
Document number: P0326R0

Date: 2016-05-28

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Evolution Working Group / Library Evolution Working Group

Reply-to: Vicente J. Botet Escribá <vicente.botet@nokia.com>

Abstract

The Structured binding paper P0217R1 has some problems:

it makes the core language depend on the <utility> header,

it excludes usage of structs with private bitfield members, and

This paper is an attempt to solve these problems. The first approach is to add additional wording to
Structured binding P0217R1 to cover with the core language dependency on the library file <utility> .
The second one consists in changing the customization points of Structured binding to something more
specific and related to product types: product_type_size and product_type_get . These
functions would be either members or non-members found as begin / end so that the dependency to
the library file is removed.

Concerning the bitfield member access problem, this paper proposes to remove the dependency on
tuple_element to deduce the type of the variables or to postpone the structured binding to bitfields

members until we have a proposal that allows the user to customize bitfields members.

1. Motivation
2. Proposal
3. Design Rationale
4. Wording
5. Open points
6. Future work
7. Acknowledgements
8. References

Structured binding: customization points issues

Motivation

mailto:vicente.botet@wanadoo.fr
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r1.html
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0326r0.md#motivation
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0326r0.md#proposal
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0326r0.md#design-rationale
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0326r0.md#wording
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0326r0.md#open-points
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0326r0.md#future-work
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0326r0.md#acknowledgements
file:///Users/viboes/github/std_make/doc/proposal/reflection/p0326r0.md#references

There are two issues.

P0217R1 makes the language dependent on the customization point std::tuple_size<T> , which is
defined in the library file <utility> . This file is not part of the freestanding implementation. We should
avoid this kind of dependency as much as possible.

Suppose we want to customize the structured binding behavior of the following class

class S {
 int x, y;
public:
 // ...
};

P0217R1 says you must specialize std::tuple_size<S> and std::tuple_element<i,E> to do
so.

Fine so far, except that you can only specialize a template if you've seen the declaration of the primary
template. Users can't declare the primary template themselves (it's in namespace std), so they need to
include the correct header, which happens to be <utility> .

However, <utility> is not required to be available in a freestanding implementation (see 17.6.1.3 table
16).

"A freestanding implementation is one in which execution may take place without the benefit of an
operating system, and has an implementation-defined set of libraries that includes certain language-
support libraries"

Net result: You can't (portably) use structured bindings with customized get() in a freestanding
implementation.

The obvious solution is to add '' to list of includes required for freestanding implementations. While the
authors feel that this may be a tenable direction (and provide wording to fix this), we would strongly prefer
that the committee considers our proposed alternate designs based on the which would address these
issues more cleanly.

The standard is ambiguous on the meaning of tuple-like access. For the purpose of this paper we presume
it to consists in requiring the following traits to be well defined std::tuple_size<TPL> ,
std::tuple_element<I, TPL> and the following function std::get<I>(tpl) . Examples of the

Dependent on library

What does tuple-like access mean?

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r1.html

use of this tuple-like access are the functions std::tuple_cat and std::apply . The wording is
not always explicit.

Note that get<I>(tpl) cannot be found by ADL, and so the client must either qualify it
std::get<I>(tpl) or introduce it using std::get

std::apply makes explicit use of std::get<I> as in

return std::invoke(std::forward<F>(f), std::get<I>(std::forward<Tuple>(t))...);

std::tuple_cat is less explicit, but the authors consider that this is an editorial issue as get<ki>

intent is not find get it by ADL and only the std namespace is associated.

Returns: A tuple object constructed by initializing the kith type element eik in ei... with
get<ki>(std::forward<Ti>(tpi)) for each valid ki and each group ei in order.

It is not clear for the authors if this tuple-like access is currently a customization point and if a user can
specialize these traits and overload the std::get function inside the std namespace.

Note that the proposed structure binding customization point is not aligned to the current tuple-like access,
as the user can define the e.get<I>() function as a member or as a free function get<I>(e)

associated to the namespace of the type of the expression e . This mean that functions like
std::apply and std::tuple_cat will not work for types supporting structured binding, even for

those customized by the user. As consequence we will need to update the definition of these functions. This
paper doesn't attempt to solve this issue, just identifies it to reinforce the fact that we will need to change
the definition of these functions anyway and replace the tuple-like access interface by a product type
access interface (see Product Types P0327R0).

Note that changing the customization point would mean that types that conform to the not so explicit tuple-
like access will not support structured binding.

In order to overcome the library dependency we need to find a way to avoid the use of
std::tuple_size<T> and std::tuple_element<I, T> .

For the size we have 2 possibilities:

A member function product_type_size or non-member function product_type_size found
in the namespace of the tuple expression.
Deduce the size from the customization point for the access, that is, deduce the tuple size as N for
which product_type_get<I>(tpl) is well defined for any I in 0..N(-1) and

Alternative customization approach

Independence from library

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0327r0.pdf

product_type_get<N>(tpl) is not defined.

This follows the the same design as the customization to get the element and the same design to customize
begin / end for range-based for loops.

This seems much simpler.

This reduce the work done by the user, but determining the size could be expensive at compile time.

If pt.product_type_get<I>() or product_type_get<I>(pt) is well defined for all I in
0..(N-1) and pt.product_type_get<N>() or product_type_get<N>(pt) is not well

defined then the size is N .

This is not proposed by the paper, but added for completion.

Let the user define member or non-member functions of product_type_size and
product_type_get .

We consider that the user has customized his class when

either product_type_size is customized and the size is the result of the customized expression,
say N and pt.product_type_get<I>() or product_type_get<I>(pt) is well defined
for all I in 0..(N-1) ,

either product_type_size is not customized and If pt.product_type_get<I>() or
product_type_get<I>(pt) is well defined for all I in 0..(N-1) and
pt.product_type_get<N>() or product_type_get<N>(pt) is not well defined then the

size is N ..

This is not proposed by the paper, but added for completion.

P0217R1 supports bitfields in case 3, where the compiler is able to identify the data members. However the
wording for the customization case, makes use of std::tuple_element to define the type of the
elements of the lvalues.

Given the type Ti designated by std::tuple_element<i-1,E>::type , each vi is a
variable of type "reference to Ti " initialized with the initializer, where the reference is an lvalue

member function product_type_size and non-member function product_type_size

Base it on the product_type_get customization point

A combination of all the previous

Ability to work with bitfields only partially

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r1.html

reference if the initializer is an lvalue and an rvalue reference otherwise; the referenced type is Ti .

This works well as far as the type returned by get<I,e> is a reference to
std::tuple_element_t<I,E> , but it doesn't work at all for bitfields.

However, when a user wants to customize a class with bitfields members would need to define
std::tuple_element for this bitfield member. However, we don't have a good candidate for the real

type of the member. The function get could return an instance of a class bitfield_ref , but the
bitfield_ref returned by get cannot be reference to a std::tuple_element<i,E> as it

would be an rvalue.

What if it is identical to the type returned by get<I>(pt) or pt.get<I>() ?

Nevertheless, while returning a bitfield_ref seem to work, we are unable to define
tuple_element<i,E> for a bitfield member and the way we could make use of a bitfield member and

non-bitfield member wouldn't be homogeneous. For example:

template <size_t I, class X>
class bitfield_ref;

struct X3 {
 unsigned i:2;
 int j:5;
 int k;
public:

};

template <>
class bitfield_ref<0,X3> {
 X3& x;
public:
 bitfield_ref(X3& x) : x(x) {}
 operator unsigned() const { return x.i; }
 bitfield_ref& operator=(int v)
 {
 x.i = v;
 return *this;
 }
};
template <>
class bitfield_ref<1,X3> {
 X3& x;
public:
 bitfield_ref(X3& x) : x(x) {}
 operator int() const { return x.j; }
 bitfield_ref& operator=(int v)

 {
 x.j = v;
 return *this;
 }
};
// Something similar for const& and &&, but without assignment
// ...
namespace std {
 template <>
 class tuple_size<X3> : integral_constant<size_t, 3> {};
 template <>
 class tuple_element<0,X3> { public: using type = unsigned; };
 template <>
 class tuple_element<1,X3> { public: using type = int; };
 template <>
 class tuple_element<2,X3> { public: using type = int; };
}
bitfield_ref<0, X3> get_element(std::integral_constant<size_t, 0>, X3 & x) {
 return bitfield_ref<0, X3>(x);
}
bitfield_ref<1, X3> get_element(std::integral_constant<size_t, 1>, X3 & x) {
 return bitfield_ref<1, X3>(x);
}
int& get_element(std::integral_constant<size_t, 2>, X3 & x) {
 return x.k;
}
template <size_t I>
auto get(X3 & x) {
 return get_element(std::integral_constant<size_t, I>{} , x);
}

// Something similar for const& and &&
// ...

Given

 X3 x {0,1,2};

the following couldn't compile for a bitfield member as the result is a rvalue, not a real reference

 auto &xi = get<0>(x);

while the following compiles for a non bitfield member

 auto &xk = get<2>(x);

The proposed P0327R0 access interface for product types doesn't handle this case either.

What follows are our proposed solutions to the aforementioned problems.

We name product type the types covered by Structured binding.

P0327R0 is an extension paper to this proposal that includes product type access library interface.

Let the core language depend on an additional library file and add this file to the freestanding
implementation.

Currently the traits std::tuple_size and std::tuple_element are defined in the <utility>

file. In order to reduce the freestanding implementation constraints, we proposes to move these traits to a
<tuple_like> file.

Change the customization points of Structured binding to something more specific and related to the types
supporting structured binding. Let me call them product types: product_type_size and
product_type_get either as members or non-members functions found by ADL so that we remove the

dependency from the library file.

The authors believe that as we need to replace the customization point for std::tuple_size it is
worth changing the get<I> customization point also to make the design more coherent.

Status-quo: Be able to manage with bitfield members in case 3 even if the user is unable to customize them
and if we cannot take the reference to a bitfield members.

Adapt the structured binding wording to make it possible to customize the bitfield members even if we
cannot take the reference to a bitfield members.

Proposal

Alternative proposal 1.1

Alternative proposal 1.2

Alternative proposal 2.0

Alternative proposal 2.1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0327r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0327r0.pdf

Postpone the support bitfield members in any case until we have a bitfield members references.

The current C++ standard depends already on the library files at least for <initializer_list> .
Adding more dependencies will open the door to more dependencies. This makes the freestanding
implementations more library dependent.

The file <utility> contains a lot of things and could contain even more. Adding anything to this file in
the future would need to check a freestanding implementation shall provide it or not.

There are not many classes providing a tuple-like access on the standard and they can be adapted easily.
However we don't know on the user side.

We don't increase the dependency of the core language on the library.

The current tuple-like access tuple_size / tuple_element / get has a customization point get

that is used also for other types that don't provide a tuple-like access. There is no real problem as the other
customization points are more specific.

Adopting the product type customization points product_type_size / product_type_get are
more explicit and in line with product type access P0327R0 .

Alternative proposal 2.2

Design Rationale

Why the language core shouldn't depend on the library
files?

What do we loss by changing the current customization
point?

What do we gain by changing the current customization
point?

What do we loss if Structured binding is not able to bind
to bitfield members?

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0327r0.pdf

There is not a lot we loss. The user can always nest the bitfields on a nested structure and use the bitfield
access.

Instead of

class X3 {
 unsigned i:2;
 int j:5;
 int k;
 // friend declarations as needed
public:
 ...
};

the user can define

class X3 {
public:
 struct IJ {
 unsigned i:2;
 int j:5;
 };
private:
 IJ ij;
 int k;
 // friend declarations as needed
public:
 ...
};

There is much we still do not know about bitfields. If we handle them now, we may be painting ourselves in
a corner later.

Excluding their support makes it possible to have a uniform interface. We would be able to name the exact
type for any element and have access to the element via a reference to the member data.

If a uniform solution is found later on that support bitfields references we could always update the proposal
in a backward compatible way.

What do we gain if Structured binding don't support
bitfield members?

In 7.1.6.4 [dcl.spec.auto] paragraph 8 of the Structured Binding proposal, replace

In either case, e is an lvalue if the type of the entity e is an lvalue reference and an xvalue otherwise.
Each v i is a variable of type decltype(pt_size) initialized with the initializer.

Add a new <utility> file in 17.6.2.2 Headers [using.headers] Table 16

Add the following to [utility] Header synopsis

namespace std {
 template <class T> class tuple_size<const T>;
 template <class T> class tuple_size<volatile T>;
 template <class T> class tuple_size<const volatile T>;

 template <size_t I, class T> class tuple_element<I, const T>;
 template <size_t I, class T> class tuple_element<I, volatile T>;
 template <size_t I, class T> class tuple_element<I, const volatile T>;
}

Add a new <tuple_like> file in 17.6.1.2 Headers [headers] Table 14

Add a section Tuple like Objects in 20

** 20.X Tuple like Objects**

Header synopsis

The header defines the tuple-like traits.

Wording

Alternative 1

Alternative 1.1

Alternative 1.2

namespace std {
 template <class T> class tuple_size; // undefined
 template <class T> class tuple_size<const T>;
 template <class T> class tuple_size<volatile T>;
 template <class T> class tuple_size<const volatile T>;

 template <size_t I, class T> class tuple_element; // undefined
 template <size_t I, class T> class tuple_element<I, const T>;
 template <size_t I, class T> class tuple_element<I, volatile T>;
 template <size_t I, class T> class tuple_element<I, const volatile T>;
}

template <class T> struct tuple_size;

Remarks: All specializations of tuple_size<T> shall meet the UnaryTypeTrait requirements (20.10.1)
with a BaseCharacteristic of integral_constant<size_t, N> for some N .

template <class T> class tuple_size<const T>;
template <class T> class tuple_size<volatile T>;
template <class T> class tuple_size<const volatile T>;

Let TS denote tuple_size<T> of the cv-unqualified type T . Then each of the three templates shall
meet the UnaryTypeTrait requirements (20.10.1) with a BaseCharacteristic of
integral_constant<size_t, TS::value>

In addition to being available via inclusion of the <tuple_like> header, the three templates are
available when either of the headers <array> or <utility> or tuple are included.

 template <size_t I, class T> class tuple_element; // undefined

Remarks: std::tuple_element<I,T>::type shall be defined for all the I in
0..(std::tuple_size<T>::value-1) .

template <size_t I, class T> class tuple_element<I, const T>;
template <size_t I, class T> class tuple_element<I, volatile T>;
template <size_t I, class T> class tuple_element<I, const volatile T>;

Let TE denote tuple_element<I, T> of the cv-unqualified type T . Then each of the three
templates shall meet the TransformationTrait requirements (20.10.1) with a member typedef type
that names the following type:

for the first specialization, add_const_t<TE::type> ,
for the second specialization, add_volatile_t<TE::type> , and
for the third specialization, add_cv_t<TE::type> .

In addition to being available via inclusion of the header, the three templates are available when either of
the headers or or are included.

Extract the following from [utility] Header synopsis

 template <class T> class tuple_size;
 template <size_t I, class T> class tuple_element;

Add the following to [utility] Header synopsis

#include <tuple_like>

Extract the following from [tuple.general] Header synopsis

 template <class T> class tuple_size; // undefined
 template <class T> class tuple_size<const T>;
 template <class T> class tuple_size<volatile T>;
 template <class T> class tuple_size<const volatile T>;

 template <size_t I, class T> class tuple_element; // undefined
 template <size_t I, class T> class tuple_element<I, const T>;
 template <size_t I, class T> class tuple_element<I, volatile T>;
 template <size_t I, class T> class tuple_element<I, const volatile T>;

Add the following to [tuple.general] Header synopsis

#include <tuple_like>

Rename 20.4.2.5 Tuple helper classes as Tuple Tuple-like configuration.

Remove from 20.4.2.5 the definition for tuplesize and tupleelement 0 3,4, 5 and 6

Add a new <tuple_like> file in 17.6.2.2 Headers [using.headers] Table 16

In 7.1.6.4 [dcl.spec.auto] paragraph 8 of the Structured Binding proposal, replace

Wording Alternative 2

Otherwise, let pt_size be defined as follows. The unqualified-id product_type_size is looked up in
the scope of E by class member access lookup (3.4.5 [basic.lookup.classref]), and if that finds at least
one declaration, then pt_size is e.product_type_size() . Otherwise, then pt_size is
product_type_size(e) , where product_type_size is looked up in the associated namespaces

(3.4.2 [basic.lookup.argdep]). [Note: Ordinary unqualified lookup (3.4.1 [basic.lookup.unqual]) is not
performed. -- end note].

If the expression pt_size is a well-formed integral constant expression, the number of elements in the
identifier-list shall be equal to the value of that expression. The unqualified-id product_type_get is
looked up in the scope of E by class member access lookup (3.4.5 [basic.lookup.classref]), and if that
finds at least one declaration, the initializer is e.product_type_get<i-1>() . Otherwise, the initializer
is product_type_get<i-1>(e) , where product_type_get is looked up in the associated
namespaces (3.4.2 [basic.lookup.argdep]). [Note: Ordinary unqualified lookup (3.4.1 [basic.lookup.unqual])
is not performed. -- end note] In either case, e is an lvalue if the type of the entity e is an lvalue
reference and an xvalue otherwise. Each v i is a variable of type decltype(pt_size) initialized
with the initializer.

Add the associated customization in [tuple.tuple]

Class template tuple

 ...
 constexpr size_t product_type_size() { return sizeof...(Ts); };
 template <size_t I>
 constexpr auto product_type_get();
 template <size_t I>
 constexpr auto product_type_get() const;
 template <size_t I>
 constexpr auto product_type_get() &&;
 template <size_t I>
 constexpr auto product_type_get() const &&;

std::array

template <class T, size_t N>
class array {
 ...
 constexpr size_t product_type_size() { return N; };
 template <size_t I>
 constexpr auto product_type_get();
 template <size_t I>
 constexpr auto product_type_get() const;
 template <size_t I>
 constexpr auto product_type_get() &&;
 template <size_t I>
 constexpr auto product_type_get() const &&;
};

The authors would like to have an answer to the following points if there is any interest at all in this
proposal:

Do we want the core language depend on the file library?
If yes, do we prefer to move to a <tuple_like> file?
If not,
Do we want the proposed customization points?
Do we want customization points for product type size to be optional?

With P0017R1 we have now that we can consider classes with non-virtual public base classes as
aggregates. P0197R0 considers the elements of the base class as elements of the tuple-like type. I would
expect that all the aggregates can be seen as tuple-like types, so we need surely to consider this case in
P0217R1 and P0197R0.

We should see aggregate initialization and structured binding almost as inverse operations.

This could already be the case for predefined tuple-like types which will have aggregate initialization.
However user defined tuple-like types would need to define the corresponding constructor.

Open Questions

Future work

Extend the default definition to aggregates

Acknowledgments

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0017r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0197r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0197r0.pdf

Thanks to Jens Maurer, Matthew Woehlke and Tony Van Eerd for their comments in private discussion
about structured binding and product types.

Thanks to all those that have commented the idea of a tuple-like generation on the std-proposals ML better
helping to identify the constraints, in particular to J. "Nicol Bolas" McKesson, Matthew Woehlke and Tim
"T.C." Song.

Thanks to David Sankel for revising the last version carefully.

Boost.Fusion Boost.Fusion 2.2 library

http://www.boost.org/doc/libs/1600/libs/fusion/doc/html/index.html

Boost.Hana Boost.Hana library

http://boostorg.github.io/hana/index.html

N4527 Working Draft, Standard for Programming Language C++

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf

P0017R1 Extension to aggregate initialization

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0017r1.html

P0144R2 Structured Bindings

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf

P0197R0 Default Tuple-like Access

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0197r0.pdf

P0217R1 Proposed wording for structured bindings

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r1.html

P0311R0 A Unified Vision for Manipulating Tuple-like Objects

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0311r0.html

P0327R0 Product types access

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0327r0.pdf

References

http://www.boost.org/doc/libs/1_60_0/libs/fusion/doc/html/index.html
http://boostorg.github.io/hana/index.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0017r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0197r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0217r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0311r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0327r0.pdf

DSPM C++ Language Support for Pattern Matching and Variants

http://davidsankel.com/uncategorized/c-language-support-for-pattern-matching-and-variants

http://davidsankel.com/uncategorized/c-language-support-for-pattern-matching-and-variants

