionally, the proposed std::tls internally wraps a type-erased polymorphic function
wrapper. There are unresolved technical issues concerning allocator support in this category of
classes, that led to its removal from std::function ([P0302]). Recent classes in this category
(std::move_only_function and std::copyable_function) don’t provide allocator support
either.

Modifiers
std::tls offers two modifiers: local and clear. The former acts as a getter and retrieves the
storage entry of the current thread. If no such element exists, it’s constructed using the
initialization function. In addition to a reference of the storage entry a bool flag is returned that
indicates whether the element was constructed during this call. This diverges from the established
practice that provides said bool flag as an optional output parameter (employing overloading). 2

Given the recent spotlight on C++ safety, we consider the tuple to be superior as it prevents the
usage of potentially uninitialized parameters.

clear removes all previously created storage entries - a cleared std::tls is considered
semantically equivalent to a newly constructed one.

Iteration support
Contrary to established practice we don’t propose reduction operations to combine the thread-
local values into a final result. Instead we propose to add iteration support, enabling users to
post-process computation results with any STL-style algorithm of their choice.

Impact on the Standard
This proposal is a pure library addition.

Implementation Experience
The proposed design has been implemented at https://github.com/MFHava/P2774.

Proposed Wording
Wording is relative to [N4944]. Additions are presented like this, removals like this and drafting
notes like this

[version.syn]

[thread.general], extend Table [tab:thread.summary]

#define __cpp_lib_tls YYYYMML //also in <tls>

[DRAFTING NOTE: Adjust the placeholder value as needed to denote the proposal’s date of adoption.]

Subclause Header

… … …

[futures] Futures <future>

[thread.storage] Thread-local storage <tls>

 e.g. combinable (PPL/TBB)2

3

https://learn.microsoft.com/en-us/cpp/parallel/concrt/reference/combinable-class
https://spec.oneapi.io/versions/latest/elements/oneTBB/source/thread_local_storage/combinable_cls.html
http://wg21.link/P0302
https://github.com/MFHava/P2774
http://wg21.link/N4944

[thread.storage]
[DRAFTING NOTE: Add a new section in [thread]]

??.?? Thread-local storage [thread.storage]
??.??.1 General [thread.storage.general]

1 ??.?? describes components that provide scoped thread-local storage. Every thread is lazily assigned an associated storage entry. The lifetime
of storage entries is decoupled from the lifetime of the respective thread and instead bound to the containing object.

[Note 1: The storage can outlive the respective thread or be destroyed before the thread of execution has ended. — end note]

??.??. 2 Header <tls> synopsis [thread.storage.syn]

namespace std {

 // [thread.storage.tls.class], class template tls

 template<class T, class Allocator = allocator<T>> class tls;

 namespace pmr {

 template<class T>

 using tls = std::tls<T, polymorphic_allocator<T>>;

 }

}

??.??.3 Class template tls [thread.storage.tls.class]

namespace std {

 template<class T, class Allocator = allocator<T>>

 class tls {

 public:

 using iterator = implementation-defined;

 using const_iterator = implementation-defined;

 // [thread.storage.tls.ctor], constructors, and destructor

 explicit tls(const Allocator & allocator = Allocator());

 explicit tls(const Type & value, const Allocator & allocator = Allocator());

 explicit tls(Type && value, const Allocator & allocator = Allocator());

 template<class Func>

 explicit tls(Func init, const Allocator & allocator = Allocator());

 tls(const tls&) =delete;

 tls& operator=(const tls &) =delete;

 ~tls();

 // [thread.storage.tls.mod], modifiers

 [[nodiscard]] tuple<T&, bool> local();

 void clear() noexcept;

 // [thread.storage.tls.iter], iteration

 const_iterator begin() const noexcept;

 iterator begin() noexcept;

 const_iterator cbegin() const noexcept;

 const_iterator end() const noexcept;

 iterator end() noexcept;

 const_iterator cend() const noexcept;

 };

}

1 The tls class template provides thread-specific storage of type T with a custom initialization function.

[Note 1: A thread’s storage entry may be identified by its thread::id. — end note]

2 T shall be a cv-unqualified type that meets the Cpp17Destructible requirements ([tab:cpp17.destructible]).

3 Allocator shall be a cv-unqualified type that meets the Cpp17Allocator requirements ([allocator.requirements.general]) and can be safely
used concurrently.

3 tls::iterator meets the forward iterator requirements ([forward.iterators]) with value type T.

4 tls::const_iterator meets the requirements of a constant iterator and those of a forward iterator with value type T.

5 Recommended practice: Implementations should avoid high synchronization overhead for concurrent access to storage.

??.??.3.1 Constructors, and destructor [thread.storage.tls.ctor]

explicit tls(const Allocator & allocator = Allocator());

1 Constraints: is_default_constructible_v<T> is true.

2 Effects: As if by:

 tls([] { return T(); }, allocator);

explicit tls(const T & value, const Allocator & allocator = Allocator());

3 Constraints: is_copy_constructible_v<T> is true.

4 Effects: As if by:

 tls([=] { return value; }, allocator);

4

Acknowledgements
Thanks to RISC Software GmbH for supporting this work. Thanks to Peter Kulczycki for proof
reading.

explicit tls(T && value, const Allocator & allocator = Allocator());

5 Constraints: is_copy_constructible_v<T> is true.

6 Effects: As if by:

 tls([value = std::move(value)] { return value; }, allocator);

template<typename Func>

 explicit tls(Func func, const Allocator & allocator = Allocator());

7 Constraints: is_convertible_v<Type, invoke_result_t<Func>> is true.

8 Preconditions:

(8.1) — It is safe to call func concurrently from multiple threads.

(8.2) — If func is a function pointer, f == nullptr is false.

9 Effects: Constructs empty storage using allocator and the initialization function with func.

~tls();

10 Effects: Destroys all storage entries and the initialization function; any memory obtained is deallocated.

??.??.3.2 Modifiers [thread.storage.tls.mod]

[[nodiscard]] tuple<T&, bool> local();

1 Let f be true if there is no storage entry for the current thread. otherwise false.

2 Synchronization: Modifications to the storage are synchronized.

[Note 1: If a new storage entry is added, iterators previously obtained by *this are invalidated. — end note]

3 Postconditions: There is a storage entry e for the current thread.

4 Returns: e, f

5 Throws: Any exception thrown by initialization of the new storage entry. May throw bad_alloc if allocation of the new storage entry fails.

void clear() noexcept;

6 Postconditions: Storage contains no entries.

??.??.3.3 Iteration [thread.storage.tls.iter]

const_iterator begin() const noexcept;

iterator begin() noexcept;

const_iterator cbegin() const noexcept;

1 Returns: An iterator referring to the start of storage.

const_iterator end() const noexcept;

iterator end() noexcept;

const_iterator cend() const noexcept;

2 Returns: An iterator representing the past-the-end of storage.

5

https://www.risc-software.at/

	Abstract
	Tony Table
	Revisions
	Motivation
	Design Space
	Impact on the Standard
	Implementation Experience
	Proposed Wording
	Acknowledgements

