Scoped Concept Maps

N2098=06-0168

Jeremy Siek
September 10, 2006

Abstract

In this paper I point out a disadvantage of a design choice concerning the “concept
map” feature in the concepts proposal (N2042) and I propose an alternative design
choice called “scoped concept maps”. The disadvantage of the current design is that
One-Definition-Rule (ODR) violations may occur when a programmer tries to use
libraries that were developed independently of one another, which is quite common
in the component-oriented world of modern software development.

1 The Problem

Consider the following scenario. A software developer named John has developed the
following library:

namespace John {
template<class T> class fast_vector { ... };

}

Independently, a developer named Alex has created some new algorithms and concepts.

namespace Alex {
concept Fooable<typename T> {
void foo(T);
}s

template<Fooable T>
void algorithm_bar(T x);

}

Another library developer named Fred would like to use John's fast vector with Alex’s
algorithms, so he defines a concept map to make fast_vector Fooable. As per 3.3.2 of N2042,
Fred must place this concept map in namespace Alex, the namespace where Fooable was
defined.



// Fred.hpp
namespace Alex {

concept_map Fooable<John::fast_vector> {
void foo(const John::fast vector& v) { v.push_back(4) }
b
}

namespace Fred {
void algo() {
John::fast_vector v;
Alex::algorithm_bar(v);
}
}

John and Alex’s libraries continue to grow in popularity, so another library developer
named Suzy decides to use them together, and also defines a concept map for fast_vector.
Suzy does not know about Fred’s library.

// Suzy.hpp
namespace Alex {

concept_map Fooable<John::fast vector> {
void foo(const John::fast_vector& v) { v.push_back(7); }
%
}

namespace Suzy {
void algo() {
John::fast_vector v;
Alex::algorithm_bar(v);

}
}

Note that Fred and Suzy’s need for a Fooable concept map for fast_vector is purely for in-
ternal implementation reasons. However, they have both been forced to add a definition
to a namespace external to their own.

An application developer named Zack would like to use both Suzy and Fred’s li-
braries. However, as soon as Zack includes both Fred.hpp and Suzy.hpp, there’s an ODR
violation because there are two definitions for the same concept map.

/I Zack.cpp
#include "Suzy.hpp”
#include "Fred.hpp” // ODR violation!

int main() {
Suzy::algo();
Fred::algo();
}

Zack does not have access to the source code of Suzy or Fred’s libraries, so he can’t
change their code. Even if he did have access to their code, he would not want to change

2



it himself because that would mean patching their code for every new version. Zack
instead tries to get Suzy or Fred to change their libraries, but they are just too busy to be
bothered.

At this point, the reader may be thinking, well, we run into ODR violations all the
time, what makes this different? Why do we need to solve this problem? Normally,
library authors can take measures to prevent ODR violations, for example, by placing
their struct definitions inside their library’s namespace. In this case, Suzy and Fred had
no choice; they are not allowed to put the concept maps in their own namespace, but
must put the concept maps in namespace Alex.

2 Scoped Concept Maps

The solution we propose is to lift the restriction that concept maps must be defined in
the same namespace as their concept and change the rules for concept map lookup. Cur-
rently, concept map lookup only considers one namespace, the namespace of the concept.
Instead, we propose that concept lookup be lexical, starting in the scope where the lookup
is triggered, and proceeding to enclosing scopes.

A concept map definition that can not be found lexically (for example, the concept
map is in another namespace) is not considered unless the concept map is imported with
a using declaration. Thus, we also propose to extend using declarations so that they may
refer to concept maps.

To revisit the scenario, Fred and Suzy and may now define their concept maps in their
Oown namespaces.

// Fred.hpp
namespace Fred {

concept_map Alex::Fooable<John::fast_vector> {
void foo(const John::fast vector& v) { ... }
b
void algo() {

John::fast_vector v;

Alex::algorithm_bar(v); // This call uses Fred’s concept map

}
}

// Suzy.hpp
namespace Suzy {

concept_map Alex::Fooable<John::fast_vector> {
void foo(const John::fast vector& v) { ... }
b
void algo() {

John::fast_vector v;

Alex::algorithm_bar(v); // This call uses Suzy’s concept map

}



}

Now Zack can use both Suzy and Fred’s libraries without causing an ODR violation.

/I Zack.cpp
#include "Suzy.hpp”
#include "Fred.hpp” // OK!

int main() {
Suzy::algo();
Fred::algo();
}

3 Compilation of Scoped Concept Maps

The namespace restriction on concept maps in the current concept proposal (N2042) is
motivated by a particular implementation approach. Concepts can be implemented as
templates and concept maps can be implemented as template specializations. Because
template specializations must be defined in the same namespace as the primary template,
concept maps must be defined in the same namespace as their concept.

Scoped concept maps will require a different implementation approach. We outline
one such approach here, which we call the “static map passing approach”. The basic
idea is that a concept map is translated into a struct and every constrained template is
translated into a template that has an extra template type parameter for each constraint.
When a constrained template is used, the compiler determines (by lexical lookup) which
concept map to use, and uses the corresponding struct as the argument to the template’s
extra constraint parameter. For example, the program

concept Comparable<typename T> {
bool operator<(T,T);
b
struct bar { bar(int x) : x(x) {} intx; };
bool operator<(const bar& b1, const bar& b2) { ... }
concept_map Comparable<bar> { };

template<Comparable T>
void foo(T x) { x < x; }

int main() { foo(bar(1)); }

would be translated to something like:

struct bar { bar(int x) : x(x) {} int x; };
bool operator<(const bar& b1, const bar& b2) { ... }
struct Comparable_bar {
bool operator<(const bar& b1, const bar& b2) { return ::operator<(b1,b2); }

4



=

template<typename Comparable_T, typename T>
void foo(T x) { Comparable_T::operator<(x, x); }

int main() { foo<Comparable_bar>(bar(1)); }

4 Conclusion

The concepts proposal (N2042) requires concept maps to be defined in the same names-
pace as the corresponding concept. This restriction forces third party libraries to place
possibly conflicting concept maps in the same namespace, thereby risking violations of
the One-Definition-Rule. Here we propose lifting that restriction, allowing concept maps
to be defined in any namespace, and we propose changing the concept map lookup rules
to be lexical. With this change, third party libraries can define concept maps within their
own namespace and completely avoid any chance of ODR violations, thereby making the
life of Zack, the application programmer, much easier for he is free to use all the indepen-
dently developed libraries without risk of hidden conflicts.



