Document: P1240R0
Revises: P0993R0
Date: 08-10-2018
Audience: EWG, SG7
Authors: Andrew Sutton (asutton@uakron.edu)
Faisal Vali (faisalv@yahoo.com)
Daveed Vandevoorde (daveed@edg.com)

Scalable Reflection in C++

Introduction

The first Reflection TS (based on P0194r5) exposes reflection information as types (to simplify
integration with template metaprogramming techniques). However, SG7 agreed some time ago that the
future of reflective constructs in C++ should be value-based (see also P0425r0). Specifically, the
compile-time computations required for reflective metaprogramming should make use of constexpr
evaluation, which, unlike template metaprogramming, allows for ephemeral intermediate results (i.e., they
don’t persist throughout the compilation process) and for mutable values. This approach was most
recently described in P099r0, Value-based Reflection. To support that reflection design, we have passed a
number of extensions to the C++17 constexpr feature: immediate (i.e., “constexpr!”) functions
(P1073rl), std: :is_constant_evaluated() (P0595rl), constexpr dynamic allocation (P0784r3),
and expansion statements (P0589r0, P1306r0).

That in itself still leaves plenty of design options for the reflection interface itself. What follows is an
extensive document describing:
e Our preferred approach to the core language facilities, along with argumentation of why we think
that design is desirable.
e Principles to translate existing standard template metaprogramming facilities to the reflection
domain.
Principles to translate the Reflection TS facilities to the value-based reflection domain.
Some examples to argue that proposals to add additional template metaprogramming facilities are
unneeded because the underlying functionality is better handled in the reflection domain.

Scalable Reflection in C++ P1240R0

A simple example

The following function uses static reflection facilities presented in this paper to compute the string
representation of an enumerator value.

template<Enum T>
std::string to_string(T value) { // Could also be marked constexpr

for... (auto e : std::meta::members_of(reflexpr(T)) {
if (unreflexpr(e) == value) {
return std::meta::name_of(e);
}
}
return "<unnamed>";

In broad strokes, the function does the following:

1. Gets the sequence enumerators from the enumeration type T,

2. Iterates over those enumerators, searching for the first that matches value,

3. Returns the name of that iterator.
Each of these operations relies on some feature included in this proposal. In particular, getting the
sequence of iterators requires that we first get a queryable representation of the enumeration type T. This
is done using the reflexpr operator; it returns a reflection: a handle to an internal representation of the
type maintained by the compiler. The members_of function returns a compile-time std: :vector
containing reflections of each enumerator in the enum.

To iterate over the vector we use an expansion-statement, spelled for This isn’t true “iteration”,
however. The body of the statement repeated for each element of the vector so that the loop variable
member is initialized to *(vec.begin() + @), *(vec.begin() + 1), ..., *(vec.begin()
+ n - 1) in each successive repetition. The loop variable is also implicitly declared constexpr
within each repeated body. In other words, each repetition is equivalent to:

{
constexpr std::meta::info e = *x(vec.begin() + I);
if (unreflexpr(e) == value)
return std::meta::name_of(e);
}

where I represents the i” repetition of the loop’s body.

Within the expansion body, the unreflexpr operator recovers the value of a reflected entity. This can
be compared with the parameter value to determine if they are the same. Finally, the name_of
function returns a compile-time string containing the identifier of the matched enumerator. If none of the

Scalable Reflection in C++ P1240R0

enumerators matched (possible, e.g., when bit-ORing together enumerator values), we return a string
"<unnamed>" (which won’t collide with a valid identifier).

This is called static reflection because all of the operations used to query types and enumerators are
computed at compile time (i.e., statically). There is no additional runtime meta-information that must be
generated with such facilities, which reinforces the zero-overhead principle that enshrines C++. There is
no runtime representation of the enumeration type and its enumerators. Only information that is
ODR-used is present in the final program.

The reflexpr operator

The first Reflection TS introduced the reflexpr operator to obtain reflection values encoded as types.
Ironically, the spelling is more appropriate for the value-based reflection since the corresponding
operation is indeed an “expression” (i.e., a construct that produces a value; in the TS it produces a type).
In any case, all discussions so far have agreed that reusing that token spelling (which took quite some
bikeshedding effort during the first design round) is desirable. In other words, value-based reflection will
allow us to write:

std::meta::info reflection = reflexpr(name_or_expr);

The value of reflection (i.e. the result of a call to reflexpr) is a compile-time value that designates
some view of the program by the implementation (specifically, the compiler front end). I.e., it can be
thought of as a handle to an internal structure of the compiler. In the rest of this proposal we refer to the
result of reflexpr as a reflection or a reflection value.

Note that reflexpr is the “gateway” into the reflected world, but it is not the only source of reflections
(or reflection values): We will further introduce a variety of functions that derive reflections from other
reflections (e.g., we’ll present a function that returns reflections for the members of a class given a
reflection for that class). Whatever the source of a reflection, we say that it designates language concepts
such as entities or value categories. As will be shown later, a reflection can designate multiple notions.
For example, reflexpr (f(x)) designates the called function f (if indeed that is what is called) and
the type and value category of the call result.

The operand of reflexpr must be one of the following:
a type-id, including possibly a simple-type-specifier that designates a template-name

a possibly qualified namespace-name
the scope-qualifier token “: :” (designating the global namespace)

an expression

In the case where the name_or_expr is an expression, it is unevaluated but potentially constant
evaluated. That implies that given “struct S { int x; };”, the expression
“reflexpr(S::x)”)is permissible in this context. We will elaborate the available reflected semantics

Scalable Reflection in C++ P1240R0

later in this paper. Note also that since reflexpr(name_or_expr) is an expression,
reflexpr(reflexpr(name_or_expr)) is valid (generally producing a distinct reflection).

In this paper we call declared entity any of the following: a namespace (but not a namespace alias), a
function or member function (that includes implicit special members, but not inherited constructors), a
function or template parameter, a variable, a type (but not a type alias), a data member, a base class, a
capture, or a template (including an alias template, but not a deduction guide template). Note that this
slightly different from the standard term entity (which, e.g., includes “values” but not “captures”). We call
alias a namespace alias or a type alias.

Reflection type

What should the type of a reflection be? It is tempting to organize reflection values as class type values
using a hierarchy of class types that try to model the language constructs. For example, one could imagine
a base class Reflection, from which we might derive a class ReflectedDeclaration, itself the
base class of ReflectedFunction and ReflectedVariable.

We do not believe this is the best approach, however, for at least the following reasons:

e C(Class hierarchy values aren’t friendly to value-based programming because of slicing; instead, it
works better with “reference” programming, which is particularly expensive for constexpr
evaluation.

e Although the relationship between major language concepts is relatively stable, we do
occasionally make fundamental changes to our vocabulary (e.g., during the C++11 cycle we
changed the definition of “variable”). Such a vocabulary change is more disruptive to a class
hierarchy design than it is to certain other kinds of interfaces (we are thinking of function-based
interfaces here).

e C(lass types are not easily used as nontype template arguments, particularly when we want to
restrict effects to compile time (the recently added support for nontype template arguments
(P0732R?2) causes run-time variables to be synthesized, but doing so would be meaningless for
compile-time reflection values). As it turns out, instantiating templates over reflection values is an
important idiom when it comes to reification.

e Implementations of constexpr evaluation usually handle non-pointer scalar values significantly
more efficiently than class values.

Regarding this last point, the following compile-time test:

constexpr int f() {

int 1 = ©;

for (int k = 0; k<10000; ++k) {
i+= k;

}

return 1/10000;

Scalable Reflection in C++ P1240R0

template<int N> struct S {
static constexpr int sm

s

template<> struct S<0> {
static constexpr int sm

s

constexpr int r = S<200>::sm;

S<N-1>::sm+f();

9;

compiles in about 0.6 seconds on a compact laptop (2016 MacBook m7), but wrapping the integers as
follows:

struct Int { int v; };
constexpr int f() {
Int i = {0};
for (Int k = {0}; k.v<10000; ++k.v) {
i.v += k.v;
}
return i.v/10000;
}
template<int N> struct S {
static constexpr int sm
s
template<> struct S<0> {
static constexpr int sm
s

constexpr int r = S<200>::sm;

S<N-1>::sm+f();

9;

doubles the compile time to 1.2 seconds. Adding a derived-class layer would further increase the time.
Another increase would result from attempting to access the classes through references (as would be
tempting with a class hierarchy) because address computations require some work to guard against
undefined behavior.

Because of these various considerations, we therefore propose that the type of a reflection is an
unspecified scalar type, distinct from all other scalar types, whose definition is:

namespace std::meta {
using info = decltype(reflexpr(void));
}

Namespace std: :meta is an associated namespace of std: :meta: :info for the purposes of
argument-dependent lookup (ADL): That makes the use of various other facilities in that namespace
considerably more convenient. (In this sense, std: :meta: :info is similar to an enumeration type.)

Scalable Reflection in C++ P1240R0

By requiring the type to be scalar, we avoid implementation overheads associated with the compile-time
evaluation of class objects, indirection, and inheritance. By making the type unspecified but distinct, we
avoid accidental conversions to other scalar types, and we gain the ability to define core language rules
that deal specifically with these values. Moreover, no special header is required before using the
reflexpr operator.

As noted earlier, values of this type behave as handles to internal structures of the compiler that represent
the operand. To reason about the kind of semantic information one can obtain through these reflection
values, we categorize the values into four mutually exclusive groups:

Declared-entity reflections

o Alias reflections
e Expression reflections
e Invalid reflections

Note, declared-entity-reflections only designate the declared-entity; alias-reflections always designate a
declared-entity in addition to providing the name of the alias; and, expression-reflections might or might
not designate a declared-entity (e.g., an id-expression might designate a variable), but always designate
properties of the expression.

For the most part, reflections of names designate the declared entity those names denote: variables,
functions, types, namespaces, templates, etc. For example:

reflexpr(const int) // designates the type const int
reflexpr(std) // designates the namespace std
reflexpr(std::pair) // designates the template pair

int* f(int);

reflexpr(decltype(f(3)) // designates the type int*
reflexpr(std::pair<int, int>) // designates the specialization

Reflections of expressions designate a limited set of characteristics of those expressions, including at least
their type and value category. For example:

reflexpr(1) // designates at least the property “prvalue of type int”.
(Further on we will present functions to examine and/or reify the designated notions.)

If an expression also names a declared entity (via a possibly-parenthesized expression-id), then it also
designates that entity. For example:

int x;

reflexpr((x)) // designates the declared-entity ' X' (variable) as well as its value category

reflexpr(x+1) // does not designate a declared-entiy but does at least designate the property
// “prvalue of type int”.

Scalable Reflection in C++ P1240R0

reflexpr(std::cout) // designates the object named by std: :cout as well as its
/ / type and value category (lvalue).

If an expression is a constant expression it also designates that constant value:

reflexpr(0) // designates the value zero and the property “prvalue of type int”
reflexpr(nullptr) // designates the null pointer value and the property “prvalue
// of type decltype(nullptr)
reflexpr(std::errc::bad_message) // designates the enumerator, its constant value,
// and the property “prvalue of type
// std::errc”

If an expression represents a call at its top level, it also designates the function being called:

reflexpr(printf(“Hello, “)) // designates printf and the property “prvalue
// of type int”
reflexpr(std::cout << “World!”) // designates the applicable operator<<
// and “Ivalue of type std: :ostream”

constexpr int f(int p) { return p; };

reflexpr(f(42)) // designates f, the value 42, and “prvalue of type int”
reflexpr(f(42)+1) // designates the value 43 and “prvalue of type int”;

/ / does not designate T because the call is not “top level”

When the reflexpr operand is the name of an alias (type or namespace) the reflection designates the
aliased entity indirectly (i.e., properties of the alias can be queried directly). For example:

using T@ int;
using T1 const TO;
constexpr meta::info ref = reflexpr(T1);

Here, ref designates both T1 (directly) and the type const int (indirectly). This allows users to work
both with the alias and its meaning.

An invalid reflection does not designate an entity, alias, or expression. This type of reflection is used to
communicate “error situations”.

In a more abstract sense, reflections designate semantic notions (names, types, value categories, etc.)
rather than syntax (tokens that comprise an expression and the relation of those tokens to others). This
principle helps guide decisions about the design of language and library support for reflection.

The queryable properties of these reflections are determined by the kind of “thing” they reflect. These are
described in sections below.

Scalable Reflection in C++ P1240R0

Conversions on reflections

A prvalue of reflection type can be contextually converted to a prvalue of type bool. An invalid
reflection converts to false; all other reflections convert to true.

Equality and equivalence

Reflections can be compared using == and ! = operators. If two reflections designate declared entities or
aliases of such entities but do not designate expression properties of an expression that is not an
expression-id, the reflections compare equal if the entities are identical (i.e., the comparison “looks
through” aliases). If two reflection both do not designate declared entities or they designate expression
properties of an expression that is not an expression-id, their equality is unspecified. Otherwise, they
compare unequal. For example:

typedef int I1;
typedef int I2;
static_assert(reflexpr(I1) == reflexpr(I2));
float f = 3.0;

static_assert(reflexpr(f) =
static_assert(reflexpr(f) =

reflexpr((f));
reflexpr(::f);

void g(int);

static_assert(reflexpr(g(1)) == reflexpr(g(1)); // May fail because g(1)
// is an expression that is
/ / is not an expression-id.

In the last case, users can more precisely specify whether they intend to compare entities or computed
values (if possible) using the reification operators (e.g., typename, unreflexpr) or library facilities
(std::meta: :entity) described in the following sections.

Also note that:

static_assert(reflexpr(I1) == reflexpr(int));
The same principle applies to namespace aliases:

namespace N {};

namespace N1 = N;

namespace N2 = N;

static_assert(reflexpr(N1) == reflexpr(N2));
static_assert(reflexpr(N1) == reflexpr(N));

Scalable Reflection in C++ P1240R0

For reflections obtained from operands that involve template parameters, the result depends on the
template arguments used for substitution.

template<typename T, typename U> struct Fun {
static_assert(reflexpr(T) == reflexpr(U));

2

Fun<int, int> wheel; // Ok

Fun<int, char> whee2; // error: static assertion failed

It is unspecified whether reflections obtained from expressions that do not designate a declared entity
compare equal. For example:

static_assert(reflexpr(1) == reflexpr(1)); // May or may not fail.

Note that the properties associated with a declared entity may change over various contexts, but that does
not change the reflection. For example:

struct S;
auto r1 = reflexpr(S);
struct S {};

auto r2 = reflexpr(S);
static_assert(r1 == r2);

However, queries against the reflection value (e.g., to obtain a list of class members) may change as a
consequence of the changes in the underlying entity.

An additional comparison function is predeclared:

namespace std::meta {
constexpr! auto same_reflections(info, info)->bool { ... };

}

If either X or y designate an alias (type or namespace) same_reflections(x, Yy) returns true if x
and y designate the same alias and Talse otherwise. Otherwise (i.e., if neither X nor y designate an
alias), same_reflections(x, Yy) returns X == Y. In other words, same_reflections(x,

y) is like the equality operator except that it doesn’t “look through” aliases. For example:

using std::meta::same_reflections;
static_assert(!same_reflections(reflexpr(N1), reflexpr(N2)));
static_assert(!same_reflections(reflexpr(reflexpr(N1)),
reflexpr(reflexpr(N1))));
static_assert(!same_reflections(reflexpr(reflexpr(N1)),
reflexpr(reflexpr(N2))));

Scalable Reflection in C++ P1240R0

To compare the values of reflected objects, references, functions, or types, the reflection can first be
reified using one of the operators described below.

A Note About Linkage

Although in most respects we propose that std: :meta: :info is an ordinary scalar type, we also give
it one “magical” property with respect to linkage.

Before explaining this property, consider again what a reflection value represents in practice: It is a
handle to internal structures the compiler builds up for the current translation unit. So for code like:

struct S {};
constexpr! auto f() {
return reflexpr(S);

}

the compiler will construct an internal representation for struct S and when it encounters
“reflexpr(S)” it will update a two-way map between the internal representation of S and an integer
underlying the std: :meta: :info value returned by reflexpr(S).

Now consider:

/ / Header t.hpp:
struct S {};
template<std::meta::info reflection> struct X {};

/ / File tl.cpp:

#include "t.hpp"

enum E {};

constexpr! auto d() {
return reflexpr(E);

}

X<reflexpr(S)> g() {
return X<reflexpr(S)>{};

}

/ / File t2.cpp:
#include "t.hpp"
extern X<reflexpr(S)> g();
int main()
a();
}

Scalable Reflection in C++ P1240R0

The files t1.cpp and t2.cpp are compiled separately. The contexts in which the “reflexpr(S)”
construct is encountered are therefore different and it is not practical to ensure that the underlying values
(“bits”) of the std: :meta: :info results are identical. However, it is very desirable that the types
X<reflect(S)> are the same types in both translation units and that the above example not produce an
ODR violation.

We therefore specify “by fiat” that:
e reinterpret_casttoorfrom std: :meta: :info isill-formed
e accessing the byte representation of std: :meta:info lvalues produces unspecified (possibly
inconsistent) values
e std::meta::info values A1 and A2 produce equivalent template arguments if
std::meta::same_reflections(A1, A2) produces true.

Thus the following variation of the previous example is also valid:

/ / File tl.cpp:

enum E {};

constexpr! auto d() {
return reflexpr(reflexpr(E);

}

X<reflexpr(reflexpr(S))> g() {
return X<reflexpr(reflexpr(S))>{};

}

/ / File t2.cpp:
extern X<reflexpr(reflexpr(S))> g();
int main() {
9();
}

Reification

In the context of this paper, “reification” (from the Latin “res”, meaning “thing”) refers to the process of
turning a “reflection value” back into a “program source thing”. We propose a few primitive operators to
map reflection values back to source code constructs (the operand “reflection” below always stands
for an expression of type std: :meta: :info):

e typename(reflection)
A simple-type-specifier corresponding to the type designated by “reflection”. Ill-formed if
“reflection” doesn't designate a type or type alias.

e namespace(reflection)
A namespace-name corresponding to the namespace designated by “reflection”. Ill-formed

Scalable Reflection in C++ P1240R0

if“reflection” doesn't designate a namespace.

e template(reflection)
A template-name corresponding to the template designated by “reflection”. Ill-formed if
“reflection” doesn't designate a template.

e unreflexpr(reflection)
If “reflection” designates a constant expression, this is an equivalent expression. Otherwise,
if“reflection” designates a non-member-function, parameter or variable, data member, or an
enumerator, this is equivalent to an id-expression referring to the designated entity (without
lookup, access control, or overload resolution: the entity is already identified). Otherwise, this is
ill-formed.

e (. reflection .)
If “reflection” designates an alias, a named declared entity, this is an identifier referring to
that alias or entity. Otherwise, ill-formed.

e (< reflection >)
Valid only as a template argument. Same as “typename(reflection)” if that is
well-formed. Otherwise, same as “template(reflection)” if that is well-formed.
Otherwise, same as “unreflexpr(reflection)”.

(All the "ill-formed" cases above are subject to SFINAE if they result from substitution during
deduction.)

Examples:

typename(reflexpr(int)) i = unreflexpr(reflexpr(42));
// Same as “int 1 = 42;”.

namespace N { int f; }

void (. reflexpr(N::f) .)(int);
// Same as “void f(int);”.

struct S {
constexpr! auto ri() { return reflexpr(S::i); };
private:
int 1:3; // Bitfield.
}os;
int i1 = s.unreflexpr(s.ri()); // Okay: Refersto S: :1i without needing name

// lookup at this point.
s.(.s.ri().); // Error: Same as “s.1”, which is an access violation.

int i2

Furthermore, we propose list-generating variations of most of the reification constructs above. Let
reflection_range be a range such that

Scalable Reflection in C++ P1240R0

for (std::meta::info r : reflection_range) ...

would successively set I to a list of values r1, r2, r3, ... rN.

Then:
e typename(reflection_range). .. expands to
typename(r1), .., typename(rN)
e template(reflection_range). .. expands to
template(r1), .., template(rN)
e unreflexpr(reflection_range). .. expands to
unreflexpr(r1), .., unreflexpr(rN)

e (. reflection_range .)... expandsto
(. r1), ..., (. rN)

e (< reflection_range >)... expandsto
(< r1>),.., (<rN>)

Examples:

std::meta::info t_args[] = { reflexpr(int), reflexpr(42) };
template<typename T, T> struct X {};
X<(<t_args>)...> x; //Sameas"X<int, 42> x;".
template<typename, typename> struct Y {};
Y<(<t_args>)...> vy; //Error: sameas"Y<int, 42> y;".

Some observations:

e Empty ranges and singleton ranges expand as expected.

e There is no “namespace(reflection_range)” construct because a list of namespaces can
currently not appear anywhere in a C++ program.

e Ifany expansion produces an ill-formed reification construct, the whole construct is ill-formed
but subject to SFINAE.

e This intentionally looks a lot like a pack expansion, but it is not exactly the same thing because
the construct is not valid if the ellipsis does not immediately follow the reification syntax. For
example:

std::meta::info types[] = {

reflexpr(int), reflexpr(double) };

template<typename t, typename U> struct Y {};

Y<typename(types)*...> yptrs; // Error
If the reification construct were able to produce a pack pattern, the latter would be equivalent to
Y<int#*, double#*>. However, such a feature would be a considerable implementation
burden. It is usually fairly straightforward to work around this limitation by using an additional
template layer, or by using reflective functions that produce derived reflections. E.g., a call
make_pointers(types) might produce a range of reflections similar to:

{ reflexpr(int*), reflexpr(doublex) }

Scalable Reflection in C++ P1240R0

Reifying a function-local alias or declared entity outside its potential scope is ill-formed. For example:

constexpr! auto refl_int_alias() {
typedef int Int;
return reflexpr(Int);

}

typename(refl_int_alias()) x; // Error: Cannot reify local alias here.

Similarly, a parameter obtained from a function type F can be reified as an expression only within the
potential scope of the corresponding argument of a function of the same type. For example
(parameters_of will be described later on):

using F = int (int, int);
auto params = std::meta::parameters_of(reflexpr(F));
int f(int, int) {
return unreflexpr(params[0]); // Okay
}
int g(int, char) {
return unreflexpr(params[@]); // Error: params[0] comes from function type
} //“int (int, int)” but this function has
// type “int (int, char)”.

When unreflexpr is applied to a reflection designating a constant expression, it is unspecified whether
that constant expression is re-evaluated, or whether a memoized result value is produced. Note that this
matter because this proposal includes constant operations that have effects that are context-dependent
(e.g., produce different results depending on whether a type is complete or not). For example:

struct S;

constexpr r = reflexpr(std::meta::is_complete(reflexpr(S)));
struct S {};

constexpr bool b = unreflexpr(r); // Couldbe trueor false.

Access checking

Reification constructs provide an alternative way to refer to declarations and therefore we must decide
whether they are subject to access control. Access control ordinarily applies to names, but reification
constructs are not necessarily names. In fact, the only reification constructs that behave like names are the
“(. reflection .)”and“(. reflection_range .)...” constructs. Those are therefore the
only reification constructs subject to access checking. For example:

class C {
using Int = int;

Scalable Reflection in C++ P1240R0

public:
static constexpr! auto r() { return reflexpr(Int); };
} ¢,
typename(C::r()) x; // Okay: X has type int
C::(.C::r().) vy; // Error: Int is inaccessible.

Invalid reflections

In what follows we are going to propose a large collection of standard reflection operations, some of
which generate new reflection values. Sometimes, the application of some of these operations will be
meaningless. E.g., consider:

namespace std::meta {
constexpr! auto add_const(info)->info {...};

}

which is meant to take a reflection of a type and add a type qualifier on top. However, what happens with
something like:

constexpr auto r = add_const(reflexpr(std));

which suggests the meaningless operation of adding a const qualifier to namespace std? Our answer
is that an implementation will not immediately trigger an error in that case, but instead create a reflection
value that represents an error. Any attempt to reify such a reflection is ill-formed (as always, subject to
SFINAE).

It is useful for user code to also be able to produce invalid reflections. To that end, we propose the
following function:

namespace std::meta {
constexpr!

auto invalid_reflection(std::string_view message,

std::string_view src_file_name =
current_source_file_name(),
unsigned line = current_source_line(),
unsigned column = current_source_column())
->info {...};

which constructs a reflection that triggers a diagnostic if reified outside a SFINAE context (ideally, with
the given message and source position information).

Note that the functions

Scalable Reflection in C++ P1240R0

namespace std::meta {
constexpr! auto current_source_file_name()->std::string {...};
constexpr! auto current_source_line()->unsigned {...};
constexpr! auto current_source_column()->unsigned {...};

}

produce source location for the first call in the chain of immediate function calls leading up to a call to
these functions. (We currently do not rely on the previously-proposed std: :source_location
feature because is it does not use immediate functions, and it is not clear that it would do so when/if
integrated into the working draft for the next standard.)

Invalid reflections can also be used to generate compiler diagnostics during constexpr evaluation using
the diagnose_error function. This can be a valuable debugging aid for authors of metaprogramming
libraries, and when used effectively, should improve the usability of those libraries.

namespace std::meta {
constexpr! void diagnose_error(info invalid_refl) {...};

}

This function causes the compiler to emit an error diagnostic (formally: it makes the program ill-formed if
it is invoked outside a deduction/SFINAE context), hopefully with the message and location provided by
the argument.

Finally, we also propose a predicate:

namespace std::meta {
constexpr! auto is_invalid(info)->bool {...};

}

that can be used to test for, and, e.g., filter out invalid reflective operations. We also provide a
convenience overload of this function:

namespace std::meta {
constexpr! auto is_invalid(std::vector<info>)->bool {...};

}

which returns true if any element of the given vector is an invalid reflection. This is particularly useful
because some important reflection facilities return vectors of reflection values that callers are likely to
want to check for invalid entries.

Scalable Reflection in C++ P1240R0

Expressions and entities

Consider:

constexpr int i = 42;
auto r = reflexpr(i);

As mentioned before, the reflection value r designates both the expression 1 and the variable 1.
However, the special function

namespace std::meta {
constexpr! auto entity(info reflection)->info {...};

}

applied to r produces a reflection designating just the variable.

More generally, std: :meta: :entity returns:
e its argument if its argument is an invalid reflection,
e or areflection designating only a declared entity if its arguments designates a declared entity, or
e areflection for an entity E if its argument is a reflection designating an alias of E, or
e an invalid reflection in all other cases.

Example:

void f(); /] #1

int f(int); // #2

auto r = std::meta::entity(reflexpr(f(42))); // Reflection for function #2.
static_assert(r == reflexpr(f(42)); // May or may not fail
static_assert(r == entity(reflexpr(f(0)))); // Always succeeds

To get the value of an entity, use the unreflexpr operator. Example:

unreflexpr(r)(42); // Calls f(42). No lookup of “f” is done.
(. r .)(42); // Sameas“f(42)”, including lookup and overload resolution.

Template arguments
The proposed function
namespace std::meta {

constexpr!
auto has_template_arguments(info reflection)->bool {...};

Scalable Reflection in C++ P1240R0

returns true if and only if the given reflection corresponds to a template specialization (in the standard
sense: implicit specializations are included).

The actual template arguments can be obtained through

namespace std::meta {
constexpr! auto template_arguments_of(info reflection)
->std::vector<info> {...};

Conversely, the template producing a specialization can be obtained with

namespace std::meta {
constexpr! auto template_of(info reflection)->info {...};

}

Note that the resulting reflection value (like that for reflecting a template directly) represents that template
as completely known at any point it is examined (including not only the primary template definition, but
also partial and full specializations). If the given reflection is not that of a

specialization, an invalid reflection is returned.

A dual to the above operations is also proposed:

namespace std::meta {
constexpr! auto substitute(info templ, std::span<info> args)
->info {...};

A substitution error in the immediate context of the substitution produces an invalid reflection (this is akin
to SFINAE). A substitution error outside that immediate context renders the program ill-formed. An
incomplete substitution (where not all parameters are substituted by nondependent

arguments) also produces an invalid reflection. Note, this functionality can also be expressed using one
of the reification primitives (< reflection >),but having both supports readability depending on the
context.

Example:

using namespace std::meta;

template<typename ... Ts> struct X {};

template<> struct X<int, int> {};

constexpr info type = reflexpr(X<int, int, float>);

Scalable Reflection in C++ P1240R0

constexpr info templ = template_of(type);
constexpr vector<info> args = template_arguments_of(type);
constexpr info new_type =
substitute(templ, span<info>(args).subspan(@, 2));
typename(new_type) xii; // Type X<int, int>, which selects the specialization.
// There is no mechanism to instantiate a primary template
// definition that is superseded by an explicit/partial
// specialization.

Another example illustrates how substitutions can produce non-SFINAE errors:

template<typename T> struct A {
T::type I;
i
template<typename T, T::type N> struct Y {};
constexpr info ASpec = reflexpr(A<int>); // No instantiation yet.
constexpr info new_type2 =
substitute(reflexpr(Y), std::vector<info>{ ASpec, reflexpr(5)});
/ / Error: Substitution of Y<A<int>, 5> requires A<int> to be instantiated
// outside the immediate context of the substitution.

Transcribing the standard library's [meta] section

The standard library [meta] section (in clause [utilities]) provides a large number of utilities to examine
and construct types. We propose that all those utilities be given a counterpart in the value-based
reflection world, with needed declarations made available through a new standard header <meta>.
For example, consider the type transformation trait

std: :make_signed<T>
which produces a result through its member type

std: :make_signed<T>: :type

We propose to have a std: :meta counterpart as follows:

namespace std::meta {
constexpr! auto make_signed(info reflection)->info {...};

}

This is expected to be implemented using an intrinsic in the compiler (although that is not a requirement).
For a reflection value r corresponding to a type T such that

Scalable Reflection in C++ P1240R0

std: :make_signed<T>: :type
is valid, using the new function as make_signed(r) is equivalent to:
reflexpr(std: :make_signed<typename(r)>::type)

(except for not actually instantiating templates in a quality implementation). For a reflection value for
which the above transformation would not be valid (e.g., reflexpr(void)), however, the function
returns an invalid reflection.

Most templates specified in [meta.trans] can be transcribed in a similar way, but a few take additional
nontype template parameters. Their transcription is also straightforward however. We illustrate this with
the std: :enable_if template whose constexpr! counterpart can be implemented efficiently
without intrinsics.

The already-standard template-based interface is usually implemented as follows:

namespace std {
template<bool, typename T = void> struct enable_if {};
template<typename T> struct enable_if<true, T> {

using type = T;

3

The reflection counterpart is then (including a hypothetical implementation):
namespace std::meta {

constexpr! auto enable_if(bool cond,
info type = reflexpr(void))->info {

if (cond) {
return type;
} else {

return invalid_reflection("enable_if condition false",
current_source_name(),
current_source_line(),
current_source_column());

(We encourage programmers to prefer requires-clauses over enable_if for constraining templates.)

Scalable Reflection in C++ P1240R0

The type traits predicates described in [meta.unary] and [meta.rel] are just as easily mapped to the
value-based reflection world. For example, the three templates

namespace std {
template<typename T> struct is_union;
template<typename T, typename ... Args> struct is_constructible;
template<typename B, typename D> struct is_base_of;

}

have counterparts as follows:

namespace std::meta {
constexpr! auto is_union(info reflection)->bool {...};

constexpr! auto is_constructible(info reflection,
std: :span<info> arg_types)
->bool {...};
constexpr! auto is_base_of(info base_type,
info derived_type)->bool {...};

The other cases follow the same patterns.
The three templates in [meta.unary.prop.query]:

namespace std {
template<typename T> struct alignment_of;
template<typename T> struct rank;
template<typename T, unsigned I = 0> struct extent;

}

are slightly irregular, but the corresponding functions can still be intuited:

namespace std::meta {
constexpr! auto alignment_of(info type)->std::size_t {...};
constexpr! auto rankinfo type)->int {...};
constexpr! auto extent(info type, unsigned dim = 0)->int {...};

}

The helper templates in [meta.help] and [meta.logical] are not needed for value-based reflection since
their counterparts are core language features (like the integer types and the logical operators).

Scalable Reflection in C++ P1240R0

Adapting the Reflection TS' [reflect] section

The Reflection TS (P0194r6) introduces a large number of template metafunctions. This proposal steals
many of those features and adapts them to the value-based reflection world. However, we make some
changes to better align the semantics with the constraints of the language definition and the flexibility of
our value-based approach.

Predicates

Let's start with the predicates. For example, 1s_public gets a counterpart as follows:

namespace std::meta {
constexpr! auto is_public(info base_or_mem)->bool {...};

}

That function fails to evaluate to a constant (a SFINAEable error) if base_or_mem does not designate a
base class or a class member (that constraint corresponds to the concepts requirements imposed for the
class template is_public proposed in the Reflection TS). is_protected, is_private,
is_accessible (which checks a member is accessible from the context of invocation),
is_virtual, and is_final are handled in the same way. For example:

struct S { int x; };
constexpr bool t = std::meta::is_public(reflexpr(S::x));
// = true;
= std::meta::is_public(reflexpr(S));
// Error: reflexpr(S) is not a base or member.

constexpr bool e

The is_unnamed metafunction is transcribed similarly:

namespace std::meta {
constexpr! auto is_unnamed(info entity)->bool {...};

}

but this time the function only evaluates to a constant if the given reflection represents a namespace, a
data member, a function, a template, a variable, a type, or an enumerator.

is_scoped_enum becomes

namespace std::meta {
constexpr! auto is_scoped_enum(info entity)->bool {...};

}

Scalable Reflection in C++ P1240R0

and always evaluates to a constant.
We propose to replace 1s_constexpr by:

namespace std::meta {
constexpr! auto is_declared_constexpr(info entity)->bool {...};

}

which is a constant value if entity designates a variable, a function, a static data member, or a template for
these. (We propose the alternative name to distinguish the entities that are declared with the
constexpr or constexpr! specifier from entities that are effectively constexpr (e.g., a function
template may be declared constexpr and its instances would produce true values with this predicate;
however, the instances may not actually be constexpr functions; conversely, lambda call operators and
special member functions may be constexpr functions without being declared constexpr).
Immediate (constexpr!) functions and function templates are also identifiable:

namespace std::meta {
constexpr! auto is_immediate(info entity)->bool {...};

}

Instead of is_static (for variables) we propose:

namespace std::meta {
constexpr!
auto has_static_storage_duration\(info entity)->bool {...};

}

because “is_static” suggests a query about a storage class specifier rather than a storage duration.
is_inline:

namespace std::meta {
constexpr! auto is_inline(info entity)->bool {...};

}

produces a constant value for reflections of variables, functions, variable/function templates, and
namespaces.

A number of function properties produce a constant value for reflections of functions only:
namespace std::meta {

constexpr! auto is_deleted(info entity)->bool {...};
constexpr! auto is_defaulted(info entity)->bool {...};

Scalable Reflection in C++ P1240R0

constexpr! auto is_explicit(info entity)->bool {...}
constexpr! auto is_override(info entity)->bool {...};
constexpr! auto is_pure_virtual(info entity)->bool {...};

}

’

The following predicates always produce a constant value given a reflection. They produce a false
value for invalid reflections, and otherwise return true if the predicate applies to the reflected entity:

namespace std::meta {
constexpr! auto is_class_member(info reflection)->bool {
/ / Return true for class and class template members.

.

constexpr! auto is_local(info reflection)->bool {
// Return true for local variables, local members.

};...

constexpr! auto is_namespace(info entity)->bool {...};
constexpr! auto is_template(info entity)->bool {...};
constexpr! auto is_type(info entity)->bool

// Return true for types and type aliases.

};...

constexpr! auto is_incomplete_type(info entity)->bool;
constexpr! auto is_closure_type(info entity)->bool {...};
constexpr! auto has_captures(info entity)->bool {...};

Scalable Reflection in C++ P1240R0

constexpr! auto has_default_ref_capture(info entity)->bool {
/ / Return true even there is no effective capture (i.e., it’s syntactical only).

}s

constexpr! auto has_default_copy_capture(info entity)->bool {
/ / Return true even there is no effective capture (i.e., it’s syntactical only).

3
constexpr! auto is_simple_capture(info entity)->bool {...};
constexpr! auto is_ref_capture(info entity)->bool {...};
constexpr! auto is_copy_capture(info entity)->bool {...};
constexpr! auto is_explicit_capture(info entity)->bool {...};
constexpr! auto is_init_capture(info entity)->bool {...};
constexpr! auto is_function_parameter(info entity)->bool {...};
constexpr! auto is_template_parameter(info entity)->bool {...};
constexpr! auto is_class_template(info entity)->bool {...};
constexpr! auto is_alias(info reflection)->bool {...};
constexpr! auto is_alias_template(info reflection)->bool {...};
constexpr! auto is_enumerator(info entity)->bool {...};
constexpr! auto is_variable(info entity)->bool {...};
constexpr! auto is_variable_template(info entity)->bool {...};
constexpr! auto is_static_data_member(info entity)->bool {

return is_variable(entity) && is_class_member(entity);
3
constexpr! auto is_nonstatic_data_member(info entity)

->bool constexpr! {...};

constexpr! auto is_bit_field(info reflection)->bool constexpr! {

/ / Return true for bit fields, but also for expressions that are bit field selections.

}s

constexpr! auto is_base_class(info entity)->bool {...};
constexpr! auto is_direct_base_class(info entity)->bool {...};
constexpr! auto is_virtual_base_class(info entity)->bool {
return is_base_class(entity) && is_virtual(entity);
}
constexpr! auto is_function(info entity)->bool {...};
constexpr! auto is_function_template(info entity)->bool {...};
constexpr! auto is_member_function(info entity)->bool {
return is_function(entity) && is_class_member(entity);

|2

Scalable Reflection in C++ P1240R0

constexpr!
auto is_member_function_template(info entity)->bool {

return is_function_template(entity) && is_class_member(entity);
3
constexpr!
auto is_static_member_function(info entity)->bool {...};
constexpr!
auto is_static_member_function_template(info entity)->bool {...};
constexpr!
auto is_nonstatic_member_function(info entity)->bool {...};
constexpr!
auto is_nonstatic_member_function_template(info entity)

->bool {...};
constexpr! auto is_constructor(info entity)->bool {...};
constexpr! auto is_constructor_template(info entity)->bool {...};
constexpr! auto is_destructor(info entity)->bool {...};
constexpr! auto is_destructor_template(info entity)->bool {...};

Note that is_bit_field above is more general than what the TS proposed since it applies not only to
the reflection of data members but also to expressions, because “bitfieldness” is a significant property of
an expression. Similarly, we add the following three predicates (with no equivalent in the TS) for
reflections of expressions:

constexpr! auto is_lvalue(info reflection)->bool;
constexpr! auto is_xvalue(info reflection)->bool;
constexpr! auto is_prvalue(info reflection)->bool;
constexpr! auto is_glvalue(info reflection)->bool {

return is_lvalue(reflection) || is_xvalue(reflection);
}
constexpr! auto is_rvalue(info reflection)->bool {
return is_pralue(reflection) || is_xvalue(reflection);
}

The following predicate produces a constant value given the reflection of a function type or closure type,
or an alias thereof:

namespace std::meta {
constexpr! auto has_ellipsis(info entity)->bool {...};

}

The following predicate produces a constant value given the reflection of a
function type or an alias thereof:

Scalable Reflection in C++ P1240R0

namespace std::meta {
constexpr! auto is_member_function_type(info entity)->bool {...};

}

Given the reflection of a function or template parameter, std: :meta:has_default returns whether
it has an associated default argument:

namespace std::meta {
constexpr! auto has_default(info entity)->bool {...};

}

Singular properties

The following functions can be used to identify a source location of declared entities:

namespace std::meta {
constexpr! auto source_line_of(info entity)->unsigned {...};
constexpr! auto source_column_of(info entity)->unsigned {...};
constexpr! auto source_file_name_of(info entity)
->std::string {...};

Although these produce a constant result for any reflection value, the returned value is unspecified if the
reflection is not that of a declared entity (or alias).
The name of declared entities can be accessed through the following:

namespace std::meta {
constexpr! auto name_of(info entity)->std::string {...};
constexpr! auto display_name_of(info entity)->std::string {...};

}

For named declared entities/aliases, name_oT returns a constant string containing the same identifier as
that produced by the “(. info .)” reification construct. For any other operand, it produces a constant
empty string.

The display_name_of function produces an unspecified constant non-empty string for any reflection
(implementations are encouraged to produce a string that is helpful in identifying the reflected item).

Aliases can be “looked through” using the aforementioned function entity:

namespace std::meta {

Scalable Reflection in C++ P1240R0

constexpr! auto entity(info reflection)->info {...};

}

A reflection for the type associated with an entity or expression can be retrieved with

namespace std::meta {
constexpr! auto type_of(info reflection)->info {...};

}

If reflection describes an entity (not an expression) that is not a variable, base class, data member,
function, or enumerator, this function returns an invalid reflection.

A “parent” entity can be identified with

namespace std::meta {
constexpr! auto parent_of(info reflection)->info {...};

}

For members of classes or namespaces this returns a reflection of the innermost class or namespace. For a
base class, this returns the class type from which the base class was obtained (only direct and virtual base
classes can be reflected). For function-local entities that are not class members, parent_of returns the a
reflection of the enclosing function. For reflections that do not designate an alias or a declared entity,
parent_of returns an invalid reflection.

The innermost enclosing function and class can also be queried:

namespace std::meta {
constexpr! auto current_function()->info {...}
constexpr! auto current_class_type()->info {...}

}

That is particularly useful to deal more efficiently with parameter packs (an example will be presented
later on). Note that when invoked from an immediate function in a context that does not require a
constant-expression, these functions return the result as if invoked from the calling function.

Given the reflection of a base or nonstatic data member of a class (but not a class template), layout
information can be retrieved with the following functions:

Scalable Reflection in C++ P1240R0

namespace std::meta {
constexpr! auto byte_offset_of(info entity)->std::size_t {...};
constexpr! auto bit_offset_of(info entity)->std::size_t {...};
constexpr! auto byte_size_of(info entity)->std::size_t {...};
constexpr! auto bit_size_of(info entity)->std::size_t {...};

For reflections that do not designate a base or a nonstatic data member, this does not successfully produce
a constant value. byte_offset_of returns the byte offset of the given base or nonstatic data member
(within the parent class). For bit-fields, the offset of the first byte containing the bit field is returned; the
bit offset of the first bit (counting from the least significant bit) within that byte is produced by
bit_offset_of (for non-bit-fields, that function returns zero). byte_size_of produces the
allocated size of the associated subobject, except that is does not produce a constant value for bit fields
(for base classes, the result may be less than sizeof applied to the base class type). (A precise
specification of this requires a slight tightening of the C++ object model. All implementation already
conform to the stricter model.)

The following facilities permit examining parameter types and the “this” binding type:

namespace std::meta {
constexpr! auto this_ref_type(info func_type)->info {...};

}

For a member function type this_ref_type returns the reflection of the parent class associated with
the member type, with any member function cv-qualifiers and ref-qualifiers added on top. For example:

struct S {
int f() volatile &&;
int g() const;
}os;
constexpr auto r = this_ref_type(reflexpr(s.f());
/ / Reflection for type “S volatile &&”.
constexpr auto r = this_ref_type(reflexpr(s.f());
/ / Reflection for type “S const”.

Plural properties

We propose the following functions to retrieve subobject information:

Scalable Reflection in C++ P1240R0

namespace std::meta {

constexpr! auto members_of(info class_type, auto ...filters)
->std::vector<info> {...};
constexpr! auto bases_of(info class_type, auto ...filters)

->std::vector<info> {...};

If called with an argument for class_type that is the reflection of a non-class type or a capturing
closure type (or an alias/cv-qualified version thereof), these facilities return a vector containing a single
invalid reflection.

Otherwise, if no filters argument is passed to it, nembers_of returns an “unfiltered” vector of
reflections for the following kinds of direct members of a class type (represented by class_type):
nonstatic and static data members and member functions, member types (enumeration and class types)
and member aliases, and member templates other than deduction guides. Generated members are
included, but inherited constructors, injected-class-names, and unnamed bit fields are not (the standard
doesn’t consider those members either). Nonstatic data members appear in declaration order (but not
necessarily consecutively).

If any “filters™ are passed, they are applied as predicates to the unfiltered vector, and members for which a
predicate produces Talse are left out. Predicates are applied left-to-right with short-circuit semantics
(i.e., later predicates are not applied if an earlier predicate produced false).

For example:

struct S {
double x;
int y;
void f();
¥
constexpr auto class_type = reflexpr(S);
constexpr auto s_members = members_of(class_type);
static_assert(s_members.size() == 7);
/1 x,y, f(), the destructor, and generated constructors.
constexpr auto s_data_members =
members_of(class_type, is_nonstatic_data_member);
static_assert(s_data_members.size() == 2);
// Xandy.
constexpr! auto has_integral_type(std::meta::info reflection) {
return std::meta::is_integral(std::meta::type_of(reflection));

b

Scalable Reflection in C++ P1240R0

constexpr auto s_imembers =
members_of(class_type, is_nonstatic_data_member,
has_integral_type);

static_assert(s_imembers.size() == 1);

/] Justy.
constexpr auto s_nested_types =

members_of(class_type, is_type);

static_assert(s_members.size() == 0);

// S has no nested types.

Without filter arguments, invoking bases_of returns a vector of reflections for the direct bases of
the given (non-capturing-closure) class type. Predicates can be added to narrow down the bases of
interest.

The enumerators of an enumeration type can be inspected using enumerators_of:

namespace std::meta {
constexpr!
auto enumerators_of(info enum_type)->std::vector<info> {...};

}

If the argument passed for enum_type is not a reflection for an enumeration type, this returns a vector
containing one invalid reflection.

The parameters of a function type or the parameters of a template can be inspected using
parameters_of

namespace std::meta {
constexpr! auto parameters_of(info reflection)
->std::vector<info> {...};

If the argument passed for reflection is not a reflection for a function, a member function, a function
type, a closure type, or a template, this returns a vector containing one invalid reflection. Otherwise, the
vector contains an entry for each ordinary parameter: No entry is made for the “this” parameter or for
an ellipsis parameter.

A function is also available to introspect lambda captures associated with a closure type:
namespace std::meta {

constexpr! auto captures_of(info closure_type)
->std::vector<info> {...};

Scalable Reflection in C++ P1240R0

If the argument passed for func_type is not a reflection for a function or closure type, this returns a
vector containing one invalid reflection.

Anonymous unions

Consider:

struct S {
bool flag;
union {

Int x;

float f;

3
¥
constexpr auto dmembers =

members_of (reflexpr(S), is_nonstatic_data_member);
static_assert(dmembers.size() == 2);

The vector dmember s here will contain two reflections: One for f1lag and one for an unnamed data
member of the unnamed union type. Conversely, parent_of (reflexpr(S::x)) produces a
reflection for that unnamed union type rather than for S. Despite its lack of a declared name (which means
name_of returns an empty string constant), the unnamed data member can be referred to with the
“unreflexpr(...)”reification primitive:

constexpr S s = { false, { .x = 42 } };
static_assert(name_of (dmembers[1]) == ""); // Okay.
static_assert(s.unreflexpr(dmembers[1]).x == 42); // Okay.
static_assert(
remove_reference(
reflexpr(decltype(s.unreflexpr(dmembers[1])))
parent_of(reflexpr(S::f))

)) ==
); // Okay.

Let’s take that last line apart.

In the left-hand side of the equality test dmembers|[1] is a reflection of the unnamed data member for
the anonymous union. Therefore, s. reflexpr(dmembers[1]) isan Ivalue designating the
anonymous union subobject of s, and thus decltype applied to that produces a reference to the
anonymous union type. The reflexpr operator returns the reflection designating that type and
remove_reference finally returns a reflection designating the underlying union type.

Scalable Reflection in C++ P1240R0

In the right-hand side, reflexpr(S: :f) is a reflection designating the member S : : f, which is
actually a member S: :<unnamed-union-type>: :f. Therefore, parent_of also produces a
reflection designating the underlying union type of the anonymous union, and the assertion succeeds.

Expansion statements

The facilities presented so far are quite powerful and allow us in principle to do all the things that are
currently handled through pure template metaprogramming (TMP). However, one pattern that frequently
occurs is the need to repeat some statements for a variety of entities described in the reflection domain.

Without an additional feature we can use template expansion techniques to achieve this, but it
re-introduces some of the negatives of TMP that we're trying to avoid: poor readability and excessive
usage of compiler resources. In particular, the repetition of statements requires recursively instantiated
function templates. Since repetition is usually “local” to an operation, we would prefer not to generate
new specializations (even with internal linkage) for each statement generated.

We therefore intend to adopt the expansion-statement construct proposed in P1306R0. We present a brief
overview of that feature here, for completeness.

There are two basic forms for expansion-statements and they are both similar to that of a range-based for
loop:

for ... (element-declaration : expansion-initializer) statement
for constexpr (element-declaration : expansion-initializer) statement

In the first form (with the ellipsis), the expansion-initializer is an expression with one of the following
properties:

e it contains unexpanded parameter packs, or

e it can appear as an initializer of a structured binding declaration.

In the second form (with constexpr), the expansion-initializer is an constant expression ([expr.const]) that
can be used as the range-for-initializer in a range-based for loop.

In each case, the expansion-initializer denotes a compile-time sequence of N elements for which the body
statement can be repeated, once for each element. Note that some expressions satisfy both properties (e.g.,

arrays can be destructured and iterated), hence the distinct forms.

An expansion-statement expands statically to the following pattern:

Scalable Reflection in C++ P1240R0

{

}

constexpr auto &&__range = expansion-initializer;
constexpr auto

end = end-expr;

constexpr auto __it_@ = begin-expr;

<stop expansion if __it_©@ == __end>

{
constexpr element-declaration = get-expr(__it_0)>;
Statement

}

constexpr auto __it_1 = next-expr(__it_0);

<stop expansion if __it_1 == __end>

{
constexpr element-declaration = get-expr(__it_1)>;
Statement

}

// ... repeats N - 2 times

The meaning of placeholder expression begin-expr, end-expr, get-expr, and next-expr depend on the

properties of the expansion-initializer.

For tuples the loop is computed over a compile-time index I that ranges from 0 to the size of the tuple.

begin-expr is 0

end-expris std: :tuple_size_v<decltype(__range)>
next-expr(I)is I + 1 where I is the current tuple index
get-expr(I)is std: :get<I>(__range)

This is similarly defined for arrays of size N. Repetition is defined over a compile-time index I that

ranges from 0 to the the extent of the array.

begin-expr is 0

end-expris std: :extent_v<decltype(__range)>
next-expr(I)is I + 1 where I is the current tuple index
get-expr(I)is __range[I]

For constexpr ranges, repetition is defined in terms of the a constexpr iterator I.

begin-expr is that of the range-based for loop.
end-expr is that of the range-based for loop.
next-expr(I)is std: :next(I)
get-expr(Il)is *I

(We omit the description for pack patterns and aggregate classes for brevity. They are included in
P1306R0)

Scalable Reflection in C++ P1240R0

Note that the repeated declaration iterators is provided for exposition only. No such declaration is needed
for tuples or arrays, but it is needed for range-based expansion.

Expansion-statements feature heavily in the examples in the following section.

Metaprogramming Examples

We believe that the facilities presented here permit the kind of computation previously performed with
C++ template metaprogramming and that they are preferable over TMP because they scale better. We
therefore suggest that no broad set of TMP facilities should be further added to the language.

Examples in this section are drawn from a variety of sources, including PO385R0 by Mati§ Chochlik and
Axel Naumann and P0949R0 by Peter Dimov.

Hashing

We can also use the approach above to synthesize an overload of hash_append (proposed by Howard
Hinnant et al. in N3980, Types Don’t Know #).

using namespace meta = std::meta;
template<HashAlgorithm H, StandardLayoutType T>
bool hash_append(H& algo, const T& t) {
constexpr auto data_members =
members_of(reflexpr(T), meta::is_nonstatic_data_member);
for... (meta::info member : data_members)
hash_append(h, t.unreflexpr(member));

The algorithm is straightforward: recursively apply hash_append to each member for the class T.
Within that call the expression t.unreflexpr(member) yields a postfix-expression for the
designated member in the class object. The resolution of that postfix-expression does not require name
lookup or access control (unlike by-name mechanisms), and it works even for bit fields (unlike
mechanisms based on pointer-to-member values).

Schema generation

We can use this same pattern to generate SQL schemas from C++ classes. The implementation here
mixes runtime SQL generation with static reflection, in order to demonstrate the interaction between these
two features.

The entry point for the facility is a function template that takes a (standard layout) type parameter writes
the corresponding SQL CREATE TABLE statement.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3980.html

Scalable Reflection in C++ P1240R0

template<StandardLayoutType T>
void create_table() {
return create_table<reflexpr(T)>();

This function simply delegates to a function parameterized by its reflection. Because reflection is
expected to be an “advanced” feature, it is probably advisable to hide it from user-facing interfaces. The
SQL generating function template is shown below.

using namespace meta = std::meta;

template<meta::info Class>
requires meta::is_class(Class)
void create_table() {
std::cout << "CREATE TABLE " << meta::name_of(Class) << “(\n”";
constexpr auto members =
meta: :members_of(Class, is_non_static_data_member);
int size = members.size(), num = 0;
for... (meta::info member : members) {
create_column<member>();
if (++num !'= size)
std::cout << “,\n”;
}

std::cout << ");\n";

This function emits a CREATE TABLE statement for the name of the class, and “iterates” over the class’s
data members, emitting column definitions for each (see below for create_column). We maintain the
member count so that we can correctly insert commas into the output after each column.

Note that static reflection facilities can only be used at compile time. Because this function mixes runtime
code (std: :cout) with static reflection (meta: :info), we need to ensure that reflections do not
“mix” with the runtime systems. We cannot, with this approach to generating SQL, pass the reflected
class as a function argument, as that would “leak” the reflected value—a handle to an internal data
structure—to runtime. In other words, for mixed runtime/reflective algorithms, reflection values must be
passed as template arguments. We explore an alternative design of this algorithm in the following section.

Creating a column is straightforward: We simply serialize the member’s name and translate its C++ type
into SQL.

Scalable Reflection in C++ P1240R0

template<meta::info Member>

requires meta::is_non_static_data_member (Member)
void create_column() {

std::cout << meta::name_of(Member) << " ";

std::cout << to_sql(meta::type_of(Member));
}

Finally, we need a facility to translate C++ types to SQL types. Here, we use a series of explicit
specializations of reflections.

template<meta::info Type>
constexpr! const char* to_sql() {
static_assert(false, “no translation to SQL");

}

template<>

constexpr! const char* to_sql<reflexpr(int)>() {
return “INTEGER”;

}

template<>
constexpr! const char* to_sql<reflexpr(float)>() {
return “FLOAT”;

}
// etc.

Schema generation (take two)

The approach above mixes runtime SQL generation with static reflection; we call a function to print the
schema to std: :cout. An alternative approach is to synthesize the schema as a compile-time string,
and then print the result later. The entirety of that function is shown below:

template<StandardLayoutType T>
constexpr! std::string create_table() {
return create_table<reflexpr(T)>();

}

Scalable Reflection in C++ P1240R0

constexpr! std::string create_table() {

std::ostringstream ss; // Assuming this should work
ss << "CREATE TABLE " << meta::name_of(Class) << “(\n”;
std::vector<meta::info> members = data_members.size();
int num = 0;
for (meta::info member : members) {

ss << create_column(member);

if (++num !'= members.size())

ss << “,\n";

}
ss << ");\n";
return ss.str();

constexpr! std::string void create_column(meta::info member) {
std::ostringstream ss;
ss << meta::name_of (member) <<
ss << to_sql(meta::type_of(member));
return ss.str();

non,

constexpr! const charx to_sql(meta::info type) {
static std::unordered_map<meta::info, const char*> types {
{reflexpr(int), “INTEGER"},
{reflexpr(float), “FLOAT"},

// etc.
3
[[assert: meta::is_type(type)l];
[[assert: types.count(type) '= 0]];
return types.find(type)->second;

There are significant differences between this and the earlier example. In essence, this implementation
looks like a normal program except that each function is an immediate function (constexpr!). In other
words, because the entire facility is expected to run at compile-time, we don’t have to maintain a clear
separation between the runtime and compile-time values in the implementation; everything just looks like
runtime code.

Template argument list assignment

In the paper P0949R0, Peter Dimov proposes a facility to “assign” a list of template arguments for one
template to another using the facility below:

Scalable Reflection in C++ P1240R0

mp_assign<ClassTmpl1<A1, A2, ...>, ClassTmpl2<B1, B2, ...>>

This is an alias for ClassTmpl1<B1, B2, ...>.The template arguments An and Bn are all
type arguments. If the arguments of mp_assign are not of those forms, a substitution failure occurs.

Using the features proposed in this paper, we can implement this facility as follows:

using std::meta::info;
using std::vector;
constexpr! info class_template_of(info inst) {
using namespace std::meta;
info tmpl = template_of(inst);
if (is_class_template(inst) || is_invalid_reflection(tmpl) {
return tmpl;
} else {
return invalid_reflection("Not a class template instance");
}
}

constexpr! vector<info> template_type_arguments_of(info inst) {
using namespace std::meta;
auto args = template_arguments_of(inst);
for (auto arg: args) {
if (is_invalid(arg) && args.size() == 1) {
// template_arguments_of was invalid: Propagate the error.
return args;
} else if (!is_type(arg)) {
// Not a type argument.
return vector<info>{
invalid_reflection("Not all arguments are types")};
}
}

return args;

Scalable Reflection in C++ P1240R0

constexpr! info rf_assign(info inst1, info inst2) {
using namespace std::meta;
info tmpl1l = class_template_of(inst1);
info tmpl2 = class_template_of(inst2);
if (is_invalid(tmpl2)) return tmpl2;
auto argsl1 = template_type_arguments_of(inst1);
if (argsl1.size() == 1 && is_invalid(args1[@])) return argsi;
auto args2 = template_type_arguments_of(inst1);
return substitute_template(tmpll, args2);

If needed, mp_assign could be expressed in terms of rf_assign:

template<typename T1, typename T2>
using mp_assign =
typename(rf_assign(reflexpr(T1), reflexpr(T2)));

Note that in our implementation of rf_assign, much of the code is dedicated to implementing the
constraints of mp_assign. However, those constraints exist only because of two TMP limitations:
1) parameter packs cannot model mixed-kind template argument lists, and
2) template template parameters cannot accept function/variable templates.

In the reflection world we can easily lift those constraints, which produces the following
simplified-yet-more-powerful implementation of rf_assign:

constexpr! info rf_assign(info inst1, info inst2) {
using namespace std::meta;
return substitute(template_of(inst1),
template_arguments_of(inst2));

Dealing more efficiently with parameter packs

Currently, parameter packs are generally dealt with through recursive template instantiation (i.e., a form
of TMP, with all its disadvantages). With the set of features presented here, many interesting applications
of packs can be expressed more directly and using fewer compilation resources. Here is a simple example:

Scalable Reflection in C++ P1240R0

/ / Function taking an arbitrary number of arguments and returning a vector containing copies of the
/ / arguments that have the given type T.
template<typename T, typename ... Ts> vector<T> even_args(Ts ... p) {
vector<T> result{};
for constexpr (auto param: parameters_of(current_function())) {
if (reflexpr(T) == type_of(param)) {
result.push_back(unreflexpr(params[i]));
}
}

return result;

¥

Applying functions to all members

P0949r0 presents a TMP metafunction get_all_data_members aimed at collecting reflection
information for all the data members of a class (not just the direct ones) using the facilities of the first
reflection TS (P0194, or something like it).

Unfortunately, get_all_data_members has a number of problems:
e [t doesn't correctly use the TMP-based reflection API to access base classes (it looks like it treats
a base class as a base class #ype). Fixing that is nontrivial.
Its logic ignores virtual bases.
The TMP-based reflection API doesn’t deal well with bit fields (it relies on pointer-to-member
constants, which cannot point to bit fields).

To address those shortcomings, we present a different interface with similar capabilities:

template<typename T, typename F>
void apply_to_all_data_members(T &&r_obj, F &&f);
/ / Invoke f(r_obj.x) for every accessible data member of r_obj, including
/ / those in base classes (and possibly hidden by more-derived member declarations).

With the facilities we have proposed in this paper, this can be implemented as follows.

using std::meta::info;
using std::vector;

/ / Convenience function to retrieve accessible nonstatic data members of a given class:
constexpr! auto get_members(info classinfo) {
return members_of(classinfo, is_nonstatic_data_member,
is_accessible);

Hs

Scalable Reflection in C++ P1240R0

/ / Convenience function to select nonvirtual bases and members.
constexpr! auto is_not_virtual(info base_or_mem) {
return !is_virtual(base_or_mem);

2

/ / Utility to get the reflection information for the types of base classes (rather than the base
// classes themselves) of a given class.
constexpr!
auto get_base_types(info classtype, bool virtual_bases) {
auto result = bases_of(classtype,
is_accessible,
virtual_bases ? is_virtual
: is_not_virtual);
/ / Replace each base reflection by the reflection of its type.
for (auto &info : result) {
info = type_of(info);
}

return result;

b

template<typename T, typename F>
void apply_to_data_members(T *p_obj, F &f) {
for... (auto member : get_members(reflexpr(T))) {
f(p_obj->unreflexpr(member));

}
}

Scalable Reflection in C++ P1240R0

template<typename T, typename F>
void apply_to_base_data_members(T *p_obj, F &f,
bool virtual_bases,
bool skip_direct_members) {
/ / Recursively traverse (depth-first) either the nonvirtual or virtual base classes (depending
// onthe virtual_bases flag). We do this by collecting the base class types and casting
/ / the pointer one level up.
auto type = reflexpr(T);
for ... (auto basetype : get_base_types(type, virtual_bases)) {
apply_to_base_data_members<T, F>(
static_cast<typename(basetype)*>(p_obj), f,
virtual_bases, /#*skip_direct_members=x/false);
}
if (!skip_direct_members) {
// Now that the base classes have been traversed, handle the data members at this level.
for ... (auto member : get_members(type)) {
f(p_obj->unreflexpr(member));
}
}
}

template<typename T, typename F>
void apply_to_all_data_members(T const &&r_obj, F &&f) {
T const *p_obj = std::addressof(r_obj);
apply_to_base_data_members<T, F>(
p_obj, f, /*virtual_bases=*/true,
/*skip_direct_members=*/true);
apply_to_base_data_members<T, F>(
p_obj, f, /*virtual_bases=*/false,
/*skip_direct_members=*/false);

This implementation reads like ordinary C++ code. Every invocation instantiates three function templates,
independently of how complex type T is (though the amount of code in each instantiation does depend on
.

This implementation still has a weakness, however: The notion of “accessibility” of bases and members is
determined from the context of the implementation, not that of the call to
apply_to_all_data_members. (The same limitation is imposed by the first Reflection TS.) We do
not at this time propose to resolve that issue. (We know of at least two ways to address the issue:

e more powerful code injection primitives, or

e introduce a reflection for “context”.
The second option would be less efficient since that context would have to be passed along as a template

Scalable Reflection in C++ P1240R0

argument, which would cause each invocation of apply_to_all_data_members to have a distinct
instantiation.)

Alternatively, here is an implementation that doesn't use the “iterated expansion” feature.

/ / Convenience function to retrieve accessible nonstatic data members of a given class:
constexpr! auto get_members(info classinfo) {
return members_of(classinfo, is_nonstatic_data_member,
is_accessible);

2

/ / Convenience function to select nonvirtual bases and members.
constexpr! auto is_not_virtual(info base_or_mem) {
return !is_virtual(base_or_mem);

b

// Utility to get the reflection information for the types of base classes (rather than the base
/ / classes themselves) of a given class.
constexpr!
auto get_base_types(info classtype, bool virtual_bases) {
auto result = bases_of(classtype,
is_accessible,
virtual_bases ? is_virtual
is_not_virtual);
/ / Replace each base reflection by the reflection of its type.
for (auto &info : result) {
info = type_of(info);
}

return result;

}
template<typename T, typename F, std::meta::info ... members>
void apply_to_data_members(T *p_obj, F &f) {

(void) (f(p_obj->unreflexpr(members)), ...); // Fold-expression.

}

Scalable Reflection in C++ P1240R0

template<typename T, typename F, std::meta::info ... classtypes>
void apply_to_base_data_members(T *p_obj, F &f,
bool virtual_bases,
bool skip_direct_members) {
using namespace std::meta;
/ / Use a fold-expression to recurse through given bases if needed.
(apply_to_base_data_members<
T, F, (<get_base_types(classtypes, virtual_bases)>)...
>(static_cast<typename(typeof(bases))*>(p_obj), f,
virtual_bases,
/*skip_direct_members=x/false), ...);
if (!skip_direct_members) {
/ / Use another fold-expression to handle the data members of each specified class type.
(apply_to_data_members<
T, F, (<get_members(classtypes)>)...
>(p-obj, f), ...);

template<typename T, typename F>
void apply_to_all_data_members(T const &&r_obj, F &&f) {
T const *p_obj = std::addressof(r_obj);
apply_to_base_data_members<T, F, reflexpr(T)>(
p_obj, f, /*virtual_bases=*/true,
/*skip_direct_members=*/true);
apply_to_base_data_members<T, F, reflexpr(T)>(
p_obj, f, /*virtual_bases=*/false,
/*skip_direct_members=x/false);

Clearly this is far less readable than the first version. It also involves more instantiations that the first
version, but it is nonetheless more efficient than a pure TMP-based solution.

