Proposal of [[unused]], [[nodiscard]] and
[fallthrough]] attributes.

Document No.: PO0O68RO

Project: Programming Language C++ - Evolution

Author: Andrew Tomazos <andrewtomazos@gmail.com>
Date: 2015-09-03

Summary
Background
Proposal
Motivation
Examples
Example 1
Example 2
Example 3
Example 4
Example 5

Existing Practice
Design Philosophy

Wording
7.6.6 Unused attribute dcl.attr.unused
7.6.7 Nodiscard attribute [dcl.attr.nodiscard]
7.6.8 Fallthrough attribute [dcl.attr.fallthrough]
FAQ

1. Why does [[fallthrough]] need a trailing semi-colon? Why doesn'’t it annotate the case label?
2. Why is [[nodiscard]] being proposed as an attribute and not a context-sensitive-keyword? Why doesn’t
nodiscard make the program ill-formed?

(1) A [[nodiscard]] attribute that generates a warning, like [[deprecated]]:

(2) A [[nodiscard]] attribute that causes ill-formed. no diagnistic required, like [[noreturn]]

(3) A nodiscard context-sensitive keyword that causes ill-formed, diagnostic required - like override:
3. What constitutes an entity being used?
4. Why do you discourage implementations from emitting a warning if an [[unused]] entity is used?

Summary

The attributes [[unused]], [[nodiscard]] and [[fallthrough]] are proposed. [[unused]] silences an unused entity
warning. [[nodiscard]] creates a warning if the return value of a function call is discarded. [[fallthrough]]
silences an implicit fallthrough warning in a switch. The three attributes have heavy use in existing practice,
and we seek standardization of them to provide them with portable names across implementations.

mailto:andrewtomazos@gmail.com

Background

There are currently 3 standard attributes in C++. They are:
[[noreturn]]
[[carries dependency]]
[[deprecated]]

They are specified, respectively, in [dcl.attr.noreturn], [dcl.attr.depend] and [dcl.attr.deprecated].

In addition to the standard attributes, most implementations offers a set of non-standard attributes.

Proposal

We propose the standardization of 3 more attributes. They are based on some of the most common and
useful existing non-standard attributes. They are:

[[unused]]
[[nodiscard]]
[[fallthrough]]

We offer a rough informative-only description here of what they do. (For a formal description of what is
proposed, see the Wording section below).

An entity marked [[unused]] means that the entity may appear to be unused for some reason. If an
implementation would have otherwise warned that the entity isn’t used, the [[unused]] attribute suppresses
the warning:

int x; // WARNING: x is unused
[[unused]] int x; // OK

If [[nodiscard]] is marked on a function, it stresses that the return value is not intended to be discarded. If
the return value is discarded, a warning is issued:

[[nodiscard]] int £();

void g() {
£f(); // WARNING: return value of nodiscard function discarded.

If [[nodiscard]] is marked on a type, it makes it so that all functions that return that type are implicitly
[[nodiscard]].

[[nodiscard]] struct S { ... };

S £0);
void g() {
f(); // WARNING: return value of nodiscard type discarded.

The [[fallthrough]] attribute is used like a statement we call a fallthrough statement:
[[fallthrough]];

A fallthrough statement is placed just before a case label in a switch. It serves as a hint that the feature of

execution “falling through” into the following case-labelled statement is intentional (not accidental). Once a
codebase is annotated with [[fallthrough]], the implementation can be configured to issue a warning if it isn’t
present:

switch (c) {
case ‘a’:
f(); // WARNING: implicit fallthrough
case ‘b’:
gQ);
[[fallthrough]l; // OK
case ‘c’:
h();

Motivation

The three proposed attributes share a common theme of all being about capturing the intent of the
programmer to improve the accuracy of diagnostic generation.

In many cases an unused entity can be a symptom of a logic error. For this reason, most implementations
can be configured to issue warnings about certain kinds of entities when they are not sufficiently used (by
some implementation-defined definition). Such a diagnostic is usually part of the default set (-Wall). In
cases where such a warning is emitted but determined to be a false alarm, some technique needs to be
used to individually suppress the warning. There are a variety of non-standard techniques:

__attribute__ ((“unused”))

[[gnu::unused]]
__pragma(warning(suppress:4100))
#pragma foo diagnostic unused-bar ignored
void f(int /*arg*/);

#define UNUSED(x) (void)(x)
void f(int /*unused*/);
template <typename T> void Unused(T&&) {}
#ifdef COMPILER1
#define UNUSED something

#elseif COMPILER2
#define UNUSED something else
etc

By standardizing the [[unused]] attribute we would provide a common, portable and more readable way to
express this intent.

A value-returning function can be called purely for its side-effects, and the return value discarded. For some
functions, the return value is an essential component for its proper operation, and should generally not be
discarded. Some types are designed to be used as the return value of such functions. Itis a common logic
error to accidentally discard a return value of such a function or of such a type. Similar to [[unused]], there
are a variety of non-standard techniques to express such a property, such as [[gnu::warn_unused_result]],
which provokes a warning when such a return value is discarded. The [[nodiscard]] attribute allows this
intent to be expressed in a common, portable way.

An extremely expensive logic error is accidental use of the little-used feature of switch statements whereby
the path of execution can implicitly flow from one case block to the one after it. The logic error that ensues
from such accidental fall through is usually quite insidious because the side effects of executing a second
“‘wrong” case block generally appear as quite reasonable things to happen locally without considering the big
picture of the system architecture. The system misbehaviour is usually caught some distance from the
origin, and can take a long-time to diagnose. For this reason, many programming languages offer a
fallthrough statement to explicitly denote this intent, and will fail to compile if it is not used on such an
execution path. Some C++ implementations are have developed a popular diagnostic and accompanying
[[fallthrough]] attribute statement. We propose the standardization of the attribute to provide the feature in a
common portable way to C++.

Examples

Example 1

Compiled with an unused variables warning enabled in a release build (NDEBUG):

std::pair<int, int> flatten(int x, int y, int z) {
// WARNING: y unused
assert(y == 0);
return {x, z};

std::pair<int, int> flatten(int x, int y [[unused]], int z) {
// OK
assert(y == 0);
return {x, z};

Example 2

When compiled with USE_IMPL1 defined:

static void impll () { ... }
static void impl2() { ... } // warning: impl2 unused
void iface () {
#ifdef USE IMPL1
impll () ;
#elif USE_IMPL2
impl2 () ;
#else

#error set an implementation

#endif

}

[[unused]] static void impll () { ... }

[[unused]] static void impl2() { ... } // OK

void iface() {
#ifdef USE IMPL1
impll(); // OK
#elif USE IMPL2
impl2(); // OK
#else
#error set an implementation

#endif

}

Example 3

template< class Function, class... Args>

[[nodiscard]] future async(Functioné&& f, Argsé&&... args);

int main () {
async([1{ £(0); }); // WARNING: return value discarded
async([1{ g(); }); // WARNING: return value discarded

Example 4

namespace example {

// Provides information about the success or
// failure of operations in the example api.
[[nodiscard]] struct Disposition { ... };

Disposition MoveUp () ;
Disposition MoveDown () ;

} // namespace example
int main () {

example: :MoveUp (); // WARNING: nodiscard return value discarded
example: :MoveDown (); // WARNING: nodiscard return value discarded

Example 5

Compiled with an implementation-defined implicit fallthrough warning enabled:

switch (n) {

case 22:

case 33: // OK: no statements between case labels
£();

case 44: // WARNING: no fallthrough statement
g();

[[fallthrough]];
case 55: // OK
if (x) |
h();
break;
}
else {
i();
[[fallthrough]];
}
case 66: // OK

PO
[[fallthrough]]; // WARNING: fallthrough statement out-of-place
q();
case 77: // WARNING: no fallthrough statement
r();

Existing Practice

There are literally millions of examples of the non-standard attributes on which [[unused]], [[nodiscard]] and
[[fallthrough]] are based (and of the families of related non-standard techniques) being used in the wild. One

must merely perform a GitHub code search at github.com/search, or an OpenHUB code.openhub.net search
to see these. (Keywords “unused”, “warn_unused_result”, “fallthrough”.)

Design Philosophy

We are not proposing standardization or normalization of “warnings”. As per the existing attributes, all three
proposed attributes merely serve as possible hints to an implementation, with a little non-normative
guidance on what they intend. There is nothing novel in their proposal, and they are mainly non-prescriptive
standardization of extensive existing practices.

We have intentionally erred on the side of implementation freedom. Ultimately, the purpose of warnings is to
catch mistakes, but there are many times when an implementation cannot definitively determine whether a
piece of code is intentional or accidental. The algorithms implementations use to determine when it is worth
issuing a warning in such cases are arbitrarily complex, so we would advocate, in general, to leave them as
a Qol issue. The goal of proposing these popular attributes is simply to provide some portable vocabulary to
express intents - that can then be leveraged in an implementation-defined fashion by these algorithms.

Wording

7.6.6 Unused attribute [dcl.attr.unused]

1. The attribute-token unused can be used to mark various names, entities and expression
statements that may be intentionally not used. [Note: If an implementation would have otherwise
emitted a warning about an entity, so marked, not being used, they are encouraged not to. -- end
note] [Note: Implementations are discouraged from emitting a warning if an entity marked unused,
is used. -- end note] It shall appear at most once in each attribute-list, with no
attribute-argument-clause.

2. The attribute may be applied to the declaration of a class, a typedef-name, a variable, a non-static
data member, a function, an enumeration, a template specialization, or a non-null expression
statement.

3. A name or entity declared without the unused attribute can later be re-declared with the attribute
and visa-versa. An entity is considered marked after the first declaration that is marked is analyzed,
and for the remainder of translation of the current translation unit.

4. When an expression statement is marked unused, it indicates that the expression is intentionally a
discarded-value expression. [Note: If an implementation would have otherwise emitted a warning
due to a nodiscard attribute, they are encouraged not to. -- end note]

7.6.7 Nodiscard attribute [dcl.attr.nodiscard]

1. The attribute-token nodiscard can be used to mark a function, a function template specialization
or a type.

2. A nodiscard call is a function call expression, other than an assignment or compound assignment,

that:
a. isto afunction marked nodiscard, or
b. isto an instantiation of a function template specialization marked nodiscard, or
c. returns atype marked nodiscard.

3. Appearance of a nodiscard call as a discarded-value expression is discouraged. [Note: This is
typically because discarding the return value of a nodiscard call has surprising consequences.
Implementations are encouraged to issue a warning, unless the nodiscard call is marked unused.
--end note]

7.6.8 Fallthrough attribute [dcl.attr.fallthrough]

1. A null statement marked with the attribute-token fallthrough, is a fallthrough statement. The
fallthrough attribute-token shall appear at most once in each attribute-list, with no
attribute-argument-clause.

2. Afallthrough statement may appear within an enclosing switch statement, on some path of
execution immediately between a preceding statement and a succeeding case-labeled statement.

3. [Note: If an implementation would have otherwise issued a warning about implicit fall through on a
path of execution immediately after a fallthrough statement, they are encouraged not to. -- end note]

FAQ

1. Why does [[fallthrough]] need a trailing semi-colon? Why
doesn’t it annotate the case label?

On 2015-09-09, at 7:41 AM, Richard Smith <richard@metafoo.co.uk> wrote:

The argument when we designed [[fallthrough]] was that [[fallthrough]] doesn't notionally appertain
to the label -- it appertains to the *preceding* sequence of labelled statements. Note that when you
have a sequence of case labels with no intervening statements, it allows fallthrough through all of
them, so it doesn't meaningfully apply to just one label. Also observe Example 3, where the
fallthrough within the 'case 55:' block is not even immediately lexically preceding a case label.

We viewed [[fallthrough]] as being more of a flow control keyword (being provided as an extension)
than a source annotation, and from that perspective it made sense for it to be a new kind of
statement (like a break statement or continue statement). (This also allows source compatibility with
existing systems that already have such a keyword -- see for instance the "__fallthrough;" statement
provided by MS SAL, which can be implemented with this proposal as "#define __fallthrough
[[fallthrough]]", but cannot be implemented with a label attribute.)

On 2015-09-09, at 8:48 AM, Andrew Tomazos <andrewtomazos@gmail.com> wrote:
Consider the following:

switch (n) {
case 2:
if (cl) |
£07
break;
} else if (c2) {
g(); // WARNING: no fallthrough statement
} else if (c3) {
h();
break;
} else 1if (c4) {
g();
h();
[[fallthrough]];
}
case 3:
h();

This can be addressed with this:

switch (n) {
case 2:
if (cl) {
£0) 7
break;
} else if (c2) {
g();
break; // <---- bug fixed
} else if (c3) {
h();
break;
} else 1if (c4) {
gQ);
h();
[[fallthrough]];
}

case 3:
h();
}
or this:

switch (n) {

case 2:

if (cl) |
£07
break;

} else 1if (c2) {
gQ);

[[fallthrough]]; // <--- nope, intentional
} else 1f (c3) {
h();
break;
} else if (c4) {
g();
h();
[[fallthrough]];
}
case 3:
h();
1

Had we specified fallthrough as appertaining to the label, and not as statements, this bug would
have been missed. Or rather, the programmer would not be able to express the fallthrough intent of
each block individually within the if-else chain as shown above.

fallthrough appertains to points on one or more paths of execution. It can be thought of as an

assertion statement that the next thing that will happen at run-time is the next case block will be
executed. (This assertion is checked statically at compile-time.)

2. Why is [[nodiscard]] being proposed as an attribute and not a
context-sensitive-keyword? Why doesn’t nodiscard make the
program ill-formed?

We have considered three different options in the design process of nodiscard:

(1) A [[nodiscard]] attribute that generates a warning, like

[[deprecated]]:

[[nodiscard]] int f£();

[[nodiscard]] struct S { ... }
S g();

int main () {

£(); // WARNING

g(); // WARNING

(2) A [[nodiscard]] attribute that causes ill-formed, no diagnistic
required, like [[noreturn]]

[[nodiscard]] int f();
[[nodiscard]] struct S { ... };
S g0

int main () {
f(); // UNDEFINED BEHAVIOUR
g(); // UNDEFINED BEHAVIOUR

(Note that “ill-formed no diagnostic required” and “undefined behaviour” are normatively synonyms,
they both place no requirements on the implementation with respect to the enclosing program.)

(3) A nodiscard context-sensitive keyword that causes ill-formed,

diagnostic required - like override:

int f£() nodiscard;

struct S nodiscard { ... };
S g();
int main () {

f(); // ERROR
g(); // ERROR

After careful deliberation we decided on proposing 1 with the following rationale:

The existing practice demonstrates there are cases when the programmer intentionally wants to discard the
result of a nodiscard function, even though in most cases they do not. The existing nodiscard is a hint from
the function designer to the function user, that immediately destroying the result is most likely not what you

want, but it isn’'t a straight-jacket and isn’t used as such.

In the intentional case, under option 1, the implementation is encouraged to emit a warning, but the

semantics of the program remain untouched. The return value is destroyed at the end of the statement in

well-defined order.

In the intentional case, under option 2, the program could potentially have arbitrary unexpected
consequences. Undefined behaviour is not allowed in many codebases. Some consider undefined
behaviour a semantic effect and not in spirit with the intended use of attributes.

In the intentional case, under option 3, the program is ill-formed and won’t compile. The programmer is
strictly denied what they want to do. The [[unused]] attribute could not be used to strictly suppress it, as that
would be a semantic effect.

3. What constitutes an entity being used?

As per the existing appearance of the term “used” in [dcl.attr.deprecated], this is unspecified and hence left
as a quality of implementation issue. There are a spectrum of increasingly complex algorithms an
implementation could use to statically analyze a little-used entity in a given program, and to take an
educated guess as to whether it likely enough to be indicative of an logic error to issue a warning. We feel it
would be onerous and unnecessarily restrictive on implementations to strictly specify a particular algorithm.

4. Why do you discourage implementations from emitting a
warning if an [[unused]] entity is used?

This is in line with existing practice. It shows that many times the [[unused]] annotation is used where a
certain set of defines leads to an entity appearing unused for one preprocessed translation unit, as typified
by the assert-NDEBUG case. If the implementation warned when an [[unused]]-marked entity was used,
this would trigger warnings when the other set of defines were used:

ie If an implementation warned about an [[unused]]-marked entity being used, then without NDEBUG the
following would generate a warning:

std::pair<int, int> flatten(int x, int y [[unused]], int z) {
assert(y == 0); // WARNING: y used 2?2

return {x, z};
This would of course defeat the purpose. The semantic of [[unused]] is that the entity MAY appear unused,
not that it MUST be unused.

It would be very difficult for an implementation to statically analyze a translation unit under all possible
results of preprocessing.

(Please note that there are millions of examples of unused. Even if this category typifies 90% of them, we
are still left with 100,000+ examples.)

