Document number: P1202R4

Date: 2022-02-14

Reply-to: David Goldblatt <davidtgoldblatt@gmail.com>
Audience: LEWG, LWG

P1202R4: Asymmetric Fences

Background

Some types of concurrent algorithms can be split into a common path and an uncommon path,
both of which require fences (or other operations with non-relaxed memory orders) for
correctness. On many platforms, it's possible to speed up the common path by adding an even
stronger fence type (stronger than memory_order: :seq_cst) down the uncommon path. These
facilities are being used in an increasing number of concurrency libraries. We propose
standardizing these asymmetric fences, and incorporating them into the memory model.

The proposed ship vehicle is Concurrency TS 2.

In Prague, LEWG voted (unanimous consent) to forward P1202R2 to LWG. December 2021
electronic polling, LEWG voted (also unanimous consent) for P2396, which applies some minor
editorial changes to address issues caught in LWG pre-review (the header name and feature
test macro). The LEWG chairs asked for a “clean” paper with all changes from P2396 applied
for LEWG to vote on again.

This paper also rolls-in the changes asked for in LWG pre-review (which appeared in P1202R3),
which don’t affect the interface or functionality, but apply wording fixes and simplifications and
tighten up the standardese into a list of diffs for the TS editor.

In the interest of brevity, this omits much of the context that already has directional approval;
see P1202R0 for an in-depth description of the technique and its uses, and P1202R1 for an
argument that this is the “right” memory-model-ese for this technique.

Wording

As a diff for the TS to apply to the IS:

31.4 Order and consistency [atomics.order]
In subclause 31.4 [atomics.order], strike the word “four” in the phrase “the following four
conditions are required to be satisfied by S:” and add the following two bullets to the list:
- ifamemory_order::seq_cst lightweight-fence X happens before A and B happens
before a memory_order: :seq_cst heavyweight-fence Y, then X precedes Y in S; and

- ifamemory_order::seq_cst heavyweight-fence X happens before A and B happens
before a memory_order: :seq_cst lightweight-fence Y, then X precedes Y in S.

And, as a pure insertion, with a section number to be filled in by the editor:

X.Y Header <experimental/asymmetric_fence> synopsis
Add the following declarations to the synopsis of the header
<experimental/asymmetric_fence>:

namespace std::experimental::inline concurrency v2 {
// ?.2.1 asymmetric_thread_fence_heavy
void asymmetric_thread_fence_heavy(memory_order order) noexcept;
// ?.2.2 asymmetric_thread_fence_light
void asymmetric_thread_fence_ light(memory order order) noexcept;

X.Z Asymmetric fences [atomics.fences.asym]

This section introduces synchronization primitives called heavyweight-fences and
lightweight-fences. Like fences, heavyweight-fences and lightweight-fences can have acquire
semantics, release semantics, or both, and can be sequentially consistent (in which case they
are included in the total order S on memory_order: :seq_cst operations). A heavyweight-fence
has all the synchronization effects of a fence as specified in 31.11 [atomic.fences]. [Note:
Heavyweight-fences and lightweight-fences are distinct from fences. -- end note]

If there are evaluations A and B, and atomic operations X and Y, both operating on some atomic
object M, such that A is sequenced before X, X modifies M, Y is sequenced before B, and Y
reads the value written by X or a value written by any side effect in the hypothetical release
sequence X would head if it were a release operation, and one of the following hold:

- Ais arelease lightweight-fence and B is an acquire heavyweight-fence; or

- Ais arelease heavyweight-fence and B is an acquire lightweight-fence
then any evaluation sequenced before A strongly happens before any evaluation that B is
sequenced before.

void asymmetric_thread_fence_heavy(memory order order) noexcept;

1. Effects: Depending on the value of order, this operation:

- has no effects, if order == memory_order::relaxed;

- is an acquire heavyweight-fence, if order == memory_order::acquire or order ==
memory_order: :consume;

- is arelease heavyweight-fence, if order == memory_order: :release;

- is both an acquire heavyweight-fence and a release heavyweight-fence, if order ==
memory order::acq_rel;

is a sequentially consistent acquire and release heavyweight-fence, if order ==
memory_order: :seq_cst.

void asymmetric_thread_fence_ light(memory order order) noexcept;

1. Effects: Depending on the value of order, this operation:

has no effects, if order == memory_order: :relaxed;

is an acquire lightweight-fence, if order == memory_order::acquire or order ==
memory_order: :consume;

is a release lightweight-fence, if order == memory_order::release;

is both an acquire lightweight-fence and a release lightweight-fence, if order ==
memory_order::acq_rel,;

is a sequentially consistent acquire and release lightweight-fence, if order ==
memory_order: :seq_cst.

[Note: Delegating both heavy and light fence functions to an atomic_thread_fence(order)
call is a valid implementation.]

Add a feature test macro in <experimental/asymmetric_thread fence>:
#define __cpp_lib_experimental_asymmetric_fence 202XYZ

