
Callbacks and Composition
Document #: P1678
Date: 2019-05-18
Project: Programming Language C++

SG1 Concurrency and Parallelism, LEWG Library Evolution
Reply-to: Kirk Shoop

<kirkshoop@fb.com>

Contents
1 Introduction 2

1.1 examples of callbacks . 2
1.2 async_accept example . 2
1.3 composing callbacks . 3

2 Motivation 3
2.1 composition challenges . 3

2.1.1 callbacks . 3
2.1.2 functions taking callbacks . 3

2.2 algorithm composition . 4

3 Function output 5
3.1 Values . 5
3.2 Exceptions . 5
3.3 Multiplexing . 6

4 Representation 6
4.1 callback . 6

4.1.1 value and error arguments style . 6
4.1.2 completion token style . 6
4.1.3 std::expected style . 8
4.1.4 multiple function style . 8

4.2 function taking callback . 9
4.2.1 function argument style . 10
4.2.2 return value style . 10
4.2.3 Networking TS style . 11

5 Proposals 12
5.1 Default Representation for new library callbacks . 12
5.2 Default Representation for new library functions taking callbacks 13

6 Usage for the proposed Representations 14

7 Changes to the Standard 15

8 Credits 15

1

mailto:kirkshoop@fb.com

9 References 16

1 Introduction

A goal of this paper is to select one callback pattern that can be used by default for functions and callbacks
being added to C++ libraries. There will still be Invocables added that should not conform to this pattern.
For example, The whole purpose of algorithms is to apply Invocable projections and Invocable predicates to
data.

A non-goal of this paper is to explore or select the callback pattern for callback sequences. This is a goal of a
later paper and this paper has been written with callback sequences in mind. callback sequences will be the
basis of AsyncRange proposals, work well for streaming data over a network and also will apply to audio and
ui events.

NOTE: callbacks are just as likely to be synchronous as asynchronous. While this paper will use an async
function to explore the different styles for functions and callbacks - the motivations and proposals in this
paper apply to both synchronous and asynchronous functions taking callbacks.

1.1 examples of callbacks

callbacks are common in the standard library. std::visit and std::for_each are algorithms that take
a callback. The std::thread constructor takes a callback. std::promise is a callback, and the proposed
std::experimental::future::then() takes a callback. callbacks are fundamental to the Networking TS
and the Executors proposal. C++20 coroutines generate callbacks and a state-machine for calling them so
that users can write code without explicit callbacks.

The callback pattern is so common because a function call is a great way to transfer data (eg. the function
passed to std::visit), change execution context (eg. the function passed to std::thread) and modify the
behaviour of an algorithm (eg. the predicate passed to std::sort).

1.2 async_accept example

Examples of callbacks used for async functions can be found in the Networking TS [N4771]. For the purpose
of comparison, one async function and its completion signature will be used to explore the different designs
presented in this paper. The signature for async_accept(), as defined in [N4771] is:
template<

typename SocketService,
typename AcceptHandler>

void-or-deduced async_accept(
basic_socket< protocol_type, SocketService > & peer,
endpoint_type & peer_endpoint,
AcceptHandler handler);

This signature indicates that there is a single function where the last argument is used for the callback that
will be provided the result and the preceding arguments contain the inputs needed to generate the result.

The completion signature for async_accept() is void(error_code ec, socket_type s). This completion
signature indicates that there is a single function where the first argument is used for the error and the second
argument is used for the result that will be called for errors and results.

2

1.3 composing callbacks

All of the functions and callbacks mentioned have different signatures. The primary effect of all these
disparate signatures is that composition of one function and callback to another, say std::promise and
void(error_code ec, socket_type s), must be written by hand. For all the functions and callbacks that
already exist, this manual adaptation cannot be avoided. Proposing a solution that is composable, is the
motivation for this paper.

2 Motivation

The STL ended a long period where each implementation of a list or dynamic array or string had a unique
surface. The different representations of containers and element traversal shared enough terminology to cause
confusion and shared enough semantics to be dangerous when composed with algorithms and other container
implementations.

Functions taking callbacks, at the moment, are exactly where containers were before the STL. Just like the
STL needed to define stable Container & Range concepts to be used to compose different containers and
algorithms together, C++ needs to define stable Sender & Callback concepts to be used to compose different
tasks and executors and algorithms together.

2.1 composition challenges

2.1.1 callbacks

Callbacks are challenging for composition because they all have a different shape. Signatures such as:

— completion/termination - void()
— error and values - void(auto ec, auto... v)
— errors - void(auto ec)
— values - void(auto... v)

All these callback patterns exist and make composition of callbacks a bespoke, repetitive, and error-prone
task.

A callback that takes error and value arguments, must support invalid or empty states for each argument,
because the same function will be called for error and success. When error and result are delivered to the
same function all implementations of these callbacks are required to check the arguments for validity before
using the arguments. These checks introduce branches, which can be particularly expensive instructions.

Another way to represent an empty state is to use std::optional explicitly on all the args so that the value
types used as callback arguments are not required to support an invalid or empty state, but the branches
remain the same and the codegen for std::optional is added.

NOTE: std::error_code supports an ‘empty’ state. The empty state for a std::error_code is the
success code.

2.1.2 functions taking callbacks

A friction point for functions that take callbacks, is that the callback is placed in different positions in the
argument list of the function:

— first - std::visit(callback, variant...)

3

— last - std::for_each(begin(r), end(r), callback)

These different callback argument patterns exist and make composition of functions taking callbacks a bespoke,
repetitive and error-prone task.

A limitation of functions, that take callbacks as the last argument, is that this affects valid signatures for
and overloading of the functions. Having a fixed last argument, requires adding overloads when defaulting
the values of the non-callback arguments. Having a fixed last argument, requires that the overloads be
constrainable so that the callback can be reliably distinguished from the non-callback arguments. Having a
fixed last argument, prevents using variadic non-callback arguments, which is why std::visit places the
callback as the first argument.

2.2 algorithm composition

Composition is improved when callbacks have a regular shape. A regular shape for callbacks and functions
taking callbacks allows composition to be generically implemented in algorithms.

If all callbacks had a regular shape then it would allow algorithms like std::this_thread::sync_get,
std::when_all, std::when_any, std::retry, std::repeat, std::take_until, std::timeout, std::at,
std::sequenced, std::on, std::via, std:just, std::defer, std::transform, etc.. to compose different
functions taking callbacks.

Such composition might result in code that looked like this:

Table 1: using at, timeout and when_any to get fresh data and
update a cache or fallback to the cache if the data takes too long

function pipe operator

auto get_data() {
auto fallback = sequenced(

at(ex, now() + 4s),
cached_request(ex));

return timeout(
when_any(

update_cache(network_request(ex)),
move(fallback)),

at(ex, now() + 5s));
}

auto get_data() {
auto fallback = at(ex, now() + 4s) |

sequenced(cached_request(ex));
return when_any(

network_request(ex) | update_cache(),
move(fallback)) |

timeout(at(ex, now() + 5s));
}

4

Table 2: using when_all to compose async (get_data) and sync
(std::visit) callbacks with retry and take_until

function pipe operator

auto foo(stop_token s) {
return take_until(when_all(

retry(get_data(), 3),
visit(v_)),

s);
}

auto foo(stop_token s) {
return when_all(

get_data() | retry(3),
visit(v_)) |

take_until(s);
}

Table 3: using defer and repeat to keep a connection alive until
cancelled

function pipe operator

auto keep_alive(stop_token s) {
return take_until(

repeat(sequenced(
defer([ex](){

return at(ex, now() + 5s); }),
ping_request(ex)))

s);
}

auto keep_alive(stop_token s) {
return defer([ex](){

return at(ex, now() + 5s); }) |
sequenced(ping_request(ex)) |
repeat() |
take_until(s);

}

3 Function output

Here is a short description of the options currently in the language for functions to return values. These
options boil down to three channels; return value, out-parameter arguments, and throwing exceptions.

3.1 Values

In C, there are three ways to communicate a result:

— return a value
— set value(s) into out-parameter(s)
— call a parameter, that is a function, with arguments(s)

3.2 Exceptions

C++ added a third mechanism for communicating a result - throwing exceptions. Adding exception
throwing as a separate communication channel allowed code to focus on the path of success and delegate the
responsibility for exception handling to the caller by default. C++ made support for exceptions implicit.

5

Functions do not have a mechanism to opt-in to exception support. Functions can opt out of emitting
exceptions using noexcept, but the compiler still is responsible for ensuring that an attempt to throw an
exception in a noexcept function will result in a call to std::terminate.

3.3 Multiplexing

These mechanisms can be multiplexed and de-multiplexed, with additional overhead in code size and runtime.

Examples of mux for return values and out-parameters:

— optional<T> allows return without a result.
— expected<E, T> allows an error to be returned without an exception.
— expected<E, optional<T>> allows an error to be returned without an exception and for nothing to

be returned.
— expected<optional<variant<tuple<Tn0...>, tuple<Tn1...>, ..>>, E> allows the parameters

that are supported by one of an overload set of callback functions to be returned as a value and an
error to be returned without an exception and for nothing to be returned.

Potential syntax to simplify the code that needs to be written to demux these values can be found in the
proposal for pattern matching [P1371R0].

NOTE: while expected, variant and tuple all have corresponding C++ language features (exception &
return value have expected, overload set of functions have variant, and multiple arguments to a function
have tuple), optional does not have a language representation. Pointer is not a language representation
asoptional is a super-set of Pointer, because optional stores the value when it is valid, while Pointer
does not.

4 Representation

4.1 callback

There are infinite representations of callbacks. A few of these will be described in this paper and will be
explored using async_accept() as defined in [N4771] and its completion signature void(error_code ec,
socket_type s).

4.1.1 value and error arguments style

Using separate arguments to a callback to represent error and value channels involves some unfortunate
tradeoffs. The completion signature void(error_code ec, socket_type s) for async_accept() in [N4771]
implies that the socket_type must support an invalid or empty state when ec contains an error. This style
requires that all the parameters used in a completion signature support invalid or empty states, because
the same function will be called for error and success. This requires all implementations of callbacks to
check the arguments for validity before using the arguments. These checks introduce branches, which can be
particularly expensive instructions.

4.1.2 completion token style

The Networking TS [N4771] uses the completion tokens described in [N4045] to overload the callback argument
to async functions like async_accept(). If the callback argument is a function matching the completion

6

signature (eg. void(error_code ec, socket_type s) for async_accept()), then the function is used as
the callback (in other words, the completion token style subsumes the value and error arguments style). On
the other hand, if the argument is a completion token, then the completion token implements a callback
that matches the completion signature for the async function and uses the implementation of that callback
to convert from value and error arguments style to some other callback representation (eg. std::promise
type:).

Therefore, a completion token is a callback adaptor factory and a callback is an Invocable. [N4045] describes
some machinery to hide the differences while implementing an async function.

[N4045] 9.1.1 contains this example for implementing an async function using machinery to hide the differences:
template <class Buffers, class CompletionToken>
auto async_foo(socket& s, Buffers b, CompletionToken&& token) {

async_completion<CompletionToken,
void(error_code, size_t)> completion(token);

// ..
return completion.result.get();

}

[N4045] 9.2 discusses the implementation of a block completion type that uses std::future::get() to block
the caller until the result is available. The implementation of the completion token is way too long to include
here, but here is the usage for async_accept with the block completion token:
socket_type t = async_accept(socket, endpoint, block);

With [N4045], the callback form would be something like:
async_accept(socket, endpoint, [](error_code ec, socket_type s){});

With [N4045], the future & get form would be something like:
socket_type t = async_accept(socket, endpoint, use_future).get();

With [N4045], the coroutine form would be something like:
socket_type t = co_await async_accept(socket, endpoint, use_coroutine);

Having async_accept() take so many forms does affect reading code and writing generic code. Sometimes
async_accept() returns the result, sometimes an object, and sometimes void, readers will need to adjust to
seeing the same function take on different forms. Generic code is more complicated - to wrap up an async
function like async_accept() in a generic function, the generic function must pick a completion token to use
while customizing the call to the async function but the completion token that the generic function picks
might not compose well or efficiently with the completion token passed to the generic function that must
ultimately communicate the result to the caller.

Underneath each of the forms generated by an async function that uses a completion token would be a
function of the value and error arguments style that was implemented by the completion token. As mentioned,
the value and error arguments style requires that all arguments have an invalid or empty state.

The completion token appears to add some additional constraints on the completion signature. One constraint
is that, if there is an error argument, it must be the first argument. Another constraint is that the error
argument must be the error_code type. These constraints seem to be necessary because completion tokens
like use_future and use_coroutine need to be able to distinguish between the error argument and the
result argument(s), and need to be able to depend on how to convert the error argument into a thrown
exception. Library functions can be built to generalize these additional constraints, much as completion
tokens themselves are used to overload the meaning of a callback argument to an async function.

7

4.1.3 std::expected style

Another callback pattern is to combine the value and error into one argument. The completion signature for the
async_accept() example might change to look something like void(expected<error_code, socket_type>
e).

This style does not require socket_type to support an invalid or empty state because it does not need to be
constructed when there is an error. The branches required by the value and error arguments style are still
required in this style, because the same function will be called for error and success.

There is also an additional cost in the codegen for packing and unpacking std::expected. The cost for
std::expected is not as bad as when the value is a std::tuple or a std::variant of std::tuples, but
still worse than when it is an plain argument to the function. For instance, something that transforms the
result from one type to another has to check the error, unpack the result or error and repack the transformed
result or original error into the outgoing expected type.

4.1.4 multiple function style

Some of the tradeoffs encountered when mixing errors and results into the same ‘channel’ (where function
arguments and function results are both channels for communication with a function), motivated the creation
of the C++ exception channel. C++ exceptions do not require the implementation of a function to check
for the validity of function return values before using them and do not require that function return values
support invalid or empty states (basically re-implementing std::optional in each type) nor require the use
of types that combine error/value alternatives like std::expected.

Using multiple functions for error and result is equivalent to the separation of return value and throw/catch
in the language. Using multiple functions for error and result produces very different tradeoffs than when
mixing error and result together in one function. The std::promise type: is an example of using multiple
functions for error and result that already exists.

4.1.4.1 std::promise type:

The std::promise type provides the member functions set_value(T)|set_value() and set_exception(std::exception_ptr).

— set_value(T)|set_value() is only called when there is result. Thus T does not need to support an
invalid or empty state and implementations of set_value are not required to check for errors and thus
no branch is added for that check.

— set_exception(std::exception_ptr) is only called when there is an error. Thus implementations of
set_exception are not required to check for success and thus no branch is added for that check.

4.1.4.2 concepts:

A challenge with the std::promise type: is that it is a type with only one implementation, whereas callbacks
are intended to be a concept or signature with many implementations. There are several examples of concepts
that use multiple functions for error and result. These concepts primarily differ only in the names of the
concepts and the names of the functions.

— Reactive Extensions defines the Observer concept which has been implemented in many differ-
ent languages including C++. The rxcpp implementation uses the names Observer::on_next(T),
Observer::on_error(std::exception_ptr) and Observer::on_completed()

— [P1055R0] defines the Single concept using the names Single::value(T), Single::error(E) and
Single::done()

8

https://github.com/ReactiveX/RxCpp

— [P1341R0] defines the Receiver concept using the names Receiver::value(Tn...), Receiver::error(E)
and Receiver::done(). The pushmi library has an implementation of the Receiver concept.

— [P1660] defines the Callback concept that subsumes the Invocable and Fallback concepts resulting in
the names Invocable::operator()(Tn...), Fallback::error(E) and Fallback::done(). [P1660]
includes an example implementation.

NOTE: see [P1677] which contains a justification, for the existence of, and some uses for, the done()
method.

The Callback concept defined in [P1660] has been gaining support in SG1 recently. A completion object for
the async_accept() example might change to look something like:
struct async_accept_completion {

void operator()(socket_type s) && noexcept;
void error(error_code) && noexcept;
void error(exception_ptr) && noexcept;
void done() && noexcept;

};

Where:

— operator() is only called for success
— error() is only called for failure
— done() is only called for neither-a-result-nor-an-error (see [P1677])

With [P1660] the Callback form would be something like:
std::submit(

async_accept(socket, endpoint),
std::callback(

[](socket_type s){}),
[](error_code ec){}));

With [P1660] the future & get form would be something like:
socket_type t = std::future_from(async_accept(socket, endpoint)).get();

With [P1660] the coroutine form would be something like:
socket_type t = co_await async_accept(socket, endpoint);

In all of these async_accept does not change form. async_accept always returns a type that matches a
concept that other functions can adapt. The adaption is not a new mechanism that is injected into the
implementation of async_accept. Adaption is just a function that is passed the result of async_accept
and adapts it to some other callback representation. std::submit, std::future_from, and operator
co_await() are all external to the async_accept function and each of those functions has a stable form
across all usage.

4.2 function taking callback

In practice there appear to be very few representations of functions taking callbacks. These few will be
described in this paper and will be explored using async_accept() and its signature, as defined in [N4771]:
template<

typename SocketService,
typename AcceptHandler>

9

https://github.com/facebookresearch/pushmi
http://wg21.link/P1660
http://wg21.link/P1660
http://wg21.link/P1677
http://wg21.link/P1660
http://wg21.link/P1677
http://wg21.link/P1660
http://wg21.link/P1660
http://wg21.link/P1660

void-or-deduced async_accept(
basic_socket< protocol_type, SocketService > & peer,
endpoint_type & peer_endpoint,
AcceptHandler handler);

4.2.1 function argument style

Using separate arguments to a function to represent callback and input channels involves some unfortunate
tradeoffs. The signature for async_accept() defined in [N4771] as it might look if only an Invocable callback
argument was supported:
template<

typename SocketService,
typename Fn>

void async_accept(
basic_socket< protocol_type, SocketService > & peer,
endpoint_type & peer_endpoint,
Fn handler);

The async_accept() signature accepts an Invocable callback as the last argument. The preceding arguments
are inputs needed to produce the result.

When the Invocable callback is an argument, there is a need to be able to distinguish the input arguments
from the Invocable callback argument. C++ has no way to universally inspect the arguments of the function
overload that would be selected by a particular set of arguments. There are proposals that would help, and
until that support is available, distinguishing the Invocable callback and input arguments must be done
manually or by convention. There is also a need to supply the input arguments in one code path and the
Invocable callback in another. Separating the Invocable callback argument out and supplying the Invocable
callback arg later requires function binding, on top of the ability to distinguish the input and Invocable
callback arguments (for now the options for this are manual and by-convention).

Taking the Invocable callback argument as the last argument affects valid signatures for and overloading of
functions as well. Having a fixed last argument, requires adding overloads when defaulting the values of input
arguments. Having a fixed last argument, requires that the overloads be constrainable so that the Invocable
callback can be reliably distinguished from the input arguments. Having a fixed last argument, prevents using
variadic input arguments, which is why std::visit places the Invocable callback as the first argument.

4.2.2 return value style

Using the return value from a function to separate the input and callback arguments allows the operation
and the attachment of a callback to be deferred. Using a return value produces very different tradeoffs than
when mixing callback and inputs together into the function arguments.

The Sender concept defined in [P1660] has been gaining support in SG1 recently. A signature for the
async_accept() example might change to look something like:
template<

typename SocketService
auto async_accept(

basic_socket< protocol_type, SocketService > & peer,
endpoint_type & peer_endpoint);

10

http://wg21.link/P1660

When the callback is a return value, there is no need to be able to distinguish the input arguments from the
callback argument. When the callback is a return value, the input arguments are the only arguments to the
function and can be supplied in one code path and the callback to the return value of the function in another
code path.

Returning a value that allows the callback to be attached later has no affect on valid signatures for and
overloading of functions. Functions with overloads and variadic arguments behave no differently from any
other function.

4.2.3 Networking TS style

The Networking TS [N4771] uses the completion tokens described in [N4045] to overload the callback argument
to async functions like async_accept() (Accepting an Invocable callback indicates that the Networking TS
style subsumes the function argument style and inherits the affects of having a fixed last argument.). On
the other hand, if the argument is a completion token, then the completion token implements an Invocable
callback that matches the completion signature for the function and delivers the result to that implementation.
async_accept()’s signature, as defined in [N4771]:
template<

typename SocketService,
typename AcceptHandler>

void-or-deduced async_accept(
basic_socket< protocol_type, SocketService > & peer,
endpoint_type & peer_endpoint,
AcceptHandler handler);

The completion token described in [N4045] and used in the Networking TS [N4771] has a limitation that
was recently addressed in Boost.Asio. async_result<>::initiate (Boost.Asio revision history, github) was
added recently to allow the completion token to describe a return value that would be allowed to defer the
start of the async function and allow the callback to be attached later. The returned value would also be
allowed to transfer the storage of the state for the operation to the caller, by storing that state in the returned
value.

async_initiate enables the start of the operation to be Deferred, which can be used to reduce composition
and runtime overhead. Without deferral it is complicated to write a generic retry function that starts an
operation over again when it fails, because the async function has to be called with arguments and the
callback/completion token.

async_initiate enables State transfer from the operation to the caller, which allows coroutine support that
stores the state for the operation on the calling coroutine frame avoiding additional allocations.

The Networking TS [N4771] when updated to include async_initiate will allow a completion token to
support deferral of the operation and separate the attachment of a callback from supplying the input
arguments (async_initiate allows the creation of completion tokens that enables the Networking TS style
to emulate the return value style). Emulating the return value style requires manually or by convention
inserting the right completion token into the correct argument, which means that even when emulating the
return value style the Networking TS style inherits the affects of having a fixed last argument from function
argument style.

11

https://www.boost.org/doc/libs/1_70_0/doc/html/boost_asio/history.html
https://www.boost.org/doc/libs/master/boost/asio/async_result.hpp

5 Proposals

The goal of this paper is to provide the rational for selecting One concept for functions taking callbacks and
one concept for callbacks and the rational for the style on which each should be based.

5.1 Default Representation for new library callbacks

Of the Representations, the multiple function style is the one proposed by this paper, as the style to be
adopted as a default style for all new callbacks in libraries for C++. The multiple function style was chosen
even though the completion token style is already established as the callback mechanism in the Networking
TS. The rational for this proposal follows. For the purpose of comparison this paper will use the Callback
naming specified in [P1660] as an example of multiple function style. The names chosen for a particular
expression of the multiple function style do not affect this proposal.

The data behind the rational is spread throughout the [Representations] section. To make the comparison
easier the main points are represented in tables here:

Table 4: compare tradeoffs selected by completion token style with
multiple function style

completion token style multiple function style
1. the callback is an Invocable or a completion

token that provides an Invocable that will
convert to some other style of callback

a callback is an object that is an Invocable
and allows calls to error() and done()
functions. Converting to other callback styles is
a separate concern

2. single functions will tend to be implemented
as objects that have additional features like
allocators and executors, though this
implementation approach is not required.
simple functions are allowed

callback objects will tend to be implemented
by defining methods on an object, though this
implementation approach is not required.
Niebloid’s will be used to allow free-function
customizations for arbitrary types

3. calls to the single function callback may have
different execution guarantees that will
depend on the runtime value of the
parameters. One example is when an error
may not be deliverable from the same
execution context that is used to deliver the
result

calls to each function on a callback may have
different execution guarantees specified by the
caller.

4. argument types are required to represent
invalid or empty states

argument types are not required to represent
invalid or empty states

5. the single function callback is required to
add branches and checks for errors and
validity before accessing the arguments

the functions are not required to add
branches and checks for errors or validity

6. all types are passed as function arguments
with no required packing/unpacking

all types are passed as function arguments
with no required packing/unpacking

12

http://wg21.link/P1660

completion token style multiple function style
7. a completion token does not support

overloads, something like std::variant
would be required to support multiple result
types. a single function does support
overloads.

each function supports overloads that allow
different types to be supported without use of
std::variant. this allows both error and value
to have independent overloads

8. a completion token does not support
overloads, something like std::optional or
std::variant<std::tuple<>...> would be
required to support multiple result types. a
single function does support overloads.

each function supports overloads that allow
different numbers of arguments to be supported
without use of std::optional or
std::variant<std::tuple<>...>

5.2 Default Representation for new library functions taking callbacks

Of the Representations, the return value style is the one proposed by this paper, as the style to be adopted as
a default style for all new functions taking callbacks in libraries for C++. The return value style was chosen
even though the Networking TS style is already established. The rational for this proposal follows. For the
purpose of comparison this paper will use the Sender naming specified in [P1660] as an example of return
value style. The names chosen for a particular expression of the return value style do not affect this proposal.

The data behind the rational is spread throughout the [Representations] section. To make the comparison
easier the main points are represented in tables here:

Table 5: compare tradeoffs selected by Networking TS style with
return value style

Networking TS style return value style
1. adding the callback as the last argument makes

overloading the function more restrictive
than plain functions

returning a value that can attach the callback
is no more restrictive than plain functions

2. adding the callback as the last argument
prevents variadic arguments to the function

returning a value that can attach the callback
does not prevent variadic arguments to the
function

3. adding the callback as the last argument makes
it hard to distinguish callback and
non-callback arguments

returning a value that can attach the callback
clearly distinguishes callback and
non-callback arguments

4. a particular completion token can implement
async_initiate to defer using the last
argument and the return value

a function can directly implement defer
using the return value

5. each completion token implementation is
allowed to alter the form of all functions that
use it

functions returning a value that can attach
the callback have a stable form that makes
it easier to write generic code

13

http://wg21.link/P1660

6 Usage for the proposed Representations

Table 6: compare coroutine usage for the existing Networking TS
style & completion token style with the proposed return value style
& multiple function style

Existing Proposed

socket_type t =
co_await async_accept(

socket,
endpoint,
use_coroutine);

socket_type t =
co_await async_accept(

socket,
endpoint);

Table 7: compare future & get usage for the existing Networking
TS style & completion token style with the proposed return value
style & multiple function style

Existing Proposed

socket_type t = async_accept(
socket,
endpoint,
use_future).get();

socket_type t = std::future_from(
async_accept(

socket,
endpoint)).get();

Table 8: compare Invocable callback usage for the existing Network-
ing TS style & completion token style with the proposed return
value style & multiple function style

Existing Proposed

async_accept(
socket,
endpoint,
[](

error_code ec,
socket_type s){});

std::submit(async_accept(
socket,
endpoint),
std::callback(

[](error_code ec){},
[](socket_type s){}));

14

7 Changes to the Standard

If this proposal is accepted then additional papers could add overloads to some existing functions that take
callbacks. For example:

NOTE: There are cases, like the following, where usage of the new overloads is not as succinct as the current
function definition. The motivation for adding these overloads would be to enable direct composition with
algorithms and other functions taking callbacks.

Table 9: demonstrate potential new overload for std::visit that
will make composition easier

Existing New

std::variant<int, long, std::string> v{42};

std::visit(overloaded {
[](auto arg) {},
[](double arg) {},
[](const std::string& arg) {},

}, v);

std::variant<int, long, std::string> v{42};

std::submit(
std::visit(v),
std::callback(

overloaded {
[](auto arg) {},
[](double arg) {},
[](const std::string& arg) {},

}
));

Table 10: demonstrate potential new overload for std::async that
will make composition easier

Existing New

std::async(
[](int i, const std::string& str){},
42,
"Hello");

std::submit(
std::async(42, "Hello"),
std::callback(

[](int i, const std::string& str){}
));

8 Credits

This paper was influenced by hosts of people over decades.

— Marc Barbour and Mark Lawrence were fundamental to Kirk’s first attempt to design more regular
callbacks in a COM environment.

— Aaron Lahman was involved in that first attempt as well and introduced Kirk to the Reactive-
Extensions libraries because he saw the similarity.

15

— Erik Meijer and his team took a very different path to arrive at a destination that resonated strongly
with Kirk’s goals

— Microsoft Open Technologies Inc. led by Jean Paoli, encouraged and supported Kirk’s subsequent
investment in finishing Aaron’s C++ Rx prototype and then rewriting it to shift from interfaces to
compile-time polymorphism.

— Ben Christensen drove changes to RxJava and his communication around those changes affected the
design Kirk chose for rxcpp

— Grigorii Chudnov, Valery Kopylov and all the other amazing contributors to rxcpp over the years
— Eric Niebler, Lee Howes and Lewis Baker who more than anyone else contributed to the content

of the motivation section of this paper
— CppCon, CppNow, CppRussia and CERN (and the people behind those including; Jon Kalb, Bryce

Adelstein-Lebach, Sergey Platonov, Axel Naumann) for all the opportunities to communicate
the vision for callbacks in C++

— Gor Nishanov for the excellent coroutines in C++20 and the shout-outs and support for rxcpp over
the years.

9 References

[N4045] Christopher Kohlhoff. 2014. Library Foundations for Asynchronous Operations, Revision 2.
https://wg21.link/n4045

[N4771] Jonathan Wakely. 2018. Working Draft, C++ Extensions for Networking.
https://wg21.link/n4771

[P1055R0] Kirk Shoop, Eric Niebler, Lee Howes. 2018. A Modest Executor Proposal.
https://wg21.link/p1055r0

[P1341R0] Lewis Baker. 2018. Unifying Asynchronous APIs in the Standard Library.
https://wg21.link/p1341r0

[P1371R0] Sergei Murzin, Michael Park, David Sankel, Dan Sarginson. 2019. Pattern Matching.
https://wg21.link/p1371r0

16

https://wg21.link/n4045
https://wg21.link/n4771
https://wg21.link/p1055r0
https://wg21.link/p1341r0
https://wg21.link/p1371r0

	Introduction
	examples of callbacks
	async_accept example
	composing callbacks

	Motivation
	composition challenges
	callbacks
	functions taking callbacks

	algorithm composition

	Function output
	Values
	Exceptions
	Multiplexing

	Representation
	callback
	value and error arguments style
	completion token style
	std::expected style
	multiple function style

	function taking callback
	function argument style
	return value style
	Networking TS style

	Proposals
	Default Representation for new library callbacks
	Default Representation for new library functions taking callbacks

	Usage for the proposed Representations
	Changes to the Standard
	Credits
	References

