Document number: P1243R4

Date: 2020, Feb. 12
Author: Dan Raviv <dan.raviv@gmail.com>
Audience: LWG

Rangify New Algorithms

I. Motivation and Scope

This paper complements PO896 by adding rangified overloads for some of the non-parallel
additions to <algorithm> since C++14, from whence the Ranges TS took its algorithms:
for_each_n,clamp, sample.

The paper does not provide rangified overloads for the rest of the additions to <algorithm>
since C++14: lexicographical compare three way, search (range, searcher),
shift left,shift right.

A previous revision P1243R3 did propose rangified overloads for shift left and
shift right, but those have been removed from the paper following an issue found in LWG
review in Prague.

The paper’s wording also integrates the changes in P1233R 1 by Ashley Hedberg, Matt Calabrese
and Bryce Adelstein Lelbach. (this was done at LWG’s request, when the paper still proposed
rangified overloads for shift left and shift right).

Il. Impact On the Standard

This is a pure library extension of the Standard.

lll. Proposed Wording

Header <algorithm> synopsis [algorithm.syn]

/l [alg foreach], for each
[...]
template<class InputIterator, class Size, class Function>

constexpr InputlIterator for_each n(InputIterator first, Size n, Function
£);
template<class ExecutionPolicy, class ForwardIterator, class Size, class
Function>

ForwardIterator for each n(ExecutionPolicy&& exec, // see
[algorithms parallel.overloads]

ForwardIterator first, Size n, Function f);

namespace ranges {


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1233r1.html

[...]
/I [alg random.sample], sample
template<class PopulationIterator, class SampleIterator,
class Distance, class UniformRandomBitGenerator>
SampleIterator sample(PopulationIterator first, PopulationIterator last,
SampleIterator out, Distance n,
UniformRandomBitGenerator&& g);

/l [alg.clamp], bounded value
template<class T>

constexpr const T& clamp(const T& v, const T& lo, const T& hi);
template<class T, class Compare>

constexpr const T& clamp(const T& v, const T& lo, const T& hi, Compare
comp) ;

For each [alg.foreach]

—
.
.
.
[a—"

Remarks: If £ returns a result, the result is ignored. Implementations do not have the
freedom granted under [algorithms.parallel.exec] to make arbitrary copies of elements
from the input sequence.



Sample [alg.random.sample]

template<class PopulationIterator, class Samplelterator,
class Distance, class UniformRandomBitGenerator>
SampleIterator sample(PopulationIterator first, PopulationIterator last,
SampleIterator out, Distance n,
UniformRandomBitGenerator&& g);

Mandates: _Distance is an integer typel and

*first is writable ([iterator.requirements.general]) to out.

Preconditions:

— PopulationIterator meets the Cppl7Inputlterator requirements
([input.iterators]).




— SampleIterator meets the Cppl7Outputlterator requirements
([output.iterators]).

— SampleIterator meets the Cppl7RandomAccesslterator requirements
([random.access.iterators]) unless PopulationIterator satisfies the
Cppl7Forwardlterator requirements ([forward.iterators]).

— remove_reference_t<UniformRandomBitGenerator> meets the
requirements of a uniform random bit generator type ([rand.req.urng]).

[...]

Remarks:

— Fortheloverloadinnamespace S€d. Bstable if and only if

PopulationIterator meets the Cppl7Forwardlterator requirements _

— To the extent that the implementation of this function makes use of random
numbers, the object g -servel as the implementation’s source of randomness.

Shift [alg.shift]

template<class ForwardIterator>
constexpr ForwardIterator
shift left(ForwardIterator first, ForwardIterator last,
typename iterator traits<ForwardIterator>::difference type n);
template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator
shift left(ExecutionPolicy&& exec, ForwardIterator first,
ForwardIterator last,
typename iterator traits<ForwardIterator>::difference type n);

Preconditions: _The type of *first meets the

Cppl7MoveAssignable requirements.

Effects: If n .= Oorn >= last - first,does nothing. Otherwise, moves the
element from position first + n + i into position first + i foreach non-
negative integer i < (last - first) - n.In the first overload case, does so in
order starting from i = 0 and proceedingto i = (last - first) - n - 1.

Returns: first + (last - first - n)if
first, otherwise first

Complexity: At most (last - first) - n assignments.

template<class ForwardIterator>



constexpr ForwardIterator
shift right(ForwardIterator first, ForwardIterator last,
typename iterator traits<ForwardIterator>::difference_ type
n);
template<class ExecutionPolicy, class ForwardIterator>
ForwardIterator
shift right(ExecutionPolicy&& exec, ForwardIterator first,
ForwardIterator last,
typename iterator traits<ForwardIterator>::difference_type
n);

Preconditions: _The type of *£irst meets the

Cppl7MoveAssignable requirements. ForwardIterator meets the
Cppl7Bidirectionallterator requirements ([bidirectional.iterators]) or the
Cpp17ValueSwappable requirements.

Effects: If n .= Oorn >= last - first,does nothing. Otherwise, moves the
element from position £irst + i into position first + n + i for each non-

negative integer i < (last - first) - n.In the first overload case, if
ForwardIterator meets the Cppl7Bidirectionallterator requirements, does so in
order starting from i = (last - first) - n - 1 andproceedingtoi = 0.

n < last - first, otherwise last.

Returns: £first + nif

Complexity: At most (last - first) - n assignments or swaps.

Bounded value [alg.clamp]

template<class T>

constexpr const T& clamp(const T& v, const T& lo, const T& hi);
template<class T, class Compare>

constexpr const T& clamp(const T& v, const T& lo, const T& hi, Compare
comp) ;

[..]
Complexity: At most two comparisons{and three applicationsof any projection.

IV. Revision History



- R4,12.2.20 (Prague) - Remove shift left and shift right from proposal due to loss
of information issue in shift left, found in LWG review.

- R3,9.1.20 - Wording changes following Cologne and Belfast reviews as well as a review by
the forming Israeli committee. Rebased on N4842.

- R2,9.3.19 - Wording fixes and improvements following LWG review. Integrated P1233
wording changes.

- R1,8.11.18 - Remove overload of for each n taking a range parameter following LEWG
guidance.

- RO, 7.10.18 - Initial revision

V. Acknowledgements

- Special thanks to Casey Carter for his guidance.

- Special thanks to Tomasz Kaminski for spotting the issue of information lost in
shift left’sreturn type.

- My gratitude to the forming Israeli committee for their review and comments.



