
P1030R0: std::filesystem::path_view

Document #: P1030R0
Date: 2018-05-06
Project: Programming Language C++

Library Evolution Working Group
Reply-to: Niall Douglas

<s_sourceforge@nedprod.com>

A proposal for a std::filesystem::path_view, a non-owning view of character sequences in the
format of a local �lesystem path.

A reference implementation of the proposed path view can be found at https://ned14.github.

io/afio/. It has been found to work well on recent editions of GCC, clang and Microsoft Visual
Studio, on x86, x64, ARM and AArch64.

Contents

1 Introduction 2

2 Impact on the Standard 3

3 Proposed Design 3

4 Design decisions, guidelines and rationale 7

4.1 Why on Microsoft Windows interpret chars as UTF-8 when
std::filesystem::path interprets chars as ASCII? 7

4.2 Requiring legality of read of character after end of view 9
4.3 Fixed use of stack in struct c_str . 9
4.4 Why is only char input supported, except on Microsoft Windows? 10

5 Technical speci�cations 10

6 Frequently asked questions 10

6.1 Does this mean that all APIs consuming std::filesystem::path ought to now con-
sume std::filesystem::path_view instead? . 10

7 Acknowledgements 11

8 References 11

1

mailto:s_sourceforge@nedprod.com
https://ned14.github.io/afio/
https://ned14.github.io/afio/

1 Introduction

In the current C++ standard, the canonical way for supplying �lesystem paths to C++ functions
which consume �le system paths is std::filesystem::path. This wraps up
std::filesystem::path::string_type= std::basic_string<Char> with a platform speci�c choice
of Char (currently Microsoft Windows uses Char = wchar_t, everything else uses Char = char) with
iterators and member functions which parse the string according to the path delimiters for that plat-
form. For example std::filesystem::path on Microsoft Windows might parse this string:

C:\Windows\System32\notepad.exe

into:

• root_name() = �C:�

• root_directory() = �\�

• root_path() = �C:\�

• relative_path() = �Windows\System32\notepad.exe�

• parent_path() = �C:\Windows\System32�

• filename() = �notepad.exe�

• stem() = �notepad�

• extension() = �.exe�

• *begin() = �C:�

• *++begin() = �/� (note the forward, not backward, slash. This is considered to be the name
of the root directory)

• *++++begin() = �Windows�

• *++++++begin() = �System32� (note no intervening slash)

For every one of these decompositions, a new path is returned, which means a new underlying
std::basic_string<Char>, which means a new memory allocation. In code which performs a lot
of path traversal and decomposition, these memory allocations, and the copying of fragments of
path around, can start to add up. For example, in [P1031] Low level �le i/o library, a directory
enumeration costs around 250 nanoseconds per entry amortised. Each path construction might cost
that again. Therefore, for each item enumerated, one halves the directory enumeration performance
solely due to the choice of path, which is why P1031 uses path_view instead, and thus can enumerate
four million directory items per second which makes handling ten million item plus directories a
breeze.

There is also a negative e�ect on CPU caches of copying around path strings. Paths are increasingly
reaching hundred of bytes, as anyone running into the 260 path character limit on Microsoft Windows
can testify. Every time one copies a path, one is evicting potentially useful data from the CPU
caches, which need not be evicted if one did not copy paths.

2

Enter thus the proposed std::filesystem::path_view, which is a lightweight reference to part,
or all of, a source of �lesystem path data. It provides most of the same member functions as
std::filesystem::path, operating by constant and often constexpr reference upon some character
source which is in the format of the local platform's �le system path, or a generic path, same
as with std::filesystem::path. It is intended that for most functions currently accepting a
std::filesystem::path, they can now accept a std::filesystem::path_view instead with minor
to none refactoring of implementation.

2 Impact on the Standard

The proposed library is a pure-library solution.

3 Proposed Design

Much of the proposed path view is unsurprising, with a large subset of std::filesystem::path's
observers and modi�ers replicated. Constexpr abounds, and the path view is trivially copyable and
is thus suitable for passing around by value.

1 class path_view
2 {
3 public:
4 // Const iterator, returns path views of each path section.
5 class const_iterator;
6 // Iterator, aliases const iterator.
7 class iterator;
8 // Const reverse iterator
9 class const_reverse_iterator;

10 // Reverse iterator
11 class reverse_iterator;
12 // Size type
13 using size_type = std::size_t;
14 // Difference type
15 using difference_type = std::ptrdiff_t;
16

17 public:
18

19 // Constructs an empty path view
20 constexpr path_view();
21 ~path_view() = default;
22

23 // Implicitly constructs a path view from a path.
24 // The input path MUST continue to exist for this view to be valid.
25 path_view(const filesystem::path &v) noexcept;
26

27 // Implicitly constructs a path view from a string.
28 // On Windows this is assumed to be in UTF-8, not ASCII.
29 // The input string MUST continue to exist for this view to be valid.
30 path_view(const std::string &v) noexcept;
31

3

32 // Implicitly constructs a path view from a zero terminated ‘const char *‘.
33 // On Windows this is assumed to be in UTF-8, not ASCII.
34 // The input string MUST continue to exist for this view to be valid.
35 constexpr path_view(const char *v) noexcept;
36

37 // Constructs a path view from a lengthed ‘const char *‘.
38 // On Windows this is assumed to be in UTF-8, not ASCII.
39 // The input string MUST continue to exist for this view to be valid.
40 constexpr path_view(const char *v, size_t len) noexcept;
41

42 /* Implicitly constructs a path view from a string view.
43 On Windows this is assumed to be in UTF-8, not ASCII.
44 \warning The byte after the end of the view must be legal to read.
45 */
46 constexpr path_view(string_view v) noexcept;
47

48 #ifdef _WIN32
49 // Implicitly constructs a path view from a string.
50 // The input string MUST continue to exist for this view to be valid.
51 path_view(const std::wstring &v) noexcept;
52

53 // Implicitly constructs a path view from a zero terminated ‘const wchar_t *‘.
54 // The input string MUST continue to exist for this view to be valid.
55 constexpr path_view(const wchar_t *v) noexcept;
56

57 // Constructs a path view from a lengthed ‘const wchar_t *‘.
58 // The input string MUST continue to exist for this view to be valid.
59 constexpr path_view(const wchar_t *v, size_t len) noexcept;
60

61 /* Implicitly constructs a path view from a wide string view.
62 \warning The character after the end of the view must be legal to read.
63 */
64 constexpr path_view(wstring_view v) noexcept;
65 #endif
66

67 // Default copy constructor
68 path_view(const path_view &) = default;
69 // Default move constructor
70 path_view(path_view &&o) noexcept = default;
71 // Default copy assignment
72 path_view &operator=(const path_view &p) = default;
73 // Default move assignment
74 path_view &operator=(path_view &&p) noexcept = default;
75

76 // Swap the view with another
77 constexpr void swap(path_view &o) noexcept;
78

79 // True if empty
80 constexpr bool empty() const noexcept;
81

82 // Exactly the same as for filesystem::path
83 constexpr bool has_root_path() const noexcept;
84 constexpr bool has_root_name() const noexcept;
85 constexpr bool has_root_directory() const noexcept;
86 constexpr bool has_relative_path() const noexcept;
87 constexpr bool has_parent_path() const noexcept;

4

88 constexpr bool has_filename() const noexcept;
89 constexpr bool has_stem() const noexcept;
90 constexpr bool has_extension() const noexcept;
91 constexpr bool is_absolute() const noexcept;
92 constexpr bool is_relative() const noexcept;
93

94 // Adjusts the end of this view to match the final separator, same as filesystem::path
95 constexpr void remove_filename() noexcept;
96

97 // Returns the size of the view in characters, same as filesystem::path::native().size()
98 constexpr size_t native_size() const noexcept;
99

100 // Exactly the same as for filesystem::path, but returning a slice of this view
101 constexpr path_view root_name() const noexcept;
102 constexpr path_view root_directory() const noexcept;
103 constexpr path_view root_path() const noexcept;
104 constexpr path_view relative_path() const noexcept;
105 constexpr path_view parent_path() const noexcept;
106 constexpr path_view filename() const noexcept;
107 constexpr path_view stem() const noexcept;
108 constexpr path_view extension() const noexcept;
109

110 // Return the path view as a filesystem path.
111 filesystem::path path() const;
112

113 /*! Compares the two string views via the view’s ‘compare()‘ which in turn calls
114 ‘traits::compare()‘. Be aware that if the path views do not view the same underlying
115 representation, a UTF based comparison will occur rather than a ‘memcmp()‘ of
116 the raw bytes.
117 */
118 constexpr int compare(const path_view &p) const noexcept;
119 constexpr int compare(const char *s) const noexcept;
120 constexpr int compare(string_view str) const noexcept;
121 #ifdef _WIN32
122 constexpr int compare(const wchar_t *s) const noexcept;
123 constexpr int compare(wstring_view str) const noexcept;
124 #endif
125

126 // iterator is the same as const_iterator
127 constexpr iterator begin() const;
128 constexpr iterator end() const;
129

130 // Instantiate from a ‘path_view‘ to get a zero terminated path suitable for feeding to the kernel
131 struct c_str;
132 friend struct c_str;
133 };
134

135 // Usual free comparison functions
136 inline constexpr bool operator==(path_view x, path_view y) noexcept;
137 inline constexpr bool operator!=(path_view x, path_view y) noexcept;
138 inline constexpr bool operator<(path_view x, path_view y) noexcept;
139 inline constexpr bool operator>(path_view x, path_view y) noexcept;
140 inline constexpr bool operator<=(path_view x, path_view y) noexcept;
141 inline constexpr bool operator>=(path_view x, path_view y) noexcept;
142 inline std::ostream &operator<<(std::ostream &s, const path_view &v);

5

There is a child helper struct which takes in a path view, and decides whether the path view needs
to be copied onto the stack due to needing zero termination and/or UTF conversion, or whether
the original collection of bytes can be passed through without copying.

1 struct c_str
2 {
3 // Maximum stack buffer size on this platform
4 #ifdef _WIN32
5 static constexpr size_t stack_buffer_size = 32768;
6 #elif defined(PATH_MAX)
7 static constexpr size_t stack_buffer_size = PATH_MAX;
8 #else
9 static constexpr size_t stack_buffer_size = 1024;

10 #endif
11

12 // Number of characters, excluding zero terminating char, at buffer
13 // Some platforms e.g. Windows can take sized input path buffers, and thus
14 // we can avoid a memory copy to implement null termination on those platforms.
15 uint16_t length{0};
16

17 // A pointer to a native platform format file system path
18 const filesystem::path::value_type *buffer{nullptr};
19

20 c_str(const path_view &view) noexcept;
21 ~c_str();
22 c_str(const c_str &) = delete;
23 c_str(c_str &&) = delete;
24 c_str &operator=(const c_str &) = delete;
25 c_str &operator=(c_str &&) = delete;
26

27 private:
28 // Flag indicating if buffer was malloced
29 bool _buffer_needs_freeing;
30

31 // Compilers don’t actually allocate this on the stack if it can be
32 // statically proven to never be used
33 filesystem::path::value_type _buffer[stack_buffer_size]{};
34 };

The use idiom would be as follows:

1 int open_file(path_view path)
2 {
3 // I am on POSIX which requires zero terminated char filesystem paths.
4 // So here if the character after the end of the view is zero, and the view
5 // refers to char* data, we can use it directly without memory copying.
6 path_view::c_str p(path);
7 return ::open(p.buffer, O_RDONLY);
8 }

You will surely note the requirement that the character after the path view is legal to read. In this
regard, path views are di�erent to string views.

6

4 Design decisions, guidelines and rationale

There are a number of non-obvious design decisions in the proposed path view object. These
decisions were taken after a great deal of empirical trial and error with `more obvious' designs,
where those designs were found wanting in various ways. The author believes that the current set
of tradeo�s is the ideal set.

The design imperatives for an allocating std::filesystem::path are not those for a non-allocating
std::filesystem::path_view. A `handy feature' of an allocating path object is that it must always
copy its input into its allocation. If it is allocating memory and copying in any case, performing
an implicit conversion of a native narrow input encoding to say a native wide encoding seems like
a reasonable design choice, given the relative cost of the other overheads.

In the case of a path view however, we are trying very hard to not copy memory. If the local
platform uses the same narrow or wide input encoding as the source backing the view, and the
path view is already terminated by a null character where that is relevant on the local platform, no
copying is required. The source backing is used unmodi�ed, bytes are passed through as-is. Only if
necessary, a copy and/or conversion of the input onto the stack is performed into whatever format
the local platform requires.

One might argue that in the case of std::filesystem::path, we might reuse the path across
multiple calls, and thus the path view approach of just in time copying per syscall is wasteful on
those platforms. However it is exceeding rare to open the same �le more than once, and anyone
caring strongly about performance will simply modify their program to use the same native encoding
and null termination as the platform.

The next argument is usually one of the form that paths get commonly reused with just the leafname
modi�ed, and therefore path's approach is more e�cient as only the leafname gets converted per
iteration. I would counter that this proposed path view object comes from [P1031] Low level �le
i/o library where using absolute paths is bad form: you use a path_handle to indicate the base
directory and supply a path view for the leafname � this is far more e�cient than any absolute
path based mechanism as it avoids the kernel having to traverse the �lesystem hierarchy, typically
taking a read lock on each inode in the absolute path.

4.1 Why on Microsoft Windows interpret chars as UTF-8 when

std::filesystem::path interprets chars as ASCII?

std::filesystem came originally from Boost.Filesystem, which in turn underwent three major
revisions during the Boost peer review as it was such a lively debate. During those reviews, it was
considered very important that paths were passed through, unmodi�ed, to the system API. There
are very good reasons for this, mainly that �lesystems, for the most part, treat �lenames as a bunch
of bytes without interpreting them as anything. So any character reencoding could cause a path
entered via copy-and-paste from the user to be unopenable, unless the bytes were passed through
exactly.

This is a laudable aim, and it is preserved in this path view proposal. Unfortunately it has a most
unfortunate side e�ect: on Microsoft Windows, std::filesystem::path when supplied with char

7

not wchar_t, is considered to be in ANSI encoding. This is because the char accepting syscalls
on Microsoft Windows consume ANSI for compatibility with Windows 3.1, and they simply thunk
through to the UTF-16 accepting syscall after allocating a bu�er and copying the input bytes into
shorts. Therefore on Microsoft Windows, std::filesystem::path duly expands char input into
its internal UTF-16 wchar_t storage via direct casting. It does not perform a UTF-8 to UTF-16
conversion.

Unfortunately any Microsoft Windows IDE or text editor that I have used recently defaults to
creating C++ source �les in UTF-81, exactly the same as on every other major platform includ-
ing Linux and MacOS. This in turn means that source code with a char string literal such as
"UTF♠stringΩliteral" makes a UTF-8 char string, not an ANSI char string, which is consistent
across all the major platforms. Thus, std::filesystem::path's behaviour on Microsoft Windows
is quite surprising: your portable program will not work. What works on all the other platforms,
without issue, does not work on Microsoft Windows, for no obvious reason to the uninitiated.

This author can only speak from his own personal experience, but what he has found over many
years of practice in writing portable code based on std::filesystem::path is that one ends up
inevitably using preprocessor macros to emit L"UTF♠stringΩliteral" when _WIN32 and _UNICODE

are macro de�ned, and otherwise emit "UTF♠stringΩliteral". The reason is simple: the same
string literal, with merely a L or not pre�x, works identically on all platforms, no locale induced
surprises, because we know that string literals in UTF source code will be in some UTF-x format.
The side e�ect is spamming your `portable' program code with string literal wrapper macros as if
we were still writing for MFC, and/or #if defined(_WIN32) && defined(_UNICODE) all over your
code. I do not �nd this welcome.

I appreciate that outside of North American English, string literals containing non-ANSI characters
are very rare. Yet most of the world's C++ programmers do not live in North America, nor speak
North American English with its 7-bit clean character set. This stu� is an unnecessary and entirely
avoidable pain for a lot of users out there, one which can be made to go away if char string literals
mean UTF-8 on Microsoft Windows.

I also appreciate that [P0882] User-de�ned Literals for std::�lesystem::path will take much of this
sort of pain away, and some future Unicode string support for C++ from SG16 will no doubt do
better again. But as those are not yet approved additions to the standard, I propose that when
char strings are supplied as a path string literal, and if and only if a conversion is needed, that we
interpret those chars as UTF-8.

I know that this is a breaking change from std::filesystem::path, but I would argue that
std::filesystem::path needs to be similarly changed. UTF-8 source code is very, very com-
monplace now, much more so than even a few years ago, and it is extremely likely that almost all
new C++ written will be in UTF-8. So best to change std::filesystem::path appropriately, and
if that is too great a breaking change, then these proposed path views are `�xed' instead.

1For example, in Microsoft Visual Studio 2017 if you enter characters into source code which cannot be represented

by ANSI, when you hit save the IDE will o�er to save your �le as `Unicode'. Hitting OK saves the �le in UTF-8

with BOM, and the MSVC compiler will then perceive the source code as in UTF-8, exactly as on all other major

platforms.

8

4.2 Requiring legality of read of character after end of view

The reason for this is obvious: POSIX and Win32 syscalls consume zero terminated strings as path
input, so we need to probe the character after the path view ends to see if it is zero, because if it is
not, then we will need to copy the path view onto the stack in order to zero terminate it.

The question is whether this is dangerous or not. string_view does not do this, but then string
views have a much wider set of use cases, including encapsulating a 4Kb page returned by mmap()

where reading the byte immediately after the end of the view would mean a segmentation fault.

Path views do not su�er from that problem. One knows that they represent a path on the �le
system, and are very likely to be constructed from a source whose representation of a �le system
path will not vary by much. They are therefore highly unlikely to not be zero terminated at some
point later on, as operations on path views only ever produce sub-views of some original path, and
cannot escape the bounds of the original path. Path string literals are safe, by de�nition. Even a
deserialised path from storage is highly likely to always be zero terminated. Because of the much
more limited set of use cases for path views, I believe that this requirement is safe.

There is the separate argument that deviating requirements from string_view is unhelpful by
confusing the user base, and will produce buggy code. Yet I cannot think of a single non-contrived
use case where the legality of reading the character after the end of a path view is problematic,
including tripping any static analysis tools or sanitisers. I welcome non-contrived examples of where
this is dangerous.

I appreciate that if standardised, most in the C++ user base will not know of this requirement and
will write code not taking this requirement into account. I would argue that it will be very unusual
for the ignorant to become surprised by this requirement.

4.3 Fixed use of stack in struct c_str

Firstly, note that the compiler elides completely the �xed stack bu�er for zero termination and
UTF conversions caused by instantiating struct c_str if the compiler can prove that it will never
be used. So if you supply native format, zero terminated input, to the path view constructor, the
compiler should spot that the temporary stack bu�er is never used, and thus eliminate it. This
ought to be the case most of the time.

Secondly, the �xed stack bu�er tends to get allocated just before a syscall, and released just after
that syscall. Stack cache locality is therefore generally una�ected, and the �xed stack bu�er does
not remain allocated for long.

64Kb on Microsoft Windows systems may seem excessive, but it is highly unlikely to be a problem
in practice as Windows has ample default stack address space reservations, and these allocations
never recurse. Of the major POSIX implementations, Linux would potentially allocate 4Kb, MacOS
1Kb, FreeBSD 1Kb onto the stack as those are the settings for their PATH_MAX macros.

For those Linux implementations running on embedded systems where 4Kb stack allocations would
be unwise, we do provide for the ability to internally use malloc() to create storage for the temporary
bu�er which is freed on struct c_str's destruction. One could, of course, decide that on Microsoft

9

Windows 8Kb of stack is enough, and paths larger than that go to malloc(). Again, I would stress
that the programmer can be careful to never send a non-zero terminated string in as a path, and
thus completely eliminate the use of temporary bu�ers on an embedded Linux solution. In any case,
path views are considerably less heavy on free RAM than std::filesystem::path.

4.4 Why is only char input supported, except on Microsoft Windows?

Unlike std::filesystem::path which accepts (i) native narrow encoding (ii) native wide encod-
ing (iii) UTF-8 (iv) UTF-16 and (v) UTF-32 format input (all of which have an implied encoding
conversion to internal native format, if necessary), path views need to discourage unnecessary reen-
coding, as due to it not being cached anywhere, it is ine�cient to use an input format not equal to
the native format. The programmer must be encouraged to only supply input in encodings which
do not perform hidden memory copies and allocations, otherwise the whole point of using a path
view is made moot.

On every major platform bar one, the native format is char. The only major platform where the
native format is not char is Microsoft Windows.

Thus, most programs will use char, as it is near universal. We do not wish to damage the portability
of such programs. We therefore also accept char on Microsoft Windows, despite that wchar_t is
the native format.

Portable code which uses char path strings will therefore be ine�cient on Microsoft Windows, but
that is no di�erent to the present situation with std::filesystem::path. If, at some future point,
Microsoft decides to convert their native encoding to UTF-8, we can remove the ine�ciency on their
platform.

5 Technical speci�cations

No Technical Speci�cations are involved in this proposal.

6 Frequently asked questions

6.1 Does this mean that all APIs consuming std::filesystem::path ought to

now consume std::filesystem::path_view instead?

Most of the time, perhaps almost always, yes. std::filesystem::path_view implicitly constructs
from strings, paths and string literals. Anywhere you are currently consumg std::filesystem::path
as a parameter, you can start using std::filesystem::path_view instead if this proposal is ap-
proved. It would remain the case that where a function is returning a new path, std::filesystem::path
is the correct choice. So inputs would be mostly path views, outputs would be paths.

This author has replaced paths with path views in an existing piece of complex path decomposition
and recomposition, and apart from a few minor source code changes to �x lifetime issues, the code

10

compiled and worked unchanged. Path views are mostly a drop-in replacement for paths, except
for when one is creating wholly new paths.

Incidentally, performance of that code improved by approximately twenty fold (20x).

7 Acknowledgements

My thanks to Nicol Bolas and Bengt Gustafsson for their feedback upon this proposal.

8 References

[P0882] Yonggang Li
User-de�ned Literals for std::�lesystem::path
https://wg21.link/P0882

[P1031] Douglas, Niall
Low level �le i/o library
https://wg21.link/P1031

11

https://wg21.link/P0882
https://wg21.link/P1031

	Introduction
	Impact on the Standard
	Proposed Design
	Design decisions, guidelines and rationale
	Why on Microsoft Windows interpret chars as UTF-8 when std::filesystem::path interprets chars as ASCII?
	Requiring legality of read of character after end of view
	Fixed use of stack in struct c_str
	Why is only char input supported, except on Microsoft Windows?

	Technical specifications
	Frequently asked questions
	Does this mean that all APIs consuming std::filesystem::path ought to now consume std::filesystem::path_view instead?

	Acknowledgements
	References

