
Coroutines: Use-cases and Trade-offs
Document Number: P1493 R0 Date: 2019-02-19

Audience: WG21, EWG
Authors: Geoffrey Romer, Gor Nishanov, Lewis Baker, Mihail Mihailov

Abstract
The EWG chair has requested a paper from the authors of all coroutine proposals to analyze use cases
and provide information which use-cases are supported better by one proposal over the other and what
are the trade-offs.
Ville’s Homework (Use Cases):

1) analysis of use cases, from user and/or library writer perspective.
2) What can proposal X do that proposal Y can't?
3) What are the trade-offs?

1. Overview
A coroutine is a generalization of a function: regular functions always start at the beginning and exit at
the end, whereas coroutines can also suspend the execution to be resumed later at the point where
they were left off.

A common implementation strategy for a coroutine is a compiler-based transformation of a function
into a state machine. This paper examines several approaches to how to do this transformation and how
the state machine can be exposed in the language. We will look at what are the usability and library
writer trade-offs of various approaches.

The following is a quick reference to the papers discussing the proposals analyzed in this paper:

N4775​: Coroutines TS
P1063R2​: Core Coroutines
P1342R0​: Unifying Coroutines TS and Core Coroutines
P1362R0​: Incremental Approach: Coroutine TS + Core Coroutines
P1430R0​: First-class symmetric coroutines in C++

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4775.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1063r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1342r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1362r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1430r0.pdf

2. Coroutine Usability
The coroutine state machine object is by necessity an immovable object: it cannot be moved and it
cannot be copied. A coroutine state machine object is often not useful by itself and requires wrapping
into a class with higher level semantics. Usually, a type-erased wrapper that involves heap allocation and
type erasure ​or​ an embedded wrapper which wraps the immutable coroutine objects into a semantically
meaningful immovable class and in case of symmetric coroutines the behaviour is customized via
subclassing the base coroutine class.

The following is an illustration of user facing syntax for both (using Core Coroutines syntax).

Type-erased coroutine Embedded coroutine (expected to be simpler in r3)

auto Traverse(BstNode<int> *node)
 [node][->]generator<string>
{
 if (node == nullptr)
 return;

 [<-] Traverse (node -> left);
 [<-] std::yield (node -> value);
 [<-] Traverse (node -> right);
}

template <typename Range>
auto traverser(const Range& range) {
 using Sg = stack_generator<decltype(
 *begin(range)), void>;
 return Sg([&] {
 return [&] [->] Sg {
 for (auto & element : range)
 [<-] std :: yield (element);
 });
 });
}

While we expect that a future revision of Core Coroutines paper will bring embedded coroutine syntax
closer to that of the type-erased coroutines, there are still usability challenges associated with the
approach of embedding of the concrete coroutine state machine into the return type (or expose it as
named class as in Symmetric Coroutines proposal).

Type-erased coroutines Embedded coroutines

✓​ Can be forward declared
✓​ Can be called recursively
✓​ Can be put on ABI boundary
✓​ Does not require solution to
sizeof challenge
✓​ Definition can reside in the
implementation file
✓​ Can be virtual
✗​ BUT!!! Requires heap
allocation & indirect calls

✗​ Cannot be forward declared
✗​ Cannot be called recursively 1

✗​ Cannot be put on ABI boundary
2

✗​ Requires solution to a sizeof
challenge
✗​ Definition must reside in the header
/ module interface file
✗​ Cannot be virtual
✓​ Does not require heap allocation

1 Symmetric Coroutine proposal allows self-recursion, but not mutual recursion at the moment.
2 ​ otherwise extremely fragile, as any change to implementation immediately leaks
through an interface.

Tony Tables

Expected unwrapping (as of today)
Coroutines TS Core Coroutines

expected<int, Err> f(const string& s)
{
 int i = (co_await foo(s)).size();
 co_return i + co_await bar();
}

auto f(const string& s)
 [&] [->] expected<int, Err>
{
 int i = ([<-]foo(s)).size();
 return i + [<-]bar();
}

Symmetric Coroutines => expected<int, Err> foo() {
 coroutine<expected<int, Err>(),
 expected<int, Err>()>
 f_coro(const string& s) {
 int i = unwind_on_error()(foo(s)).size();
 return i + unwind_on_error()(bar());
 }
 return f_coro()();
}

Note 1: Core coroutines library binding to support expected is much simpler than bindings for
Coroutines TS today.

Note 2: Core coroutines guarantee no allocation by construction in this case, Coroutines TS
offers no allocation as QoI. ​Incremental path expects that Coroutines TS reaches full parity
with Core Coroutines on this scenario. ​See appendix for an example of library binding for the
incremental path.

Type erased generators
Coroutines TS Core Coroutines Symmetric Coroutines

gen<int> f() {
 co_yield 1;
 co_yield 2;
}
…
for (auto v: f())
 cout << v;

auto f() [] [->] gen<int> {
 [<-] std::yield(1);
 [<-] std::yield(2);
}
…
for (auto v: f())
 cout << v;

generator<int> f() {
 yield(1);
 yield(2);
}

unique_ptr<generator<int>> factory()
{
 return make_unique<f>();
}
…
for (auto v: *(factory()))
 cout << v;

Note 1: Implementations of the Coroutines TS can apply Halo optimization to devirtualize, inline
and remove heap allocations when the lifetime of a coroutine is enclosed in the lifetime of its
caller (conditions under which this can be performed are listed in the HALO paper​ [​P0981R0​]​).
Doing similar optimization for library-based type-erase coroutines (as in Core Coroutines and
Symmetric Coroutines) is more challenging and/or impossible for the cases where it is possible
in Coroutines TS.

Note 2: Generators are safer to use under Coroutines TS and Core Coroutines since they allow
to ban other kind of suspensions in the generators.

Type erased tasks (now)
Coroutines TS Core Coroutines Symmetric

Coroutines

task<int> f() {
 co_await g();
 ...
 co_return 42;
}

No solution to tail
resumption of the awaiting
coroutine.

No solution to exception
propagation.

No solution to exception
propagation.

detach mechanism is unsafe in
multithreaded code

Type erased tasks (future)
Coroutines TS Core Coroutines Symmetric

Coroutines

task<int> f(int n) {
 co_await g(n+1);
 ...
 co_return 42;
}

task<int> f(int n) {
 [<-] g(n+1);
 ...
 return 42;
}

task<int> f(int n) {
 g(n+1)();
 …
 return 42;
}

Note 1: Addressing the aforementioned issues with Core Coroutines and Symmetric Coroutines
may entail some additional API complexity ([​P1362R0​]).

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0981r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1362r0.pdf

Embedded (no-alloc) generators - the present
Coroutines TS Core Coroutines Symmetric

Coroutines

auto f(string s) {
 return make_on_stack<64>(
 [=](auto) -> gen<string> {
 co_yield s;
 });
}

auto f(string s) {
 using Sg = stack_gen<string>;
 return Sg([&] {
 return [=] [->] Sg {
 [<-] std::yield(s));
 });
 });
}

generator<string>
f(string s) {
 yield(s);
}

f f1;

Unified Coroutines

auto f(string s) [->] stack_gen<string> {
 co_yield s;
}

Note 1; We expect that Core Coroutines and Incremental Coroutines TS will match Unified
Coroutines syntax in the future.

Note 2: Embedded Coroutines of other types are also possible with no-alloc approach.

Note 3: The TS example requires an explicit estimate of the allocated size of the coroutine
(`64`), and fail to build if the estimate is too low.

Embedded Coroutines (no alloc) - the future
Coroutines TS And Unified coroutines Core Coroutines

auto f(string s) [->] stack_gen<string> {
 co_yield s;
}

auto f(string s) [=][->] stack_gen<string> {
 [<-] std::yield(s);
}

Symmetric coroutine​ (same as before):

generator<string> f(string s) { yield(s); }
f f1;

We expected that user-facing experience and efficiency will be comparable under all proposals
(that follow late-split implementation).

Safety and usability
All coroutines proposal except for Symmetric Coroutines provide tools for library designer to
control coroutine experience for the end user. For example, generator coroutines can ban
suspends due to awaiting on a future or unwrapping of an expected. Coroutines returning
expected, can ban awaiting on asynchronous expression and yielding values, etc.

Coroutines TS Symmetric
Coroutines

future<​void​> do_async();

generator<​int​> g() {
 co_yield ​42​;
 co_await do_async(); ​// error C2338: co_await is not supported in coroutines
 // of type std::experimental::generator
}

SomeAsyncCoro<​void​>
do_async();

generator<​int​> g() {
 yield(​42)​;
 do_async(); ​// UB
}

All coroutines proposal except for Symmetric Coroutines provide an explicit lexical marker
identifying a suspend point (co_yield, co_await and [<-]).

Symmetric Coroutines

template <class R, class T>
R func(T u) {
 do1();
 u();
 do2();
}

This template defines either a function “func” to a class func
depending on what type R is during instantiation of a template.

u() could be a suspend point or not, depending on the type T.

Note 1: The authors of Symmetric Coroutines are exploring alternatives to the coroutine
definition syntax to avoid collisions with other language constructs and to support forward
declarations..

Note 2: The authors of Symmetric Coroutines are open to a syntactic marker identifying a
suspend point.

Coroutines TS today vs Core Coroutines / Symmetric Coroutines
from the future
In this section we will consider use cases supported by Coroutines TS today and how it would
look in other proposals when the issues preventing them from implementing asynchronous
coroutines are fixed.

Actors
Actors programming model typically representing your program as a set of interacting objects
sending messages to each other. Notationally, actors look like classes and message sends look
like calls to member functions, however, processing of the message happens asynchronously
on the dedicated strand of execution managed by the actor.

Coroutines TS via combination of parameter preview and coroutine_traits allows direct
expression of actors in C++.

Coroutines TS Core Coroutines

class MyActor : public Actor {
 task<int> request_reply(int a) {
 // executed asynchronously
 DoStuff(a);
 co_return 42;
 }
 oneway_task fire_and_forget() {
 // executed asynchronously, no
 // reply expected.
 co_await DoAsyncStuff();
 DoStuff(42);
 }
};

class MyActor : public Actor {
 // spawn is a base class method that posts
 // execution of the coroutine lambda on the
 // actor’s strand/thread.

 auto request_reply(int a) {
 return spawn(
 [=]{ return
 [=][->] task<int> {
 // executed asynchronously
 DoStuff(a);
 return 42;
 });
 });
 }
 auto fire_and_forget() {
 return spawn(
 [=]{ return
 [=][->] oneway_task {
 // executed asynchronously, no
 // reply expected.
 [<-] DoAsyncStuff();
 DoStuff(42);
 });
 });
 }
};

Symmetric Coroutines:

class MyActor : public Actor {
 Task<int> request_reply(int a) {
 // Demonstrates a problem with
 // the current syntax
 Task<int> request_reply_task(int a)
{
 // executed asynchronously
 DoStuff(a);
 return 42;
 }
 // Relies on a future customization
 // point
 return request_reply_task(a);

 }

 void fire_and_forget() {
 OneWayTask workflow() {
 // executed asynchronously, no
 // reply expected.
 DoAsyncStuff();
 DoStuff(42);
 }

 OneWayTask::start<workflow>();
 }
};

Non-intrusive coroutinization
Core Coroutines proposal requires two intrusive change to an existing type to be able to author
coroutines returning that type. 1. Add a nested shared_state_type class to any user defined
class that maybe used as a return value of the coroutine. 2. Add a constructor to that type taking
a coroutine state object as an argument. One of the design goals of Coroutines TS is
incremental and seamless integration into existing codebases. C++ community is diverse. Some
organizations have codebases where you can easily modify any line of the source code that
goes into building your products, others, have code ownership restrictions that can make
changes in libraries not owned by your team more challenging to make. Coroutines TS
recognizes the diversity of C++ community and offers a non-intrusive way of introducing
coroutines into the code base.

Coroutines TS Core Coroutines

AsyncAction<int> f(int a) {
 ...
 co_return 42;
}

auto f(int a) {
 return AsyncActionAdapter(
 [=]{ return
 [=][->] task<int> {
 ...
 return 42;
 });
 });
 }

Symmetric Coroutines:

auto f(int a) {
 Task impl(int a) {
 …
 return 42;
 }
 return AsyncActionAdapter<impl>(a);
}

Controlling allocation for type-erased coroutines
If a user desires to control allocation of a type-erased coroutine it can do so without a lot of
boilerplate under the Coroutines TS

Coroutines TS Core Coroutines

task<int> f(alloc_t, MyAlloc a) {
 DoStuff(a);
 co_return 42;
}

auto request_reply(alloc_t, MyAlloc a) {
 return alloc_on(a,
 [=]{ return
 [=][->] task<int> {
 DoStuff(a);
 return 42;
 });
 });
 }

Implicit Cancellation
Some asynchronous programming models include a convention where a cancellation_token,
cancel_token is passed as an argument to a function with the expectation that it will be checked
periodically and abort the computation if a cancellation was requested.
Coroutines TS supports implicitly augmenting every suspend point in the coroutine with a
cancellation check via combination of parameter preview and await_transform features.

Coroutines TS Core Coroutines

task<> f(stop_token c) {
 …
 co_await g(c); // cancel point
 …
 co_await h(c); // cancel point
}

auto f(stop_token c) [] [->] task<int> {
 …
 [<-] check_cancel(c, g(c));
 …
 [<-] check_cancel(c, h(c));
}

Note 1. While the code is not significantly larger in Core Coroutines, Coroutines TS eliminates
the hazard of forgetting to check for cancellation before launching a potentially long async
operation.

Merge and improve Coroutines TS possible shapes:
Future evolution of Coroutines TS that addresses the expected<T> and getting first-class state
machine object can take several paths:

1) Unified coroutine approach
2) Coroutines TS + Core Coroutines
3) Manual/High-Sizeof solution for first class coroutines

4) Other

We would like to defer selection of the further evolution path until the feasibility of the
alternatives have been explored sufficiently enough to understand the language and compiler
impact of the options. So far, only option #3 was prototyped to verify implementability, but no
usage experience was collected.

Additionally, once in the language and being used by large number of developers, the set of
problems that committee considers as important to address in further revisions may be different
than what it is now.

Conclusion
All proposals support mostly the same set of use cases with some strength and weaknesses
shown earlier.

Core Coroutines out of the box offers the best story for ​non-resuming​ coroutines (such as
unwrapping of expected) both in efficiency and simplicity of library bindings.
Coroutines TS provides the best near-term efficiency for ​asynchronous​ type erased 3

coroutines.
Core Coroutines is not planning to cover all use cases of Coroutines TS with the same
convenience or near-term efficiency.

Coroutines TS incremental and Universal Coroutine Proposal expect to match the efficiency and
usability of both Core Coroutines and Coroutines TS with the price being more user facing (both
co_xxx keywords and [<-]) and more complicated library bindings than Coroutines TS or Core
Coroutines by themselves.

Symmetric Coroutines differs from the other proposals in part because its lowest-level primitives
are intended to be safe enough to be used directly by end users (in at least some scenarios), as
well as efficient enough to be used to implement all coroutine library types. We do not yet have
consensus as to whether it succeeds in this aim. It is also designed to provide interoperability
among coroutine types "for free" (e.g. invoking an async coroutine from inside a generator),
rather than via pairwise opt-in, but we do not have consensus as to whether this will provide
safe and unsurprising behavior in practice.

3 In the longer term (5+ years), equivalent performance gains may be achievable via
non-coroutine-specific optimizer technology and language features.

References

N4775 Working Draft, C++ Extensions for
Coroutines

Gor Nishanov

P0981R0 Halo: coroutine Heap Allocation eLision
Optimization: the joint response

Richard Smith,
Gor Nishanov

P1063R2 Core Coroutines Geoff Romer,
James Dennett,
Chandler Carruth

P1342R0 Unifying Coroutines TS and Core
Coroutines

Lewis Baker

P1362R0 Incremental Approach: Coroutine TS +
Core Coroutines

Gor Nishanov

P1477R0 Coroutines TS Simplifications Lewis Baker

P1430R0 First-class symmetric coroutines in C++ Mihail Mihaylov,
Vassil Vassilev

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4775.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0981r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1063r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1342r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1362r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1477r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1430r0.pdf

Appendix

An example of how Incremental Coroutine TS + Core Coroutine integration
might look like:

The following is how ​expected<T>​ unwrapping library binding might look in the incremental

path. Note that coroutine_traits are not required. The only difference from Core Coroutines

paper definition is an addition of "​get_return_object​" function.

struct promise_type {

 template <typename F> // THIS IS NEW

 auto get_return_object(F f) { return f(*this); } // THIS IS NEW

 template <template<typename> Continuation, typename U>

 expected<T, E> operator[<-](

 const expected<U,E>& e, Continuation<const T&>& continuation) {

 if (e.has_value()) {

 tail return continuation([&] { return *e; });

 } else {

 return unexpected(e.error());

 }

 }

 expected<T, E> operator return(const T& value) {

 return value;

 }

};

If compiler finds ​get_return_object​ that takes a single argument, it synthesizes a strongly

typed coroutine object like that of Core Coroutines and gives it to ​get_return_object​. The

body of the ​get_return_object​ is free to wrap F in any way it wants. Otherwise, the

language assumes Coroutines TS behavior and creates a type-erased coroutine exactly as it

does today.

