
Document number: P0032R3

Date: 2016–05-24

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Library Evolution Working Group

Reply-to: Vicente J. Botet EscribEscribá <vicente.botet@nokia.com>

Homogeneous interface
for variant, any andoptional (Revision 3)
This paper identifies some differences in the design

of variant<Ts...>, any and optional<T>, diagnoses them as owing to unnecessary

asymmetry between those classes, and proposes wording to eliminate the

asymmetry.

History

Revision 3

Fixes some issues found during the LWG review of the wording.

 Calling in_place function results in undefined behavior.

 any is not a literal type so except his default constructor no other function can

be constexpr.

Revision 2

The 2nd revision of P0032R1 fixes some typos and takes in account the feedback

from Jacksonville meeting. Next follows the direction of the committee: Adopt it for

C++17 with the following strapools

mailto:vicente.botet@%20wanadoo.fr
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r1.pdf

 Accept .reset(), remove any.clear(), leave optional=nullopt?

SF F N A SA
6 9 1 0 0

 Add .has_value()to any and optional (in addition to optional’s bool conversion?

SF F N A SA
3 7 3 3 0

 Add .has_value() to smart pointers, including unique_ptr and shared_ptr;

equivalent to operator bool?

SF F N A SA
0 3 2 7 3

 Make any::any() (the default constructor) constexpr? (Alisdair raises warnings)

SF F N A SA
2 4 9 0 1

(If implementations have significant problems, please tell us.)

 Change make_optional to be like make_unique?

SF F N A SA
0 1 7 5 2

 Add make_any

SF F N A SA
2 4 5 4 0

Yes.

 Want to change everything to in_place?

SF F N A SA
4 6 3 2 2

Yes. (Send us the error messages, plz)

 Add any.emplace?

SF F N A SA
5 7 3 0 0

 Send the changes approved above to LWG for C++17?

Unanimous, with mention that in_place might be instantiated into every object file.

Also check that any(in_place<Foo>) stores Foo{}, not in_place<Foo>.

This revision then mainly moves the wording from std::experimental to std and

 Add a mention that in_place might be instantiated into every object file.

 Take in account the changes of variant after Kona and add the wording

for variant.

 Added some examples of the code generated for in_place without the proposal

and with.

 Added reference to Core issue 2510.

Revision 1

The 1st revision of P0032R0 takes in account the feedback from Kona meeting. Next

follows the direction of the committee: globally keep the consensual part and extract

the conflicting and less polished parts.

 Do we want to adopt the new in_place definition?

It is clear that we want a different name for the emplace function and the tag,

however it is not clear the committee wants thein_place function reference.

Nevertheless, the author doesn't know how to have the in_place both

for optional, any andvariant without using function references, so this paper preserve

this design.
Leave optional different from variant and any 6
Member function is emplace; tag type is in_place 13
Both are emplace 6

 Do we want to adopt the new in_place definition?

SF F N A SA
 1 3 8 0 0

 Do we want in place constructor for any? Unanimous Yes.

 Do we want the clear and reset changes? Yes

How to empty an any or optional?

 .reset() 12
 .clear() 7
 =none (different paper) 7
 ={} 5
 .drain() 1

http://cplusplus.github.io/LWG/lwg-active.html#2510
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf

 Do we want the operator bool changes? No, instead a .something() member

function (e.g. has_value) is preferred for the 3 classes. This doesn't mean yet

that we replace the existing explicit operator bool in optional.

Do we want emptiness checking to be consistent between any/optional? Unanimous

yes
 Provide operator bool for both Y: 6 N: 5
 Provide .something() Y: 17 N: 0
 Provide =={} Y: 0 N: 5
 Provide ==std::none Y: 5 N: 2
 something(any/optional) Y: 3 N: 8

 Do we want the not-a-value none? No, too much unit types. The committee

wants a separated paper for a genericnone_t/none.

 Do we want none_t to be a separate paper?
SF F N A SA
11 1 3 0 0

 Do we want the make_any factory? Yes

SF F N A SA

 1 9 7 2 0

 Do we want to have a follow up for a concept based on the

functions holds and storage_address_of? Not in this paper.

 Do we want to have a follow up for select<T>/select<I>? Not in this paper.

Considered as invention

 Do we want to have a follow up for the

observers reference_of, value_of and address_of? Not in this paper.

Other modifications

 Added a section in the design rationale describing the differences between the

new and current in_place.

 Improved the wording and in particular added some missing overloads

using initializer_list.

 Added constexpr for has_value.

 Added a comparative table on the appendix also.

Introduction

This paper identifies some differences in the design

of variant<Ts...>, any and optional<T>, diagnoses them as owing to unnecessary

asymmetry between those classes, and proposes wording to eliminate the

asymmetry.

The identified issues are related to the last Fundamental TS proposal N4562 and the

variant proposal [P0088R1] and concerns mainly:

 coherency of functions that behave the same but that are named differently,

 replace the in_place tag by a function with overloads for type and index,

 replacement of in_place_type<T>/in_place_index<I> by in_place<T>/in_place<I>,

 addition of emplace factories for any and optional classes.

Motivation and Scope

Both optional and any are classes that can store possibly some underlying type. In

the case of optional the underlying type is know at compile time, for any the

underlying type is any and know at run-time.

If the variant proposal ends by having nullable variant, the stored type would be any

of the Ts or a not-a-value type, know at run-time. Let me refer to this possible variant

of nullable_variant <Ts...>. The following inconsistencies have been identified:

 variant<Ts...> and optional provides in place construction with different syntax

while any requires a specific instance.

 variant<Ts...> and optional provides emplace assignment while any requires

a specific instance to be assigned.

 The in place tags for variant<Ts...> and optional are different. However the

name should be the same. any doesn't provides in place construction and

assignment yet.

 any provides any::clear() to unset the value while optional uses assignment

from a nullopt_t or from {}. This paper doesn't contains any proposal to

improve this situation. A separated paper would include a

generic none_t/noneproposal.

 optional provides a explicit bool conversion while any provides

an any::empty member function.

 optional<T>, variant<Ts...> and any provides different interfaces to get the

stored value. optional uses a value member function and pointer-like

functions, variant uses a tuple like interface, while any uses a cast like

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4562.html

interface. As all these classes are in someway classes that can possibly store

a specific type, the first two limited and know at compile time, the last

unlimited, it seems natural that all provide the same kind of interface. This

paper doesn't contains any proposal to improve this situation. A separated

paper would include a generic none_t/none proposal.

The C++ standard should be coherent for features that behave the same way on

different types. Instead of creating specific issues, we have preferred to write a

specific paper so that we can discuss of the whole view.

Proposal

We propose to:

 Replace in_place_t/in_place by an overloaded function (see eggs-variant).

 In class optional<T>

o Add a reset member function.

o Add a has_value member function.

o Add an additional overload for make_optional factory to emplace

construct.

 In class any

o make the default constructor constexpr,

o add in_place forward constructors,

o add emplace forward member functions,

o rename the empty function with has_value and make it constexpr,

o rename the clear member function to reset,

o Add a make_any factory to emplace construct.

 In class variant<T>

o Remove the definition of in_place_type_t<T>/in_place_index_t<I>.

o Replace the uses (if any)

of in_place_type<T>/in_place_index_t<I> by in_place<T>/in_place<I> resp

ectively.

Design rationale

in_place constructor

optional<T> in place constructor constructs implicitly a T.

https://github.com/eggs-cpp/variant

 template <class... Args>
 constexpr explicit optional<T>::optional(in_place_t, Args&&... args);

In place construct for any cannot have an implicit type T. We need a way to state

explicitly which T must be constructed in place.
 struct in_place_tag {};
 template <class T>
 using in_place_type_t = in_place_tag(&)(unspecified<T>);
 template <class T>
 in_place_tag in_place(unspecified<T>) { return {} };

The function in_place_tag(&)(unspecified<T>) is used to transport the

type T participating in overload resolution.
 template <class T, class ...Args>
 any(in_place_type_t<T>), Args&& ...);

This can be used as

 any(in_place<X>, v1, ..., vn);

Adopting this template class to optional would needs to change the definition

of in_place_t/in_place to
 using in_place_t = in_place_tag(&)(unspecified);
 in_place_tag in_place(unspecified) { return {} };

The same applies to variant. We need an additional overload for in_place
 template <int I>
 using in_place_index_t = in_place_tag(&)(unspecified<I>);
 template <int I>
 in_place_tag in_place(unspecified<I>) { return {} };

Given

struct Foo { Foo(int, double, char); };

Before:

 optional<Foo> of(in_place, 0, 1.5, 'c');
 variant<int, Foo> vf(in_place_type<Foo>, 0, 1.5, 'c');
 variant<int, Foo> vf(in_place_index<1>, 0, 1.5, 'c');
 any af(Foo(0, 1.5, 'c')); // (*)

After:

 optional<Foo> of(in_place, 0, 1.5, 'c');
 variant<int, Foo> vf(in_place<Foo>, 0, 1.5, 'c');
 variant<int, Foo> vf(in_place<1>, 0, 1.5, 'c');
 any af(in_place<Foo>, 0, 1.5, 'c');

Note that before any didn't support non-copyable-non-moveable objects

like std::mutex. With in_place we are able to store a mutex in.

Differences between the new in_place_t and the
old one

Cost of function reference versus tags

The prosed function reference for in_place_t(&)(unspecified) takes the size of an

address while the previous in_place_tstruct tag was empty and so its size is 1. We

don't think this would reduce significantly the performances, however some measure

are needed.

We have done some measures and when the functions having these tags are inlined,

there is no difference as the compiler removes the call. However when the function is

not inlined we see a difference without the proposal there is a push while with the

proposal there is a move.

All the measure have been done -std=c++14 -O3.

Conf WITHOUT proposal WITH proposal

x86 gcc 5.3.0
pushq $0

call g1(in_place_t)

movl in_place(in_place_unspecified), %edi

call g2(in_place_tag (&)(in_place_unspecified))

x86 cmang 3.7.1
pushq %rax

callq g1(in_place_t)

movl in_place(in_place_unspecified), %edi

callq g2(in_place_tag (&)(in_place_unspecified))

It is up to the committee to decide if the difference is significant or not.

Possible malicious attacks

Unfortunately using function references would work for any unary function taken the

unspecified type and returningin_place_tag in addition to in_place. Of course defining

such a function would imply to hack the unspecified type. This can be seen as a hole

on this proposal, but the author think that it is better to have a uniform interface than

protecting from malicious attacks from a hacker.

No default constructible

While adapting optional<T> to the new in_place_t type we found that we cannot

anymore use in_place_t{}. The authors don't consider this a big limitation as the user

can use in_place instead. It needs to be noted that this is in line with the behavior

of nullopt_t as nullopt_t{} fails as no default constructible.

However nullptr_t{} seems to be well formed.

Not assignable from {}

After a deeper analysis we found also that the old in_place_t supported in_place_t t

= {}; The authors don't consider this a big limitation as we don't expect that a lot of

users could use this and the user can use in_place instead.
 in_place_t t;
 t = in_place;

It needs to be noted that this is in line with the behavior of nullopt_t as the following

compile fails.
nullopt_t t = {}; // compile fails

However nullptr_t seems to be support it.
 nullptr_t t = {}; // compile pass

To re-enforce this design, there is an pending issue 2510-Tag types should not

be DefaultConstructible Core issue 2510.

emplace forward member function

optional<T> emplace member function emplaces implicitly a T.
 template <class ...Args>
 optional<T>::emplace(Args&& ...);

emplace for any cannot have an implicit type T. We need a way to state explicitly

which T must be emplaced.
 template <class T, class ...Args>
 any::emplace(Args&& ...);

and used as follows

 any af;
 optional<Foo> of;
 variant<int, Foo> vf;
 af.emplace<Foo>(v1, ..., vn);
 of.emplace<Foo>(v1, ..., vn);
 vf.emplace<Foo>(v1, ..., vn);

http://cplusplus.github.io/LWG/lwg-active.html#2510

About empty()/explicit operator bool()
member functions

empty() is more associated with containers. We don't see neither any nor optional as

container classes. For probably valued types (as are the smart pointers and optional)

the standard uses explicit operator bool() conversion instead. We consider any as a

probably valued type.

Given

 struct Foo { Foo(int, double, char); };
 unique_ptr<Foo> pf=...
 optional<Foo> of=...;
 any af=...;

Before:

 if (pf) ...
 if (of) ...
 if (! af.empty()) ...

After:

 if (pf) ...
 if (of) ...
 if (af) ...

A lot of people consider that the explicit operator bool() conversion is not explicit

enough. An alternative to explicit operator bool() is to use a member

function has_value (or holds).

After:

 if (pf.has_value()) ...
 if (of.has_value()) ...
 if (af.has_value()) ...

The has_value member function is retained as more explicit and easy to read. As this

proposal is not about any change in pointe-like classes we lost uniform syntax

respect to pointe-like classes. For optional we propose to have both.

After:

 if (pf) ...
 if (of) ...
 if (of.has_value()) ...
 if (af.has_value()) ...

Having a uniform interface for pointe-like, type-erased and sum type classes should

be the subject of another proposal. This is because there are other function for which

the interfaces are not uniform.

About clear()/reset() member functions

clear() is more associated to containers. We don't see neither any nor optional as

container classes. For probably valued types (as are the smart pointers) the standard

uses reset instead.

Given

 struct Foo { Foo(int, double, char); };
 unique_ptr<Foo> pf=...;
 optional<Foo> of=...;
 any af=...;

Before:

 pf.reset();
 of = nullopt;
 af.clear();

After:

 pf.reset();
 of.reset();
 af.reset();

Do we need an explicit make_any factory?

any is not a generic type but a type-erased type. any play the same role as a

possible make_any. This paper however propose a make_any factory for the emplace

case, see below. Note also that if P0091R0 is adopted we wouldn't need any

more make_optional, as e.g. optional(1) would be deduced as optional<int>.

About emplace factories

However, we could consider a make_xxx factory that in place constructs

a T. optional<T> and any could be in place constructed as follows:
 optional<T> opt(in_place, v1, vn);
 f(optional<T>(in_place, v1, vn));
 any a(in_place<T>, v1, vn);
 f(any(in_place<T>, v1, vn));

When we use auto things change a little bit

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html

 auto opt = optional<T>(in_place, v1, vn);
 auto a = any(in_place<T>, v1, vn);

This is almost uniform. However having an make_xxx factory function would make the

code even more uniform
 auto opt = make_optional<T>(v1, vn);
 f(make_optional<T>(v1, vn));
 auto a = make_any<T>(v1, vn);
 f(make_any<T>(v1, vn));

The implementation of these emplace factories could as simple as:

 template <class T, class ...Args>
 optional<T> make_optional(Args&& ...args) {
 return optional(in_place, std::forward<Args>(args)...);
 }
 template <class T, class ...Args>
 any make_any(Args&& ...args) {
 return any(in_place<T>, std::forward<Args>(args)...);
 }

Given

 struct Foo { Foo(int, double, char); };

Before:

 auto up = make_unique<Foo>(v1, ..., vn)
 auto sp = make_shared<Foo>(v1, ..., vn)
 auto o = optional<Foo>(in_place, v1, ..., vn)

After:

 auto a = any(Foo{v1, ..., vn})
 auto up = make_unique<Foo>(v1, ..., vn)
 auto sp = make_shared<Foo>(v1, ..., vn)
 auto o = make_optional<Foo>(v1, ..., vn)
 auto a = make_any<Foo>(v1, ..., vn)

Which file for in_place_t and in_place?

As in_place_t and in_place are used by optional and any we need to move its

definition to another file. The preference of the authors will be to place them

in <utility>.

Note that in_place could also be used by variant and that in this case it could also

take an index as template parameter.

Open points

None.

Proposed wording

The wording is relative to N4562.

General utilities library

Add in [utility/synop]

namespace std {
 [...]

 struct in_place_tag {
 in_place_tag() = delete;
 };
 using in_place_t = in_place_tag(&)(unspecified);
 template <class T>
 using in_place_type_t = in_place_tag(&)(unspecified<T>);
 template <int N>
 using in_place_index_t = in_place_tag(&)(unspecified<N>);

 in_place_tag in_place(unspecified);
 template <class T>;
 in_place_tag in_place(unspecified<T>);
 template <size N>;
 in_place_tag in_place(unspecified<N>);
 [...]

}

Add a section [utility/in_place]

20.2.x In-place construction [utility.inplace]

The in_place_t/in_place_type_t/in_place_index_t function types are used as unique

types to disambiguate constructor and function overloading. Specifically, optional

has a constructor with in_place_t as the first parameter followed by a parameter

pack; this indicates that T should be constructed in-place (as if by a call to a

placement new expression) with the forwarded pack expansion as arguments for the

initialization of T.

Remark: Calling in_place functions results in undefined behavior. [Note: These

functions might be instantiated into every object file. – end note]

Optional objects

Remove in_place_t/in_place from [optional/synop].

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4562.html

namespace std {

 // 20.6.3, optional for object types

 template <class T> optional;

 // 20.6.4, in-place construction

 struct in_place_t{};

 constexpr in_place_t in_place{};
 [...]

Update [optional.synopsis] adding after make_optional.

namespace std {
 [...]

 template <class T, class ...Args>
 constexpr optional<T> make_optional(Args&& ...args);
 template <class T, class U, class ...Args>
 constexpr optional<T> make_optional(initializer_list<U> il, Args&& ...args);

 [...]
}

Add a section in [optional.object.modifier]

20.6.3.6 Modifiers

 void reset() noexcept;

Effects: If *this contains a value, calls val->T::~T() to destroy the contained value;

otherwise no effect.

Postconditions: *this does not contain a value.
 constexpr bool has_value() const noexcept;

Returns: true if and only if *this contains a value.

Remark: This function shall be a constexpr function.

Remove section [optional/inplace].

Add in [optional.specalg]

 template <class T, class ...Args>
 constexpr optional<T> make_optional(Args&& ...args);

Effects: Equivalent to: return optional<T>(in_place, std::forward<Args>(args)...).
 template <class T, class U, class ...Args>
 constexpr optional<T> make_optional(initializer_list<U> il, Args&& ...args);

Effects: Equivalent to: return optional<T>(in_place, il, std::forward<Args>

(args)...).

Class any

Add a note.

[Note any is a not a literal type --end note]

Update

An object of class any stores an instance of any type that satisfies the constructor

requirements or is empty, it has no value, and this is referred to as the state of the

class any object. The stored instance is called the contained object. Two states are

equivalent if they are either both empty or if both are not empty and if either they

both have no value, or both have a value and the contained objects are equivalent.

Update [any.synopsis] adding

namespace std {
 [...]

 template <class T, class ...Args>
 any make_any(Args&& ...args);
 template <class U, class T, class ...Args>
 any make_any(initializer_list<U>, Args&& ...args);

 [...]
}

Update constexpr on any default constructor

constexpr any() noexcept;

Add inside class any
 // Constructors
 template <class T, class ...Args>
 explicit any(in_place_type_t<T>, Args&& ...);
 template <class T, class U, class... Args>
 explicit any(in_place_type<T>, initializer_list<U>, Args&&...);
 template <class T, class ...Args>
 void emplace(Args&& ...);
 template <class T, class U, class... Args>
 void emplace(initializer_list<U>, Args&&...);

Replace inside class any
 void clear() noexcept;
 bool empty() const noexcept;

by

 void reset() noexcept;
 bool has_value() const noexcept;

Update in [any/cons]

 constexpr any() noexcept;

Add in [any/cons]

 template <class T, class ...Args>
 explicit any(in_place_type_t<T>, Args&& ...args);

Requires: is_constructible_v<T, Args...> is true.

Effects: Initializes the contained value as if direct-non-list-initializing an object of

type T with the arguments std::forward<Args>(args)....

Postconditions: *this contains a value of type T.

Throws: Any exception thrown by the selected constructor of T.

 template <class T, class U, class ...Args>
 any(in_place_type_t<T>, initializer_list<U> il, Args&& ...args);

Requires: is_constructible_v<T, initializer_list<U>&, Args...> is true.

Effects: Initializes the contained value as if direct-non-list-initializing an object of

type T with the arguments il, std::forward<Args>(args)....

Postconditions: *this contains a value.

Throws: Any exception thrown by the selected constructor of T.

Remarks: The function shall not participate in overload resolution

unless is_constructible_v<T, initializer_list<U>&, Args...> is true.

Update [any.cons]

 ~any();

Effects: As if clear reset ().

Add in [any/modifiers]

 template <class T, class ...Args>
 void emplace(Args&& ... args);

Requires: is_constructible_v<T, Args...> is true.

Effects: Calls this.reset(). Then initializes the contained value as if direct-non-list-

initializing an object of type T with the arguments std::forward<Args>(args)....

Postconditions: *this contains a value.

Throws: Any exception thrown by the selected constructor of T.

Remarks: If an exception is thrown during the call to T's constructor, *this does not

contain a value, and the previous (if any) has been destroyed.

Add in [any.assign]

 template <class T, class U, class ...Args>
 void emplace(initializer_list<U> il, Args&& ...args);

Requires: is_constructible_v<T, initializer_list<U>&, Args...> is true.

Effects: Calls this->reset(). Then initializes the contained value as if direct-non-list-

initializing an object of type T with the arguments il, std::forward<Args> (args)....

Postconditions: *this contains a value.

Throws: Any exception thrown by the selected constructor of T.

Remarks: If an exception is thrown during the call to T's constructor, *this does not

contain a value, and the previous (if any) has been destroyed.

The function shall not participate in overload resolution unless is_constructible_v<T,

initializer_list<U>&, Args...> is true.

Replace in [any/modifiers]

 void clear() const noexcept;

Effect: : If not empty, destroys the contained object.

Postcondition: empty() is true.

by

 void reset() const noexcept;

Effect: : If has a contained object, destroys the contained object.

Postcondition: has_value() is false.

Replace in [any/observers]

 bool empty() const noexcept;

Returns: true if *this has no contained object, otherwise false.

by

 bool has_value() const noexcept;

Returns: true if *this contains an object, otherwise false.

Add in [any.nonmembers]

 template <class T, class ...Args>
 any make_any(Args&& ...args);

Effect: Equivalent to: return any(in_place<T>, std::forward<Args>(args)...).
 template <class T, class U, class ...Args>
 any make_any(initializer_list<U> il, Args&& ...args);

Effect: Equivalent to: return any(in_place<T>, il, std::forward<Args>(args)...).

Class variant

Remove in_place_type_t/in_place_type/in_place_index_t/in_place_index from

[variant/synop].

Acknowledgements

Thanks to Jeffrey Yasskin to encourage me to report these as possible issues of the

TS.

 s o s -Balo for the function reference idea to

represent in_place tags overloads and its valuable comments.

Thanks to Tony Van Eerd for championing this proposal during the C++ standard

committee meetings and helping me to improve globally the paper. The comparative

table in the appendix comes from him.

Thanks to the LWG for its careful reading.

References

 eggs-variant eggs::variant

https://github.com/eggs-cpp/variant

 N4562 Working Draft, C++ Extensions for Library Fundamentals

https://github.com/eggs-cpp/variant
https://github.com/eggs-cpp/variant
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4562.html

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4562.html

 P0032R0 Homogeneous interface for variant, any and optional

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf

 P0032R1 Homogeneous interface for variant, any and optional

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r1.pdf

 [P0088R1] Variant: a type-safe union that is rarely invalid (v5)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0088r1.pdf

 P0091R0 Template parameter deduction for constructors (Rev 3)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html

 Core issue 2510 Tag types should not be DefaultConstructible

http://cplusplus.github.io/LWG/lwg-active.html#2510

Appendix

WITHOUT proposal WITH proposal

in_place, in_place_type, in_place_index in_place

struct Foo { Foo(int, double, char); };

optional<Foo> of(in_place, 0, 1.5, `c`);

variant<int, Foo> vf(in_place_type<Foo>, 0,
1.5, `c`);

variant<int, Foo> vf(in_place_index<1>, 0,
1.5, `c`);

any af(Foo{0, 1.5, 'c'});

NOTE: thus any currently does not support

non move/copy-able

struct Foo { Foo(int, double, char); };

optional<Foo> of(in_place, 0, 1.5, `c`);

variant<int, Foo> vf(in_place<Foo>, 0, 1.5, `c`);

variant<int, Foo> vf(in_place<1>, 0, 1.5, `c`);

any af(in_place<Foo>, 0, 1.5, `c`);

Also, now any supports non move/copy-able

any.emplace()

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4562.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0088r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0091r0.html
http://cplusplus.github.io/LWG/lwg-active.html#2510
http://cplusplus.github.io/LWG/lwg-active.html#2510

of.emplace(0, 1.5, 'c');

vf.emplace<Foo>(0, 1.5, 'c');

vf.emplace<1>(0, 1.5, 'c');

af = Foo{0, 1.5, 'c'};

any does not currently emplace

of.emplace(0, 1.5, 'c');

vf.emplace<Foo>(0, 1.5, 'c');

vf.emplace<1>(0, 1.5, 'c');

af.emplace<Foo>(0, 1.5, 'c');

Now any supports non move/copy-able

reset()

unique_ptr<Foo> uf = new Foo(0, 1.5, ‘c’);

uf.reset();

of = nullopt;

af.clear();

unique_ptr<Foo> uf = new Foo(0, 1.5, ‘c’);

uf.reset();

of.reset();

af.reset();

variant? No. Does not go empty. Could default-co s c , b lso do s ’

have has_value(). Do ’ fo c f ls co s s c .

has_value()

if (uf) ...

if (of) ...

if (! af.empty()) ...

if (uf.has_value()) ...

if (of has_value()) ...

if (af.has_value()) ...

NOTE: smart-ptrs as well variant? – No. intentionally

“co p d_b _ xc p o ”

make_...() factories

auto uf = make_unique<Foo>(0, 1.5, ‘c’);

auto sf = make_shared<Foo>(0, 1.5, ‘c’);

auto of = make_optional<Foo>(Foo{0, 1.5,
‘c’});

auto af = any(Foo{0, 1.5, ‘c’});

auto uf = make_unique<Foo>(0, 1.5, ‘c’);

auto sf = make_shared<Foo>(0, 1.5, ‘c’);

auto of = make_optional<Foo>(0, 1.5, ‘c’);

auto af = make_any<Foo>(0, 1.5, ‘c’);

NOTE: EWG has mandated RVO so non move/copy-able also work

constexpr any ctor

any a;

any a; // (at namespace scope) constant initialization

