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Allowing both ​̀co_return;​` and ​̀co_return 
value;​` in the same coroutine 

Introduction 
 
In the C++ working draft (N4810) section [dcl.fct.def.coroutine]/6 currently specifies that: 

The ​unqualified-id​s ​return_void ​ and ​return_value ​ are looked up in the scope of the 
promise type. If both are found, the program is ill-formed. 

 
I believe this restriction is unnecessary to place on coroutine promise types and prevents some 
interesting use cases. In particular, this restriction makes syntax for implementing tail-recursion 
of coroutines unnecessarily cumbersome. 
 
It also forces library authors writing generic coroutine types to specialise their promise_type for 
the void-return-type case, even when the only difference between the implementations is 
whether it has a ​return_void() ​ or a ​return_value() ​ method. Implementations could be 
greatly simplified if they could conditionally enable either the ​return_void() ​ or 
return_value() ​ method by adding an appropriate requires clause these methods within a 
generic ​promise_type ​ definition. 
 
I propose that we amend the specification to allow defining coroutine promise types that define 
both the ​return_void ​ and ​return_value ​ members by removing the entirety of paragraph 
6. 



Background 
The original motivation for this restriction, as far as I understand it, is to maintain consistency 
with normal functions. A normal function cannot contain both ​return; ​ and ​return 
someValue; ​ statements. 
 
This rule makes perfect sense for normal functions. The type of the expression passed to the 
return ​ statement in a function directly corresponds to the return-type of that function. A 
function cannot have both a ​void ​ and non-​void ​ return-type at the same time so it cannot 
make sense to have both ​return; ​ and ​return someValue; ​ in the same function. 
 
For example, the following function body isn't able to fulfill the contract of the function signature 
with the second ​return ​ statement (it needs to return an ​int ​) and so the program is 
considered ill-formed. 

int f() 

{ 

  if (someCond) return 123; 

  else return; // Error: f() needs to return an 'int' value. 

} 

 
However, with coroutines, the return-type of a coroutine is ​not​ directly tied to the type passed to 
the ​co_return ​ statement. The author of the coroutine promise type is able to control the 
semantics of the ​co_return ​ statement by defining either a ​return_value ​ or ​return_void 
method on the promise type. 
 
A common example of this is a coroutine that has a return-type of ​generator<int> ​. 
This coroutine allows a ​co_return; ​ statement, a statement that is equivalent to returning a 
void ​ value, even though the coroutine's return-type is not ​void ​. 
 

generator<int> collatz_sequence(int n) 

{ 

  while (true) 

  { 

    co_yield n; 

 

    // Returning 'void' even though coroutine return-type is generator<int>. 

    if (n == 1) co_return;  

 

    if (n % 2 == 0) n /= 2; 

    else n = (3 * n + 1) / 2; 

  } 

} 



 
 
With the current wording a coroutine promise type author is also able to define multiple 
overloads of ​return_value() ​, allowing the coroutine to define different semantics for 
co_return ​ statements based on the expression type passed. 
 
It does not seem like a big step to go from allowing the user to define different semantics for two 
different types passed to ​co_return <expr> ​ by defining two overloads of ​return_value() 
to allowing the user to define different semantics for ​co_return ​ and ​co_return <expr> ​ by 
defining both ​return_void() ​ and ​return_value() ​. 
 

Tail-Recursion of Coroutines 
 
One of the motivating use-cases for the proposed change is to allow use of the ​co_return 
keyword as a convenient and intuitive syntax for indicating a tail-recursive call to a coroutine. 
 
A tail-recursive call to another coroutine is an operation where the calling coroutine frame is 
destroyed before resuming execution of the coroutine that is being called in the tail-position. 
This allows you to perform recursion in the tail-position to an arbitrary recursion depth while 
needing at most two coroutine frames to be allocated at any one time. 
 
Example: A simple tail-call of an async task. 

recursive_task<T> bar(); 

 

recursive_task<T> foo_no_tail_recursion() 

{ 

  co_await do_something(); 

 

  // Call bar() and await result, unwrapping task<T> to obtain T value. 

  // Then returns the value of type T. 

  //  - calls return_value(T) if T is non-void. 

  //  - calls return_void() if T is void. 

  co_return co_await bar(); 

} 

 

recursive_task<T> foo_tail_recursive() 

{ 

  co_await do_something(); 

 

  // Return recursive_task<T> value directly as way of indicating that 

  // the result of bar()'s task should be used as the result 

  // of foo_tail_recursive(). 

  co_return bar(); 



} 

 

task<> usage() 

{ 

  recursive_task<T> t = foo_tail_recursive(); 

  T result = co_await t; 

} 

 
 
The semantics of the tail-recursive statement ​co_return bar(); ​ is as follows: 

● Call ​bar() ​ to create a coroutine frame for ​bar() ​. 
This coroutine will immediately suspend at ​initial_suspend ​ point and return the 
recursive_task<T> ​ RAII object. 

● Transfer ownership of ​bar() ​'s coroutine frame to the ​recursive_task<T> ​ object 
that currently owns the ​foo_tail_recursive() ​ coroutine frame. 
In the example above, this means updating the coroutine handle stored in the variable 
​̀t ​` in the ​usage() ​ coroutine. 

● Transfer responsibility for resuming awaiter of ​foo_tail_recursive() ​'s task object 
to ​bar() ​'s promise object. 
In the example above, the awaiting coroutine is ​usage() ​ so this would be copying the 
coroutine_handle ​ for the ​usage() ​ coroutine into ​bar() ​'s promise object. 

● Destroy ​foo_tail_recursive() ​ coroutine frame. 
● Resume execution of ​bar() ​. 

 
Note: To guarantee that these tail-recursive statements have bounded memory usage of both 
heap-allocated coroutine frames and stack-frames, it makes use of the symmetric transfer  1

facility when suspending one coroutine and resuming another. 
 
It is already possible to implement such a tail-recursive call operation for tasks that return a 
value. This is because we can define two overloads of ​return_value() ​: one taking 
a ​T ​ and one taking a ​recursive_task<T>&& ​. 
 
However, it is not currently possible to do this for ​void ​-returning tasks, as that would require 
defining ​return_void() ​ for the normal return case and 
return_value(recursive_task<void>&&) ​to handle the tail-recursive call case. 
Something that is currently disallowed by the current coroutines wording. 
 
If we allowed promise types to define both ​return_void ​ and ​return_value ​ then this would 
allow implementation of the tail-call capabilities of ​recursive_task ​ for all types, not just 
non-​void ​ types. 
 

1 P0913R0 - "Add symmetric coroutine control transfer" 



Tail-Recursive Generators 
 
Another use-case for coroutine tail-recursion is with generator coroutines. 
 
The cppcoro library provides a recursive_generator<T> type that allows a coroutine to lazily 
produce a sequence of values of type, ​T ​, by ​co_yield- ​ing either a value of type ​T ​ or a 
recursive_generator<T> ​ value. 
 
If a ​recursive_generator<T> ​ value is yielded then this is equivalent to yielding all of the 
values produced by that generator. Execution of the current coroutine only resumes once all of 
the nested generator values have been consumed. 
 
The advantage of this approach is that it allows the consumer to directly resume the leaf-most 
nested coroutine to produce the next element inside its call to ​iterator::operator++() 
rather than requiring O(depth) resume/suspend operations that would be required if 
using a non-recursive ​generator ​. 
 
For example: Traversing values of a binary tree in left-node-right order. 

// Given a basic tree structure 

template<typename T> 

struct tree 

{ 

  tree<T>* left; 

  tree<T>* right; 

  T value; 

}; 

 

recursive_generator<T> traverse_tree(tree<T>* t) 

{ 

  if (t->left) co_yield traverse_tree(t->left); 

  co_yield t->value; 

  if (t->right) co_yield traverse_tree(t->right); 

} 

 

void usage() 

{ 

  tree<std::string>* root = get_a_tree(); 

  for (std::string& value : traverse_tree(root)) 

  { 

    std::cout << value << std::endl; 



  } 

} 

 
Notice in the ​traverse_tree() ​ coroutine that there is no logic in the coroutine body after the 
co_yield traverse_tree(t->right); ​ statement. The coroutine has suspended 
execution, but the only thing the continuation is going to do when it resumes is run to 
completion, suspend at ​co_await promise.final_suspend() ​ and then resume its 
parent coroutine or return to the consumer. 
 
When execution returns to the parent/consumer after the generator has run to completion the 
parent/consumer will then typically immediately destroy the generator object, which will 
in turn destroy the coroutine frame, freeing its memory. 
 
However, this means that we are deferring releasing the memory used by the parent coroutine 
frame until the consumer has finished consuming all of the child generator's elements even 
though the parent coroutine is not going to be producing any more values. 
 
If we could instead make use of tail-recursion in the case where a ​co_yield ​ statement occurs 
in the tail position then this would allow the parent coroutine frame to be freed earlier, before 
resuming execution of the nested coroutine. 
 
Doing so would allow ​recursive_generator ​ coroutines to support recursion to an arbitrary 
depth when recursing in the tail position. This can be done using only a bounded amount of 
memory for the coroutine frames; typically at most two coroutine frames allocated at any one 
time. 
 

Tail call syntax 
 
My preferred syntax for indicating a tail-recursive yield is to allow ​co_return 
std::move(childGenerator); ​ in the place of ​co_yield childGenerator; ​. 
 
For example, the above ​traverse_tree() ​ would become: 

recursive_generator<T> traverse_tree_tail_recursive(tree<T>* t) 

{ 

  if (t->left) co_yield traverse_tree_tail_recursive(t->left); 

  co_yield t->value; 

  // Use of co_return indicates tail-recursion on right subtree 

  if (t->right) co_return traverse_tree_tail_recursive(t->right); 

} 

 



The problem with this approach is that it requires the ​promise_type ​ for the coroutine to have 
both a ​return_void() ​ method (for the case where execution runs off the end of the coroutine 
indicating the end of the range) and a ​return_value(recursive_generator<T>&&) 
method (for the case where we are performing tail-recursion). This is something which is 
currently banned by the wording in N4810 [dcl.fct.def.coroutine]/6. 
 

Alternative tail call syntax 
 
There are alternative syntaxes that could be implemented while staying within the current 
wording. However, these alternative syntaxes have downsides. 
 
Alternative Syntax 1: Overload ​co_yield​ with a ​tail_call()​ helper function. 
recursive_generator<T> traverse_tree_alternative1(tree<T>* t) 

{ 

  if (t->left) co_yield traverse_tree_alternative1(t->left); 

  co_yield t->value; 

  if (t->right) co_yield tail_call(traverse_tree_alternative1(t->right)); 

} 

 
 
This would work by having the ​tail_call() ​ helper wrap the ​recursive_generator<T> 
object in a new type, say ​recursive_generator_tail_call<T> ​ and then providing a 
yield_value() ​ overload for that type which could then perform the tail-recursion operation. 
 
This has the downside of requiring the more verbose syntax. 
 
It is also less obvious to the developer that the coroutine will not continue exection after 
executing the ​co_yield tail_call(...) ​ expression. 
 
It may also be difficult for the compiler to determine that execution does not continue after 
the ​co_yield tail_call(...) ​ expression which could make it more difficult to issue 
warnings about dead-code, etc. that would otherwise be possible were we using ​co_return ​. 
 
Alternative 2: Remove ​return_void()​ and keep only 
return_value(recursive_generator<T>&&) 

 

recursive_generator<T> traverse_tree_alternative2(tree<T>* t) 

{ 

  if (t->left) co_yield traverse_tree_alternative2(t->left); 

  co_yield t->value; 



  if (t->right) co_return traverse_tree_alternative2(t->left); 

 

  // Execution not allowed to run-off end. 

  // Return a sentinel value instead. 

  co_return recursive_generator<T>{}; 

} 

 
This approach works by using a special sentinel value (in this case a default-constructed 
recursive_generator<T> ​ value) that can be returned to indicate that no tail-recursion 
should be performed. 
 
This has the downside of making simple generator coroutines more verbose as it forces every 
recursive_generator ​ coroutine to have a ​co_return ​  statement, not just the ones that 
make use of tail-recursion. A generator coroutine can no longer just let execution run off the end 
since that is undefined-behaviour if the promise object has no ​return_void() ​ method. 
 

Support returning error-types from a task 
The opensource folly library has a folly::Try<T> type, which represents either a value or an 
exception, which is returned from some APIs. 
 
If we want to return a ​folly::Try<T> ​ value as the return-value of a folly::coro::Task<T> 
coroutine then we can extract the value by calling the .value() method and this will either return 
a reference to the value or will rethrow the exception. 
 
However, in the interests of avoiding rethrowing an exception just to have it caught again and 
the exception_ptr recaptured by ​promise.unhandled_exception() ​ we can add support 
for returning the ​folly::Try<T> ​ value directly by overloading the 
promise.return_value() ​ method for ​folly::Try<T> ​ and have the coroutine copy/move 
the ​exception_ptr ​ value directly into the promise if required rather than rethrowing the 
exception. 
 
This can be implemented for all ​Task<T> ​ types where ​T ​ is not ​void ​. However, for the ​void 
case we cannot implement this facility because we cannot support both '​co_return; ​' and 
'​co_return result; ​' in the same coroutine. 

Reducing boilerplate in coroutine promise_types 
When defining generic coroutine task types that need to support any type T we need to define a 
promise_type for each type T. 
 



With the current design, it is not allowed to define both return_value and return_void on the 
same promise_type, even if one of the methods is deleted. 
 
This means that in order to support both void and non-void types we end up needing to 
specialise the ​promise_type ​ for the void case to give it a ​return_void() ​ method and then 
have a generic implementation for the non-void types which has a ​return_value() ​ method. 
 
If we adopt the change proposed by this paper then we can write a single generic promise_type 
and control the availability of ​co_return; ​ vs ​co_return value; ​ by adding appropriate 
requires-clauses to the ​return_void() ​ and ​return_value() ​ methods. 
 
For example: Defininig a single generic ​promise_type ​ is possible with the proposed change 
template<typename T> 

class task { 

public: 

  class promise_type { 

    struct final_awaiter { ... }; 

 

    enum class state { empty, value, error }; 

    state state_ = state::empty; 

    std::continuation_handle<> consumer_; 

    union { 

      manual_lifetime<T> value_; 

      manual_lifetime<exception_ptr> error_; 

    }; 

 

  public: 

    promise_type() {} 

    ~promise_type() { 

      switch (state_) { 

        case state::empty: break; 

        case state::value: value_.destruct(); break; 

        case state::error: error_.destruct(); break; 

      } 

    } 

 

    // All common implementation. 

    task get_return_object(); 

    suspend_always initial_suspend(); 

    final_awaiter final_suspend(); 

    void unhandled_exception(); 

 

    decltype(auto) value() { 

      if (state_ == state::error) 

        std::rethrow_exception(error_.get()); 

      return std::move(value_).get(); 

    } 

 

    template<ConvertibleTo<T> U> 

      requires (!std::is_void_v<T>) 

    void return_value(U&& value) { 

      value_.construct((U&&)value); 

      state_ = state::value; 

    } 

 

    void return_void() noexcept requires std::is_void_v<T> { 

      value_.construct(); // no-op 

      state_ = state::value; 



    } 

  }; 

 

  // ... etc for the rest of the task definition common to all T types. 

}; 

 
 

Final Words 
 
There are many cases where the restriction to disallow both ​return_void() ​ and 
return_value() ​ methods being defined on the same promise_type has prevented valid 
use-cases or required extra boiler-plate to handle both void and non-void return-types. 
 
As far as I was able to discover, the original reason for disallowing both 'co_return;' and 
'co_return value;' in the same coroutine was to be consistent with ordinary functions, which 
disallow both 'return;' and 'return value;' in the same function. However, the reasons for 
disallowing this in ordinary functions do not hold for coroutines because the library is able to 
customise the behaviour of co_return to give it appropriate semantics for the current coroutine 
type. 
 
Lifting this restriction by striking [dcl.fct.def.coroutine]/6 would allow more use cases and simplify 
code. 
 


