
Doc. no.: P0809R0
Date: 2017-10-12
Reply to: Titus Winters (titus@google.com),
Audience: LEWG/LWG

Comparing Unordered Containers

Abstract
Resolve issue 2831 by applying the proposed resolution. Comparing equality among unordered
containers does not require identical hasher behavior, only identical comparison (Pred)
behavior.

Background
The current wording on requirements for comparison of unordered containers says this
[unord.req]:

Two unordered containers a and b compare equal if a.size() == b.size() and, for every
equivalent-key group [Ea1, Ea2) obtained from a.equal_ range(Ea1) , there exists an
equivalent-key group [Eb1, Eb2) obtained from b.equal_ range(Ea1) , such that
is_ permutation(Ea1, Ea2, Eb1, Eb2) returns true .
…
The behavior of a program that uses operator== or operator!= on unordered containers is
undefined unless the Hash and Pred function objects respectively have the same behavior for
both containers and the equality comparison function for Key is a refinement of the partition into
equivalent-key groups produced by Pred .

Notice that Pred is implicated in the equality definition, but Hash is not. Thus, the UB definition
for heterogenous containers should not apply merely because of inequity among hashers - and
in practice, this may be valuable because of hash seeding and randomization. Hash equality
may be necessary for efficiency (a particularly poor hash function may cause the equal_range
operations above to be linear in the size of the container), but not for correctness.

Proposed Wording
Change [unord.req] /p12 as indicated:

mailto:titus@google.com
https://cplusplus.github.io/LWG/lwg-active.html#2831
http://eel.is/c++draft/unord.req#12.sentence-1
http://eel.is/c++draft/unord.req#12.sentence-5
https://wg21.link/unord.req

Two unordered containers a and b compare equal if a.size() == b.size() and, for every
equivalent-key group [Ea1, Ea2) obtained from a.equal_range(Ea1), there exists an
equivalent-key group [Eb1, Eb2) obtained from b.equal_range(Ea1), such that
is_permutation(Ea1, Ea2, Eb1, Eb2) returns true. For unordered_set andunordered_map, the
complexity of operator== (i.e., the number of calls to the == operator of the value_type, to the
predicate returned by key_eq(), and to the hasher returned by hash_function()) is proportional to
N in the average case and to N 2 in the worst case, where N is a.size(). For unordered_multiset
and unordered_multimap, the complexity of operator== is proportional to ∑ E i 2 in the average
case and to N 2 in the worst case, where N is a.size(), and E i is the size of the i th equivalent-key
group in a. However, if the respective elements of each corresponding pair of equivalent-key
groups Ea i and Eb i are arranged in the same order (as is commonly the case, e.g., if a and b are
unmodified copies of the same container), then the average-case complexity for
unordered_multiset and unordered_multimap becomes proportional to N (but worst-case
complexity remains 𝒪(N 2), e.g., for a pathologically bad hash function). The behavior of a
program that uses operator== or operator!= on unordered containers is undefined unless the
Hash and Pred function object s respectively have has the same behavior for both containers and
the equality comparison operator for Key is a refinement of the partition into equivalent-key
groups produced by Pred.

