P0209r2 | make_from_tuple: apply for construction

Pablo Halpern phalpern@halpernwightsoftware.com

2016-6-23 | Intended audience: LWG

1 Abstract

This paper proposes a function template that applies a tuple of arguments to an object constructor similar
to the way apply works with non-constructor functions.

The template described in this paper is should be tied to the apply function, which is currently targeted for
C++17. Therefore, this feature should also be targeted for C++17.

2 Changes from R1 (from LWG review)

e Added missing std:: on forward
e Fixed typos

3 Changes from RO

e Removed uninitialized_construct_from_tuple as per LEWG review.
e Added constexpr

e Added an example.

e Re-based to the March 2016 C++17 working draft

4 Proposal

4.1 Motivation

N3915 introduced the apply function template into the Library Fundamentals T'S. This template takes an
invocable argument and a tuple argument and unpacks the tuple elements into an argument list for the
specified invocable. While extremely useful for invoking a function, apply is not well suited for constructing
objects from a list of arguments stored in a tuple. Doing so would require wrapping the object construction
in a lambda or other function and passing that function to apply, a process that, done generically, is more
complicated than the implementation of apply itself.

4.2 Summary

This proposal introduces a function template, make_from_tuple, to fill the void left by apply. The signature
for make_from_tuple is:


mailto:phalpern@halpernwightsoftware.com
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3915.pdf

template <class T, class Tuple>
constexpr T make_from_tuple(Tuple&& t);

It simply explodes it’s tuple argument into separate arguments, which it passes to the constructor for type
T, returning the newly-constructed object. Because of mandatory copy-elision in C+417, the return value is
effectively constructed in place for the client.

4.3 Example

make_from_tuple can be used to implement the piecewise constructor for std: :pair as follows:

template <class T1l, class T2>
template <class... Argsl, class... Args2>
pair<T1,T2>::pair(piecewise_construct_t,
tuple<Argsl...> first_args, tuple<Args2...> second_args)
: first(make_from_tuple<T1>(first_args))
, second(make_from_tuple<T2>(second_args))

5 Scope

Pure-library extension

6 Alternatives considered

There has been discussion of making tuple functionality more tightly integrated into the core language in
such a way that these functions would not be needed. More recently, a proposed direct_initialize facility
would allow apply to work with constructors. Until such a time as such a proposal is accepted, however,
these functions are simple enough, useful enough, and self-contained enough to consider for C4++17 and
would continue to be meaningful and convenient even if direct_initialize is accepted.

The names are, of course, up for discussion. A name that contains “apply” might be preferred, but I could
think of no reasonable name that met that criterion. LEWG considered several names and stuck with
make_from_tuple.

7 Implementation experience

The facility in this proposal have been fully implemented and tested. An open-source implementation under
the Boost license is available at: https://github.com/phalpern/uses-allocator

8 Formal wording

The following changes are relative to the March 2016 C+417 working draft. N4582.

In section 20.4.1 ([tuple.general]), add the following declarations to the <tuple> header (within the std
namespace), immediately after the declaration of apply:

P0209r2 2 Pablo Halpern


http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4582.pdf

template <class T, class Tuple>
constexpr T make_from_tuple(Tuple&& t);

In section 20.4.2.5 ([tuple.apply]), immediately after the description of apply, add the description for
make_from_tuple:

template <class T, class Tuple>
constexpr T make_from_tuple(Tuple&& t);

Returns: Given the exposition-only function:

template <class T, class Tuple, size_t... I>

constexpr T make_from_tuple_impl(Tuple&& t, index_sequence<I...>) {
return T(get<I>(std::forward<Tuple>(t))...);

¥

Equivalent to:

make_from_tuple_impl<T>(forward<Tuple>(t),
make_index_sequence<tuple_size_v<decay_t<Tuple>>>())

Note: The type of T must be supplied as an explicit template parameter, as it cannot be deduced
from the argument list.

P0209r2 3 Pablo Halpern



	Abstract
	Changes from R1 (from LWG review)
	Changes from R0
	Proposal
	Motivation
	Summary
	Example

	Scope
	Alternatives considered
	Implementation experience
	Formal wording

