
EWG
2017-06-18
Daveed Vandevoorde (daveed@edg.com)

P0629R0 (“Distinguishing Module Interface From Module Implementation” by
Gabriel Dos Reis, Jason Merrill, and Nathan Sidwell) makes a fine case for being
able to tell from source code what kind of source code we’re dealing with. I
whole-heartedly support that proposal.

I would like to further request that a human be able to tell by just inspecting the
initial content of a source file1 whether it defines a module unit or just a pre-
module C++ translation unit.

I would like to further request that a human be able to tell whether a reasonably-
written1 translation unit is a module unit or consists of pre-module C++ code by
just inspecting the initial content of the corresponding primary source file.

For example, with N4737 as it standard (with or without the changes suggested by
P0629R0, a module implementation file is somewhat likely to be structured as
follows:

// global module declarations:
<decl>
<decl>
...
<decl>
module M;
// definition of M starts here
<decl>
...
<decl>

P0713 

Identifying Module Source Code 

mailto:daveed@edg.com
file:///Users/daveed/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-1-1-p4_toc_0
file:///Users/daveed/Library/Containers/com.coderforart.MWebLite/Data/Documents/MWeb/LocalData/Docs/#positionMark-2-2-p4_toc_1


Only when “module M;” is encountered can be tell that this translation unit is
actually a module unit.

I would very much like to see an “indication at the top” that the translation unit is a
module unit (for all the reasons presented in P0629R0, but mostly because it is
much friendlier to the programmers who have to read this source code).

My straw-man proposal, is to simple require

module ;

at the top of any module unit whose first declaration is not a module-declaration.
The example above, would thus be written as follows:

module;
<decl>
<decl>
...
<decl>
module M;
// definition of M starts here
<decl>
...
<decl>

Alternatives include:

module global ;

and

module default ;

but the added identifier does not seem to be particularly helpful. Another
possibility would be:



using module ;

but it feels to cute and not clearer.

A different approach would be to name the module up-front and “escape” the
declarations that not not belong to the module, but that is considerably more
disruptive to the design as currently (N4637) proposed.

1. Assuming no odd (preprocessor-based) obfuscation. ↩


