Atomic minimum/maximum

Document #: P0493R5

Date: 2024-02-12

Project: Programming Language C++

Audience: WG21 SG1 (Concurrency and Parallelism)
Reply-to: Al Grant

<al.grant@arm.com>
Bronek Kozicki
<brok@spamcop.net>
Tim Northover
<tnorthover@apple.com>

Contents

1 Abstract 1
2 Changelog 1
3 Introduction 2
4 Background and motivation 2
5 The problem of conditional write 3
6 Infix operators in <atomic> and min/max 4
7 Motivating example 5
8 Implementation experience 6
9 Benchmarks 6
10 Note on pointer operations 7
11 Note on floating point operations 7
12 Acknowlegments 8
13 Changes to the C++ standard 8
14 References 11
1 Abstract

Add integer mazx and min operations to the set of operations supported in <atomic>. There are minor adjust-
ments to function naming necessitated by the fact that max and min do not exist as infix operators.

2 Changelog

— Revision R5, published 2024-02-12

mailto:al.grant@arm.com
mailto:brok@spamcop.net
mailto:tnorthover@apple.com

— In wording, drop changes in sections [atomics.types.float] and [atomics.ref.float]
— Add note on floating point operations
— Improve example polyfill implementation, move it to separate section 5.3
— Add implementation note
— Update benchmarks for improved polyfill
— Revision R4, published 2022-11-15
— Drop unusable benchmark
— Rebase on draft [N4917]
— Add “freestanding” to the wording of non-member functions
— In wording, add remarks to explain fetch_max and fetch_min operations
— In wording, add note on requirements of comparing pointers
— Add note on pointer operations
— Revision R3, published 2021-12-15
— Change formatting
— Revert to read-modify-write semantics, based on SG1 feedback
— Remove replace_key functions, based on SG1 feedback
— Simplify wording
— Add floating numbers support to wording
— Add feature test macro
— Remove one (exceedingly long) motivating example
— Rewrite other motivating example in modern C++
— Rebase on draft [N4901]
— Add example implementation based on CAS loop
— Add benchmark comparing hardware vs CAS-loop implementation
— Revision R2, published 2021-05-11
— Change proposal to make the store unspecified if the value does not change
— Align with C++20
— Revision R1, published 2020-05-08
— Add motivation for defining new atomics as read-modify-write
— Clarify status of proposal for new-value-returning operations.
— Align with C++17.
— Revision RO pulished 2016-11-08
— Original proposal

3 Introduction

This proposal extends the atomic operations library to add atomic maximum/minimum operations. These were
originally proposed for C++ in [N3696] as particular cases of a general “priority update” mechanism, which
atomically combined reading an object’s value, computing a new value and conditionally writing this value if it
differs from the old value.

In revision R2 of this paper we have proposed atomic maximum/minimum operations where it is unspecified
whether or not the store takes place if the new value happens to be the same as the old value. This has caused
contention in LEWG, but upon further discussion in SG1 turned out to be unnecessary - as discussed in section
5.

4 Background and motivation

Atomic addition (fetch-and-add) was introduced in the NYU Ultracomputer [Gottlieb 1982], has been imple-
mented in a variety of hardware architectures, and has been standardized in C and C++. Atomic maxi-
mum,/minimum operations (fetch-and-maz , fetch-and-min) have a history almost as long as atomic addition,
e.g. see [Lipovski 1988], and have also been implemented in various hardware architectures but are not currently
standard in C and C++. This proposal fills the gap in C++.

Atomic maximum/minimum operations are useful in a variety of situations in multithreaded applications:

— optimal implementation of lock-free shared data structures - as in the motivating example later in this
paper

— reductions in data-parallel applications: for example, OpenMP supports maximum as a reduction operation

— recording the maximum so far reached in an optimization process, to allow unproductive threads to termi-
nate

— collecting statistics, such as the largest item of input encountered by any worker thread.

Atomic maximum/minimum operations already exist in several other programming environments, including
OpenCL, and in some hardware implementations. Application need, and availability, motivate providing these
operations in C++.

The proposed language changes add atomic max/min to <atomic> for builtin types, including integral and
pointer (but not floating point).

5 The problem of conditional write

The existing atomic operations (e.g. fetch_and) have the effect of a read-modify-write, irrespective of whether
the value changes. This is how atomic max/min are defined in several APIs (OpenCL, CUDA, C++AMP, HCC)
and in several hardware architectures (ARM, RISC-V). However, some hardware (POWER) implements atomic
max/min as an atomic read-and-conditional-store. If we look at an example CAS-loop implementation of this
proposal, it is easy to see why such read-and-conditional-store can be more efficient.

Following the discussion in SG1 the authors are convinced that a similar implementation can be conforming, with
some adjustments (example presented in 5.3), without the catch all wording such as “it is unspecified whether
or not the store takes place”.

Note

Example polyfill implementations listed below rely on a simple helper function whose task is to adjust
memory_order to make it a valid operand for the load operations:

constexpr inline memory_order drop_release(memory_order m) noexcept {
return (m == memory_order_release 7 memory_order_relaxed
((m == memory_order_acq_rel || m == memory_order_seq_cst) 7 memory_order_acquire

tm));

5.1 Example CAS-loop implementation with read-and-conditional-store

This implementation skips writes entirely if pv is already equal to max(v, t). It does not conform with the
read-modify-write semantics, which this paper proposes:

template <typename T>
T atomic_fetch_max_explicit(atomic<T>* pv,
typename atomic<T>::value_type v,
memory_order m) noexcept {
auto const mr = drop_release(m);
auto t = pv->load(mr);
while (max(v, t) '= t) {
if (pv->compare_exchange_weak(t, v, m, mr))
break;
}

return t;

https://computing.llnl.gov/tutorials/openMP/#REDUCTION/minimum
https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf

5.2 Example CAS-loop implementation with read-modify-write

This implementation is performing an unconditional store, which means all writers need exclusive cache line
access. Although conforming with the read-modify-write semantics, this may result in excessive writer contention:

template <typename T>
T atomic_fetch_max_explicit(atomic<T>* pv,
typename atomic<T>::value_type v,
memory_order m) noexcept {
auto const mr = drop_release(m);
auto t = pv->load(mr);
while (!pv->compare_exchange weak(t, max(v, t), m, mr))
;

return t;

5.3 Example improved CAS-loop implementation with read-modify-write

This implementation is based on read-and-conditional-store, with an added extra step to ensure that a store does
take place at least once, if required:

— if the user requested memory order is not a release, then store is not required
— otherwise, add a dummy write such as fetch_add (0, m) and use its result.

This is demonstrated below:

template <typename T>
T atomic_fetch_max_explicit(atomic<T>* pv,
typename atomic<T>::value_type v,
memory_order m) noexcept {
auto const mr = drop_release(m);
auto t = (mr != m) ? pv->fetch_add(0, m) : pv->load(mr);
while (max(v, t) != t) {
if (pv->compare_exchange_weak(t, v, m, mr))
return t;

return t;

}

A subtle difference between this and the previous implementation is that, in this case, an extra “dummy” store
can take place. The authors argue that this difference in behaviour is unobservable in the standard C+-+ memory
model.

Similarly, given an architecture which implements atomic minimum/maximum in hardware with read-and-
conditional-store semantics, a conforming read-modify-write fetch_max() can be implemented with very little
overhead.

For this reason and for consistency with all other atomic instructions, we have decided to use read-modify-write
semantics for the proposed atomic minimum/maximum.

6 Infix operators in <atomic> and min/max

The current <atomic> provides atomic operations in several ways:

— as a named non-member function template e.g. atomic_fetch_add returning the old value
— as a named member function template e.g. atomic<T>: :fetch_add() returning the old value
— as an overloaded compound operator e.g. atomic<T>: :operator+=() returning the new value

Adding ‘max’ and ‘min’ versions of the named functions is straightforward. Unlike the existing atomics, max/min
operations exist in signed and unsigned flavors. The atomic type determines the operation. There is precedent for
this in C, where all compound assignments on atomic variables are defined to be atomic, including sign-sensitive
operations such as divide and right-shift.

The overloaded operator atomic<T>: :operator key =(n) is defined to return the new value of the atomic object.
This does not correspond directly to a named function. For max and min, we have no infix operators to overload.
So if we want a function that returns the new value we would need to provide it as a named function. However,
for all operators the new value can be obtained as fetch_key(n) key n, (the standard defines the compound
operator overloads this way) while the reverse is not true for non-invertible operators like ‘and’ or ‘max’.

Thus new functions returning the new result would add no significant functionality other than providing one-
to-one equivalents to <atomic> existing compound operator overloads. Revision R2 of this paper tentatively
suggested such functions, named replace_key (following some of the early literature on atomic operations -
[Kruskal 1986] citing [Draughon 1967]). Having discussed this in SG1, the authors have decided not to propose
addition of extra functions and correspondingly they have been removed in revision R3. This same result can be
obtained by the user with a simple expression such as max(v.fetch_max(x), x) or min(v.fetch_min(x), x).

During the discussion in SG1, it was suggested that a new paper could be written proposing key_fetch functions
returning new values. This is not such paper.

7 Motivating example

Atomic fetch-and-max can be used to implement a lockfree bounded multi-consumer, multi-producer queue.
Below is an example based on [Gong 1990]. Note, the original paper assumed existence of EXCHANGE operation
which in practice does not exist on most platforms. Here this was replaced by a two-step read and write, in
addition to translation from C to C++. For this reason the correctness proof from [Gong 1990] does not apply.

template <typename T, size_t Size>

struct queue_t {
static_assert(std::is_nothrow_default_constructible_v<T>);
static_assert(std::is_nothrow_copy_constructible_v<T>);
static_assert(std::is_nothrow_swappable_v<T>);

using elt = T;
static constexpr int size = Size;

struct entry {

elt item {7}; // a queue element
std::atomic<int> tag {-13}; // its generation number
g
entry elts[size] = {}; // a bounded array

std::atomic<int> back {-1};

friend void enqueue(queue_t& queue, elt x) noexcept {
int i = queue.back.load() + 1; // get a slot in the array for the new element
while (true) {
// exchange the new element with slots walue if that slot has not been used
int empty = -1; // expected tag for an empty slot
auto& e = queue.elts[i 7 size];
// use two-step write: first store an odd value while we are writing the new element
if (std::atomic_compare_exchange_strong(&e.tag, &empty, (i / size) * 2 + 1)) {
using std::swap;
swap(x, e.item);
e.tag.store((i / size) * 2); // done writing, switch tag to even (ie. ready)

break;

}
++1i;
}
std: :atomic_fetch_max(&queue.back, i); // reset the walue of back
}
friend auto dequeue(queue_t& queue) noexcept -> elt {
while (true) { // keep trying until an element is found
int range = queue.back.load(); // search up to back slots
for (int i = 0; i <= range; i++) {
int ready = (i / size) * 2; // expected even tag for ready slot

auto& e = queue.elts[i 7, size];
// use two-step rTead: first store -2 while we are reading the element
if (std::atomic_compare_exchange_strong(&e.tag, &ready, -2)) {

using std::swap;

elt ret{};

swap(ret, e.item);

e.tag.store(-1); // done reading, switch tag to -1 (ie. empty)
return ret;

}
+
}
¥
5

8 Implementation experience

The required intrinsics have been added to Clang.

9 Benchmarks

We have implemented benchmark bench and made it available on [Github].

— bench is finding a maximum value from a PRNG. We were able to achieve acceptably low standard deviation
of results for this test. The selected PRNG is a linear distribution 2e9 wide, using 10°000 PRNG samples
per run. In this benchmark, the fetch_max updates were relatively infrequent.

We have measured the nanosecond time of different implementations of:

atomic_fetch_max_explicit(&max, i, std::memory_order_acq_rel)

where 1 is generated by a PRNG. The benchmarks capture the cost of contention to max from varying number of
cores. The benchmarks were run on AWS EC2 instance type c7g.16xlarge (i.e. 64 cores ARMv8.4 Graviton3
CPU). The machine was running Linux kernel 6.1 and was configured for complete isolation of cores 1-63. We

used core 0 only when running the benchmark across all 64 cores, in which case the samples from this core were
dropped (to avoid the noise caused by the normal operating system operation).

The benchmark parameters were:

— -m 0.5 : maximum std. deviation for PRNG cost calibration
— -i 1e6 : number of iterations (this translates to 100 runs, each sampling the PRNG 10’000 times)

The table below compares two fetch_max implementations:

— -t t : CAS-loop based algorithm presented in 5.3 (we call it “smart”)

— -t h: hardware instruction ldsmaxl available in ARMS8.1 instruction set

CAS-loop “smart” Hardware instruction
Cores Time ns Std. deviation Time ns Std. deviation
2 13 1 13 1
4 23 2 22 2
8 74 12 74 13
16 258 22 238 22
24 443 28 406 22
32 634 34 586 27
40 834 39 772 34
48 1005 42 942 37
56 1194 47 1114 39
64 1380 48 1294 46

During benchmarking, we have observed that the time of read-and-conditional-store CAS-loop algorithm (as
presented in 5.2, we call it “weak” in the benchmarks) was almost immeasurable, irrespective of the number
of cores. We explain this by how rarely the PRNG sampling benchmark updates the max value. Similarly the
“smart” algorithm with std: :memory_order_release had shown to be very fast, irrespective of the number of
cores.

10 Note on pointer operations

It was pointed out that the semantics of pointer operations is not clear in the revision 3 of this paper. The new
wording in revision 4 makes it clear that the new atomic operations perform computation as-if by max and min
algorithms, which also work on pointers if these point the same complete object (or array), see [expr.rel] remark
4. The intent is to give fetch_max and fetch_min the same semantics, including the requirements.

This is in apparent divergence from other atomic operations which are guaranteed not to create undefined
behaviour (e.g. “If the result is not a representable value for its type (7.1), the result is unspecified, but the
operations otherwise have mo undefined behavior.” for floating point and “The result may be an undefined
address, but the operations otherwise have no undefined behavior.” for pointers). Note that fetch_max and
fetch_min in principle do not create new values as opposed to other atomic functions; the result of the function
is either an old value of the atomic object or a new value, as provided by the caller. Hence there’s less demand
for an “escape clause” for potentially “undefined address” (there likely isn’t one).

If this proposal is accepted and we gain more experience with existing implementations of fetch_max and
fetch_min, plausibly an “escape clause” similar to ones quoted above might be added in the future revisions of
C++ e.g. by allowing comparison of unrelated pointers. At this moment we aren’t certain that such hypothetical
clause would be implementable; furthermore a user with a need for such operation could use conversion to and
from uintptr_t instead (and deal with the fallout of using resulting pointer).

11 Note on floating point operations

Following the discussion in Varna ’23 plenary, also carried on the reflector, the authors decided to remove the
proposed fetch_min and fetch_max from the loating point specializations (that is, proposed wording in sections
[atomics.types.float] and [atomics.ref.float]).

Floating point types do not receive the same treatment in std::min and std::max as other types do (due to
the presence of NaN values and signed zero), hence they would have to be either defined using different means,
or at the very least worded differently. Since there already is implementation experience regarding the use of
std::fmin and std::fmax in atomic operations on floating point numbers, and a new paper [P3008] is being

prepared to propose the relevant addition in the standard, trying to nail down the semantics based on std: :min
and std: :max in this proposal seems counterproductive.

12 Acknowlegments

This paper benefited from discussion with Mario Torrecillas Rodriguez, Nigel Stephens, Nick Maclaren, Olivier
Giroux, Gasper Azman and Jens Maurer.

13 Changes to the C++4 standard

The following text outlines the proposed changes, based on [N4917].
17 Language support library [support]

17.3 Implementation properties [support.limits]

17.3.2 Header <version> synopsis

Add feature test macro:

#define __cpp_lib_atomic_min_max 202XXXL // also in <atomic>

33 Concurrency support library [thread]
33.5 Atomic operations [atomics]
33.5.2 Header <atomic> synopsis [atomics.syn]

— Add following functions, immediately below atomic_fetch_zor_explicit:

namespace std {
// 33.5.9, non-member functions

template<class T>
T atomic_fetch_max(volatile atomic<T>*, // freestanding
typename atomic<T>::value_type) noexcept;
template<class T>
T atomic_fetch_max(atomic<T>*, // freestanding
typename atomic<T>::value_type) noexcept;
template<class T>
T atomic_fetch_max_explicit(volatile atomic<T>*, // freestanding
typename atomic<T>::value_type,
memory_order) noexcept;
template<class T>
T atomic_fetch_max_explicit(atomic<T>x*, // freestanding
typename atomic<T>::value_type,
memory_order) noexcept;
template<class T>
T atomic_fetch_min(volatile atomic<T>*, // freestanding
typename atomic<T>::value_type) noexcept;
template<class T>
T atomic_fetch_min(atomic<T>*, // freestanding
typename atomic<T>::value_type) noexcept;
template<class T>
T atomic_fetch_min_explicit(volatile atomic<T>*, // freestanding
typename atomic<T>::value_type,
memory_order) noexcept;
template<class T>

T atomic_fetch_min_explicit(atomic<T>x*, // freestanding

typename atomic<T>::value_type,
memory_order) noexcept;

}

33.5.7 Class template atomic_ ref [atomics.ref.generic]
33.5.7.3 Specializations for integral types [atomics.ref.int]

— Add following public functions, immediately below fetch_zor:

namespace std {
template <> struct atomic_ref<integral> {

integral fetch_max(integral, memory_order = memory_order::seq_cst) const noexcept;

integral fetch_min(integral, memory_order

};

— Change remark 6:

memory_order: :seq_cst) const noexcept;

Remarks: Fer Except for fetch_max and fetch_min, for signed integer types, the result is as if the object
value and parameters were converted to their corresponding unsigned types, the computation performed

on those types, and the result converted back to the signed type.
[Note 2 : There are no undefined results arising from the computation. —- end note]

— Add remark 7 immediately below:

Remarks: For fetch_max and fetch_min, the maximum and minimum computation is performed as if by

max and min algorithms [alg.min.max], respectively, with the object value and the first parameter as the

arguments.
— Bump ezisting remarks below new remark 7
33.5.7.5 Partial specialization for pointers [atomics.ref.pointer]
— Add following public functions, immediately below fetch_sub:
namespace std {

template <class T> struct atomic_ref<T *> {

T* fetch_max(T *, memory_order = memory_order::seq_cst) const noexcept;
T* fetch_min(T *, memory_order = memory_order::seq_cst) const noexcept;
};
}

— Add remark 7 with note 1 immediately below remark 6:

Remarks: For fetch_max and fetch_min, the maximum and minimum computation is performed as if by
max and min algorithms [alg.min.max], respectively, with the object value and the first parameter as the
arguments.

[Note 1: If the pointers point to different complete objects (or subobjects thereof), the < operator does not
establish a strict weak ordering ([tab:cpp17.lessthancomparable],[expr.rel]) — end note]

— Bump existing remarks below new remark 7
33.5.8 Class template atomic [atomics.types.generic]

33.5.8.3 Specializations for integers [atomics.types.int]

— Add following public functions, immediately below fetch_zor:

namespace std {

3

template <> struct atomic<integral> {

integral fetch_max(integral,
integral fetch_max(integral,
integral fetch_min(integral,
integral fetch_min(integral,

memory_order
memory_order
memory_order
memory_order

= memory_order:
memory_order:
memory_order:
memory_order:

:seq_cst)
:seq_cst)
:seq_cst)
:seq_cst)

volatile noexcept;
noexcept;
volatile noexcept;
noexcept;

};

In table 146, [tab:atomic.types.int.comp], add the following entries (note empty “Op” column):

key Op Computation
max maximum
min minimum

Change remark 8:

Remarks: Fer Except for fetch_max and fetch_min, for signed integer types, the result is as if the object
value and parameters were converted to their corresponding unsigned types, the computation performed
on those types, and the result converted back to the signed type.

[Note 2 : There are no undefined results arising from the computation. —- end note]
Add remark 9 immediately below:

Remarks: For fetch_max and fetch_min, the maximum and minimum computation is performed as if by
max and min algorithms [alg.min.max], respectively, with the object value and the first parameter as the
arguments.

Bump existing remarks below new remark 9

33.5.8.5 Partial specialization for pointers [atomics.types.pointer]

— Add following public functions, immediately below fetch_sub:

namespace std {

3

template <class T> struct atomic<T*> {

T*x

fetch_max (T*,

memory_order = memory_order::seq_cst) volatile noexcept;
T+ fetch_max(T*, memory_order memory_order: :seq_cst) noexcept;
T* fetch_min(T*, memory_order = memory_order::seq_cst) volatile noexcept;

T*

fetch_min(T*,

};

memory_order

memory_order:

:seq_cst)

noexcept;

— In table 147, [tab:atomic.types.pointer.comp], add the following entries (note empty “Op” column):

key Op Computation
max maximum
min minimum

10

— Add remark 9 with note 2 immediately below remark 8:

Remarks: For fetch_max and fetch_min, the maximum and minimum computation is performed as if by
max and min algorithms [alg.min.max], respectively, with the object value and the first parameter as the
arguments.

[Note 2: If the pointers point to different complete objects (or subobjects thereof), the < operator does not
establish a strict weak ordering ([tab:cppl17.lessthancomparable], [expr.rel]) — end note]

— Bump existing remarks below new remark 9

14 References

[Draughon 1967] E. Draughon, Ralph Grishman, J. Schwartz, and A. Stein. Programming Considerations for
Parallel Computers.
https://nyuscholars.nyu.edu/en/publications/programming-considerations-for-parallel-computers

[Github] Al Grant, Bronek Kozicki, and Tim Northover. Atomic maximum/minimum.
https://github.com/Bronek/wg21-p0493

[Gong 1990] Chun Gong and Jeanette M. Wing. A Library of Concurrent Objects and Their Proofs of Correctness.
http://www.cs.cmu.edu/~wing/publications/CMU-CS-90-151.pdf

[Gottlieb 1982] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry Rudolph, and
Marc Snir. The NYU Ultracomputer - Designing an MIMD Shared Memory Parallel Computer.
https://ieeexplore.ieee.org/document /1676201

[Kruskal 1986] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. Efficient Synchronization on Multiprocessors
with Shared Memory.
https://dl.acm.org/doi/10.1145/48022.48024

[Lipovski 1988] G. J. Lipovski and Paul Vaughan. A Fetch-And-Op Implementation for Parallel Computers.
https://ieeexplore.ieee.org/document /5249

[N3696] Bronek Kozicki. 2013-06-26. Proposal to extend atomic with priority update functions.
https://wg21.link /n3696

[N4901] Thomas Képpe. 2021-10-22. Working Draft, Standard for Programming Language C++.
https://wg21.link /n4901

[N4917] Thomas Képpe. 2022-09-05. Working Draft, Standard for Programming Language C++.
https://wg21.link /n4917

[P3008] Gonzalo Brito Gadeschi and David Sankel. P3008 : Atomic floating-point min/max.
https://wg21.link /p3008

11

https://nyuscholars.nyu.edu/en/publications/programming-considerations-for-parallel-computers
https://github.com/Bronek/wg21-p0493
http://www.cs.cmu.edu/~wing/publications/CMU-CS-90-151.pdf
https://ieeexplore.ieee.org/document/1676201
https://dl.acm.org/doi/10.1145/48022.48024
https://ieeexplore.ieee.org/document/5249
https://wg21.link/n3696
https://wg21.link/n4901
https://wg21.link/n4917
https://wg21.link/p3008

	Abstract
	Changelog
	Introduction
	Background and motivation
	The problem of conditional write
	Infix operators in <atomic> and min/max
	Motivating example
	Implementation experience
	Benchmarks
	Note on pointer operations
	Note on floating point operations
	Acknowlegments
	Changes to the C++ standard
	References

