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Abstract 
The EWG chair has requested a paper from the authors of all coroutine proposals to analyze use cases 
and provide information which use-cases are supported better by one proposal over the other and what 
are the trade-offs. 
Ville’s Homework (Use Cases): 

1) analysis of use cases, from user and/or library writer perspective.  
2) What can proposal X do that proposal Y can't?  
3) What are the trade-offs? 

 

1. Overview 
A coroutine is a generalization of a function: regular functions always start at the beginning and exit at 
the end, whereas coroutines can also suspend the execution to be resumed later at the point where 
they were left off.  

A common implementation strategy for a coroutine is a compiler-based transformation of a function 
into a state machine. This paper examines several approaches to how to do this transformation and how 
the state machine can be exposed in the language. We will look at what are the usability and library 
writer trade-offs of various approaches. 

The following is a quick reference to the papers discussing the proposals analyzed in this paper: 

N4775​: Coroutines TS 
P1063R2​: Core Coroutines 
P1342R0​: Unifying Coroutines TS and Core Coroutines  
P1362R0​: Incremental Approach: Coroutine TS + Core Coroutines  
P1430R0​: First-class symmetric coroutines in C++  

  

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4775.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1063r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1342r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1362r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1430r0.pdf


2. Coroutine Usability 
The coroutine state machine object is by necessity an immovable object: it cannot be moved and it 
cannot be copied. A coroutine state machine object is often not useful by itself and requires wrapping 
into a class with higher level semantics. Usually, a type-erased wrapper that involves heap allocation and 
type erasure ​or​ an embedded wrapper which wraps the immutable coroutine objects into a semantically 
meaningful immovable class and in case of symmetric coroutines the behaviour is customized via 
subclassing the base coroutine class.  

The following is an illustration of user facing syntax for both (using Core Coroutines syntax). 

Type-erased coroutine Embedded coroutine (expected to be simpler in r3) 
 

auto Traverse(BstNode<int> *node) 
        [node][->]generator<string>  
{ 
  if ( node == nullptr ) 
    return; 
  
  [<-] Traverse ( node -> left ); 
  [<-] std::yield ( node -> value ); 
  [<-] Traverse ( node -> right ); 
} 

 

template <typename Range> 
auto traverser(const Range& range) { 
  using Sg = stack_generator<decltype( 
    *begin(range)), void>; 
  return Sg([&] {  
    return [&] [->] Sg { 
      for ( auto & element : range ) 
         [<-] std :: yield ( element ); 
    });  
  }); 
} 

While we expect that a future revision of Core Coroutines paper will bring embedded coroutine syntax 
closer to that of the type-erased coroutines, there are still usability challenges associated with the 
approach of embedding of the concrete coroutine state machine into the return type (or expose it as 
named class as in Symmetric Coroutines proposal). 

Type-erased coroutines Embedded coroutines 
 

✓​ Can be forward declared 
✓​ Can be called recursively 
✓​ Can be put on ABI boundary 
✓​ Does not require solution to 
sizeof challenge 
✓​ Definition can reside in the 
implementation file 
✓​ Can be virtual 
✗​ BUT!!! Requires heap 
allocation & indirect calls 

 

✗​ Cannot be forward declared 
✗​ Cannot be called recursively  1

✗​ Cannot be put on ABI boundary  
2

✗​ Requires solution to a sizeof 
challenge 
✗​ Definition must reside in the header 
/ module interface file 
✗​ Cannot be virtual 
✓​ Does not require heap allocation  

  

1 Symmetric Coroutine proposal allows self-recursion, but not mutual recursion at the moment.  
2 ​ otherwise extremely fragile, as any change to implementation immediately leaks 
through an interface. 



Tony Tables 

Expected unwrapping (as of today) 
Coroutines TS Core Coroutines 
 

expected<int, Err> f(const string& s)  
{ 
  int i = (co_await foo(s)).size(); 
  co_return i + co_await bar(); 
} 
 

 

auto f(const string& s)  
     [&] [->] expected<int, Err>  
{ 
  int i = ([<-]foo(s)).size(); 
  return i + [<-]bar(); 
} 

Symmetric Coroutines => expected<int, Err> foo() { 
  coroutine<expected<int, Err>(), 
            expected<int, Err>()> 
  f_coro(const string& s) { 
    int i = unwind_on_error()(foo(s)).size(); 
    return i + unwind_on_error()(bar()); 
  } 
  return f_coro()(); 
} 

 

Note 1: Core coroutines library binding to support expected is much simpler than bindings for 
Coroutines TS today. 

Note 2: Core coroutines guarantee no allocation by construction in this case, Coroutines TS 
offers no allocation as QoI. ​Incremental path expects that Coroutines TS reaches full parity 
with Core Coroutines on this scenario. ​See appendix for an example of library binding for the 
incremental path. 

Type erased generators 
Coroutines TS Core Coroutines Symmetric Coroutines 
 

gen<int> f() { 
  co_yield 1; 
  co_yield 2; 
} 
… 
for (auto v: f()) 
  cout << v; 

 

auto f() [] [->] gen<int> { 
  [<-] std::yield(1); 
  [<-] std::yield(2); 
} 
… 
for (auto v: f()) 
  cout << v; 

generator<int> f() { 
  yield(1); 
  yield(2); 
} 
 
unique_ptr<generator<int>> factory() 
{ 
  return make_unique<f>(); 
} 
… 
for (auto v: *(factory())) 
  cout << v; 

 



Note 1: Implementations of the Coroutines TS can apply Halo optimization to devirtualize, inline 
and remove heap allocations when the lifetime of a coroutine is enclosed in the lifetime of its 
caller (conditions under which this can be performed are listed in the HALO paper​ [​P0981R0​]​). 
Doing similar optimization for library-based type-erase coroutines (as in Core Coroutines and 
Symmetric Coroutines) is more challenging and/or impossible for the cases where it is possible 
in Coroutines TS. 

Note 2: Generators are safer to use under Coroutines TS and Core Coroutines since they allow 
to ban other kind of suspensions in the generators. 

Type erased tasks (now) 
Coroutines TS Core Coroutines Symmetric 

Coroutines 
 

task<int> f() { 
  co_await g(); 
  ... 
  co_return 42; 
} 
 

 

No solution to tail 
resumption of the awaiting 
coroutine. 
 
No solution to exception 
propagation. 

No solution to exception 
propagation. 
 
detach mechanism is unsafe in 
multithreaded code  

 

Type erased tasks (future) 
Coroutines TS Core Coroutines Symmetric 

Coroutines 
 

task<int> f(int n) { 
  co_await g(n+1); 
  ... 
  co_return 42; 
} 
 

 

task<int> f(int n) { 
  [<-] g(n+1); 
  ... 
  return 42; 
} 

task<int> f(int n) { 
  g(n+1)(); 
  … 
  return 42; 
} 

 

Note 1: Addressing the aforementioned issues with Core Coroutines and Symmetric Coroutines 
may entail some additional API complexity ([​P1362R0​]).  

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0981r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1362r0.pdf


Embedded (no-alloc) generators - the present 
Coroutines TS Core Coroutines Symmetric 

Coroutines 
 

auto f(string s) { 
 return make_on_stack<64>( 
   [=](auto) -> gen<string> { 
     co_yield s; 
   }); 
} 
 
 

 

auto f(string s) { 
  using Sg = stack_gen<string>; 
  return Sg([&] {  
    return [=] [->] Sg { 
      [<-] std::yield(s)); 
    });  
  }); 
} 

generator<string>  
f(string s) { 
  yield(s); 
} 
 
f f1; 

Unified Coroutines 
 
auto f(string s) [->] stack_gen<string> { 
  co_yield s; 
} 

 

Note 1; We expect that Core Coroutines and Incremental Coroutines TS will match Unified 
Coroutines syntax in the future. 

Note 2: Embedded Coroutines of other types are also possible with no-alloc approach.  
 
Note 3: The TS example requires an explicit estimate of the allocated size of the coroutine 
(`64`), and fail to build if the estimate is too low.  
 

Embedded Coroutines (no alloc) - the future 
Coroutines TS And Unified coroutines Core Coroutines 
 

auto f(string s) [->] stack_gen<string> { 
  co_yield s; 
} 

 

auto f(string s) [=][->] stack_gen<string> { 
  [<-] std::yield(s); 
} 

Symmetric coroutine​ (same as before):   
 
generator<string> f(string s) { yield(s); } 
f f1; 

 

We expected that user-facing experience and efficiency will be comparable under all proposals 
(that follow late-split implementation). 

  



Safety and usability 
All coroutines proposal except for Symmetric Coroutines provide tools for library designer to 
control coroutine experience for the end user. For example, generator coroutines can ban 
suspends due to awaiting on a future or unwrapping of an expected. Coroutines returning 
expected, can ban awaiting on asynchronous expression and yielding values, etc. 

Coroutines TS Symmetric 
Coroutines 

 

future<​void​> do_async(); 
  
generator<​int​> g() { 
  co_yield ​42​; 
  co_await do_async(); ​// error C2338: co_await is not supported in coroutines 
                                         // of type std::experimental::generator 
} 

SomeAsyncCoro<​void​> 
do_async(); 
 
generator<​int​> g() { 
  yield(​42)​; 
  do_async(); ​// UB 
} 

 

All coroutines proposal except for Symmetric Coroutines provide an explicit lexical marker 
identifying a suspend point (co_yield, co_await and [<-]). 

Symmetric Coroutines  
 

template <class R, class T>  
R func(T u) { 
  do1(); 
  u();  
  do2(); 
} 

This template defines either a function “func” to a class func 
depending on what type R is during instantiation of a template. 
 
u() could be a suspend point or not, depending on the type T. 

 

Note 1: The authors of Symmetric Coroutines are exploring alternatives to the coroutine 
definition syntax to avoid collisions with other language constructs and to support forward 
declarations.. 

Note 2: The authors of Symmetric Coroutines are open to a syntactic marker identifying a 
suspend point. 

 

 



Coroutines TS today vs Core Coroutines / Symmetric Coroutines 
from the future 
In this section we will consider use cases supported by Coroutines TS today and how it would 
look in other proposals when the issues preventing them from implementing asynchronous 
coroutines are fixed. 

Actors 
Actors programming model typically representing your program as a set of interacting objects 
sending messages to each other. Notationally, actors look like classes and message sends look 
like calls to member functions, however, processing of the message happens asynchronously 
on the dedicated strand of execution managed by the actor. 
 
Coroutines TS via combination of parameter preview and coroutine_traits allows direct 
expression of actors in C++. 
 
Coroutines TS Core Coroutines 

class MyActor : public Actor { 
  task<int> request_reply(int a) { 
    // executed asynchronously 
    DoStuff(a); 
    co_return 42; 
  } 
  oneway_task fire_and_forget() { 
    // executed asynchronously, no 
    // reply expected. 
    co_await DoAsyncStuff(); 
    DoStuff(42); 
  } 
}; 

 

class MyActor : public Actor { 
  // spawn is a base class method that posts 
  // execution of the coroutine lambda on the 
  // actor’s strand/thread. 
 
  auto request_reply(int a) { 
    return spawn( 
      [=]{ return  
        [=][->] task<int> { 
          // executed asynchronously 
          DoStuff(a); 
          return 42; 
        }); 
    }); 
  } 
  auto fire_and_forget() { 
    return spawn( 
      [=]{ return  
        [=][->] oneway_task { 
          // executed asynchronously, no 
          // reply expected. 
          [<-] DoAsyncStuff(); 
          DoStuff(42); 
        }); 
      }); 
  } 
}; 

Symmetric Coroutines: 
 
class MyActor : public Actor { 
  Task<int> request_reply(int a) { 
    // Demonstrates a problem with 
    // the current syntax 
    Task<int> request_reply_task(int a) 
{ 
      // executed asynchronously 
      DoStuff(a); 
      return 42; 
    } 
    // Relies on a future customization 
    // point 
    return request_reply_task(a); 



  } 
 
  void fire_and_forget() { 
    OneWayTask workflow() { 
      // executed asynchronously, no 
      // reply expected. 
      DoAsyncStuff(); 
      DoStuff(42); 
    } 
 
    OneWayTask::start<workflow>(); 
  } 
}; 

Non-intrusive coroutinization 
Core Coroutines proposal requires two intrusive change to an existing type to be able to author 
coroutines returning that type. 1. Add a nested shared_state_type class to any user defined 
class that maybe used as a return value of the coroutine. 2. Add a constructor to that type taking 
a coroutine state object as an argument. One of the design goals of Coroutines TS is 
incremental and seamless integration into existing codebases. C++ community is diverse. Some 
organizations have codebases where you can easily modify any line of the source code that 
goes into building your products, others, have code ownership restrictions that can make 
changes in libraries not owned by your team more challenging to make. Coroutines TS 
recognizes the diversity of C++ community and offers a non-intrusive way of introducing 
coroutines into the code base.  
 
Coroutines TS Core Coroutines 

AsyncAction<int> f(int a) { 
  ... 
  co_return 42; 
} 
 

 

auto f(int a) { 
  return AsyncActionAdapter( 
      [=]{ return  
        [=][->] task<int> { 
          ... 
          return 42; 
        }); 
    }); 
  } 
 

Symmetric Coroutines: 
 
auto f(int a) { 
 Task impl(int a) {  
   … 
   return 42; 
 } 
 return AsyncActionAdapter<impl>(a); 
} 

  



Controlling allocation for type-erased coroutines 
If a user desires to control allocation of a type-erased coroutine it can do so without a lot of 
boilerplate under the Coroutines TS 
 
Coroutines TS Core Coroutines 

task<int> f(alloc_t, MyAlloc a) { 
  DoStuff(a); 
  co_return 42; 
} 
 

auto request_reply(alloc_t, MyAlloc a) { 
    return alloc_on(a, 
      [=]{ return  
        [=][->] task<int> { 
          DoStuff(a); 
          return 42; 
        }); 
    }); 
  } 

 

Implicit Cancellation 
Some asynchronous programming models include a convention where a cancellation_token, 
cancel_token is passed as an argument to a function with the expectation that it will be checked 
periodically and abort the computation if a cancellation was requested. 
Coroutines TS supports implicitly augmenting every suspend point in the coroutine with a 
cancellation check via combination of parameter preview and await_transform features. 
 
Coroutines TS Core Coroutines 

task<> f(stop_token c) { 
  … 
  co_await g(c); // cancel point 
  … 
  co_await h(c); // cancel point 
} 

auto f(stop_token c) [] [->] task<int> { 
  … 
  [<-] check_cancel(c, g(c)); 
  … 
  [<-] check_cancel(c, h(c)); 
} 

 

Note 1. While the code is not significantly larger in Core Coroutines, Coroutines TS eliminates 
the hazard of forgetting to check for cancellation before launching a potentially long async 
operation. 

Merge and improve Coroutines TS possible shapes: 
Future evolution of Coroutines TS that addresses the expected<T> and getting first-class state 
machine object can take several paths: 

1) Unified coroutine approach 
2) Coroutines TS + Core Coroutines 
3) Manual/High-Sizeof solution for first class coroutines 



4) Other 

We would like to defer selection of the further evolution path until the feasibility of the 
alternatives have been explored sufficiently enough to understand the language and compiler 
impact of the options. So far, only option #3 was prototyped to verify implementability, but no 
usage experience was collected. 

Additionally, once in the language and being used by large number of developers, the set of 
problems that committee considers as important to address in further revisions may be different 
than what it is now. 

Conclusion 
All proposals support mostly the same set of use cases with some strength and weaknesses 
shown earlier. 
 
Core Coroutines out of the box offers the best story for ​non-resuming​ coroutines (such as 
unwrapping of expected)  both in efficiency and simplicity of library bindings. 
Coroutines TS provides the best near-term  efficiency for ​asynchronous​ type erased 3

coroutines. 
Core Coroutines is not planning to cover all use cases of Coroutines TS with the same 
convenience or near-term efficiency. 
 
Coroutines TS incremental and Universal Coroutine Proposal expect to match the efficiency and 
usability of both Core Coroutines and Coroutines TS with the price being more user facing (both 
co_xxx keywords and [<-]) and more complicated library bindings than Coroutines TS or Core 
Coroutines by themselves. 
 
Symmetric Coroutines differs from the other proposals in part because its lowest-level primitives 
are intended to be safe enough to be used directly by end users (in at least some scenarios), as 
well as efficient enough to be used to implement all coroutine library types. We do not yet have 
consensus as to whether it succeeds in this aim. It is also designed to provide interoperability 
among coroutine types "for free" (e.g. invoking an async coroutine from inside a generator), 
rather than via pairwise opt-in, but we do not have consensus as to whether this will provide 
safe and unsurprising behavior in practice. 
 
 

3 In the longer term (5+ years), equivalent performance gains may be achievable via 
non-coroutine-specific optimizer technology and language features. 



References 

 

N4775 Working Draft, C++ Extensions for 
Coroutines  

Gor Nishanov 

P0981R0 Halo: coroutine Heap Allocation eLision 
Optimization: the joint response  

Richard Smith, 
Gor Nishanov 

P1063R2 Core Coroutines  Geoff Romer, 
James Dennett, 
Chandler Carruth 

P1342R0 Unifying Coroutines TS and Core 
Coroutines  

Lewis Baker 

P1362R0 Incremental Approach: Coroutine TS + 
Core Coroutines  

Gor Nishanov 

P1477R0 Coroutines TS Simplifications  Lewis Baker 

P1430R0 First-class symmetric coroutines in C++  Mihail Mihaylov, 
Vassil Vassilev 

 

  

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4775.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0981r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1063r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1342r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1362r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1477r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1430r0.pdf


Appendix  

An example of how Incremental Coroutine TS + Core Coroutine integration 
might look like: 
 
The following is how ​expected<T>​ unwrapping library binding might look in the incremental 

path. Note that coroutine_traits are not required. The only difference from Core Coroutines 

paper definition is an addition of "​get_return_object​" function. 

  
struct promise_type { 

  template <typename F>                              // THIS IS NEW 

  auto get_return_object(F f) { return f(*this); }   // THIS IS NEW 

  

  template <template<typename> Continuation, typename U> 

  expected<T, E> operator[<-]( 

    const expected<U,E>& e, Continuation<const T&>& continuation) { 

    if (e.has_value()) { 

       tail return continuation([&] { return *e; }); 

    } else { 

      return unexpected(e.error()); 

    } 

  } 

  expected<T, E> operator return(const T& value) { 

     return value; 

  } 

}; 

  

If compiler finds ​get_return_object​ that takes a single argument, it synthesizes a strongly 

typed coroutine object like that of Core Coroutines and gives it to ​get_return_object​. The 

body of the ​get_return_object​ is free to wrap F in any way it wants. Otherwise, the 

language assumes Coroutines TS behavior and creates a type-erased coroutine exactly as it 

does today. 

  

 


