
mdarray: An Owning Multidimensional Array Analog of mdspan

Document #: P1684R0
Date: 2019-05-28
Project: Programming Language C++

Library Evolution
Reply-to: David Hollman

<dshollm@sandia.gov>
Christian Trott
<crtrott@sandia.gov>
Mark Hoemmen
<mhoemme@sandia.gov>
Daniel Sunderland
<dsunder@sandia.gov>

Contents
1 Motivation 1

2 Design 2
2.1 Design Overview . 2
2.2 Principal Differences between mdarray and mdspan . 3
2.3 Extents Design Reused . 6
2.4 LayoutPolicy Design Reused . 6
2.5 AccessorPolicy Replaced by ContainerPolicy . 6

2.5.1 Expected Behavior of Motivating Use Cases . 6
2.5.2 Analogs in the Standard Library: Container Adapters 7
2.5.3 (Not Proposed) Alternative: A Dedicated ContainerPolicy Concept 8
2.5.4 Proposed Alternative: ContainerPolicy subsumes AccessorPolicy 9

3 Synopsis 11

4 Wording 13

5 References 13

1 Motivation

[P0009R9] introduced a non-owning multidimensional array abstraction that has been refined over many
revisions and is expected to be merged into the C++ working draft early in the C++23 cycle. However,
there are many owning use cases where mdspan is not ideal. In particular, for use cases with small, fixed-size
dimensions, the non-owning semantics of mdspan may represent a significant pessimization, precluding
optimizations that arise from the removal of the non-owning indirection (such as storing the data in registers).

Without mdarray, use cases that should be owning are awkward to express:

P0009 Only:

1

mailto:dshollm@sandia.gov
mailto:crtrott@sandia.gov
mailto:mhoemme@sandia.gov
mailto:dsunder@sandia.gov

void make_random_rotation(mdspan<float, 3, 3> output);
void apply_rotation(mdspan<float, 3, 3>, mdspan<float, 3>);
void random_rotate(mdspan<float, dynamic_extent, 3> points) {

float buffer[mdspan<float, 3, 3>::required_span_size()] = { };
auto rotation = mdspan<float, 3, 3>(buffer);
make_random_rotation(rotation);
for(int i = 0; i < points.extent(0); ++i) {

apply_rotation(rotation, subspan(points, i, std::all));
}

}

This Work:
mdarray<float, 3, 3> make_random_rotation();
void apply_rotation(mdarray<float, 3, 3>, mdspan<float, 3>);
void random_rotate(mdspan<float, dynamic_extent, 3> points) {

auto rotation = make_random_rotation();
for(int i = 0; i < points.extent(0); ++i) {

apply_rotation(rotation, subspan(points, i, std::all));
}

}

Particularly for small, fixed-dimension mdspan use cases, owning semantics can be a lot more convenient and
require a lot less in the way of interprocedural analysis to optimize.

2 Design

One major goal of the design for mdarray is to parallel the design of mdspan as much as possible (but no more),
with the goals of reducing cognitive load for users already familiar with mdspan and of incorporating the
lessons learned from the half decade of experience on [P0009R9]. This paper (and this section in particular)
assumes the reader has read and is already familiar with [P0009R9].

2.1 Design Overview

In brief, the analogy to basic_mdspan can be seen in the declaration of the proposed design for basic_mdarray:
template<class ElementType,

class Extents,
class LayoutPolicy = layout_right,
class ContainerPolicy = see-below >

class basic_mdarray;

This intentionally parallels the design of basic_mdspan in [P0009R9], which has the signature:
template<class ElementType,

class Extents,
class LayoutPolicy = layout_right,
class AccessorPolicy = accessor_basic<ElementType>>

class basic_mdspan;

2

The details of this design are included below, along with the accompanying logic and an exploration of
alternative designs. In a manner exactly analogous to mdspan, we also propose the convenience type alias
template mdarray, defined as:
template <class T, ptrdiff_t... Extents>

using mdarray = basic_mdarray<T, extents<Extents...>>;

2.2 Principal Differences between mdarray and mdspan

By design, basic_mdarray is as similar as possible to basic_mdspan, except with container semantics instead
of reference semantics. However, the use of container semantics necessitates a few differences. The most
notable of these is deep constness. Like all reference semantic types in the standard, basic_mdspan has
shallow constness, but container types in the standard library propagate const through their access functions.
Thus, basic_mdarray needs const and non-const versions of every analogous operation in basic_mdspan
that interacts with the underlying data:
template<class ElementType, class Extents, class LayoutPolicy, class ContainerPolicy>
class basic_mdarray {

/* ... */

// also in basic_mdspan:
using pointer = /* ... */ ;
// only in basic_mdarray:
using const_pointer = /* ... */ ;

// also in basic_mdspan:
using reference = /* ... */ ;
// only in basic_mdarray:
using const_reference = /* ... */ ;

// analogous to basic_mdspan, except with const_reference return type:
constexpr const_reference operator[](index_type) const;
template<class... IndexType>

constexpr const_reference operator()(IndexType...) const;
template<class IndexType, size_t N>

constexpr const_reference operator()(const array<IndexType, N>&) const;
// non-const overloads only in basic_mdarray:
constexpr reference operator[](index_type);
template<class... IndexType>

constexpr reference operator()(IndexType...);
template<class IndexType, size_t N>

constexpr reference operator()(const array<IndexType, N>&);

// also in basic_mdspan, except with const_pointer return type:
constexpr const_pointer data() const noexcept;
// non-const overload only in basic_mdarray:
constexpr pointer data() noexcept;

/* ... */
};

Additionally, basic_mdarray needs a means of interoperating with basic_mdspan in roughly the same way

3

as contiguous containers interact with span, or as string interacts with string_view. We could do this by
adding a constructor to basic_mdspan, which would be more consistent with the analogous features in span
and string_view, but in the interest of avoiding modifications to an in-flight proposal, we propose using
a member function of basic_mdarray for this functionality for now (tentatively named view(), subject to
bikeshedding). We are happy to change this based on design direction from LEWG:
template<class ElementType, class Extents, class LayoutPolicy, class ContainerPolicy>
class basic_mdarray {

/* ... */

// only in basic_mdarray:
using view_type = /* ... */ ;
using const_view_type = /* ... */ ;
view_type view() noexcept;
const_view_type view() const noexcept;

/* ... */
};

As discussed below, accessor_policy from basic_mdspan is replaced by container_policy in
basic_mdarray:
template<class ElementType, class Extents, class LayoutPolicy, class ContainerPolicy>
class basic_mdarray {

/* ... */

// only in basic_mdarray:
using container_policy_type = ContainerPolicy;
using container_type = /* ... */ ;

/* ... */
};

2.2.0.1 Constructors and Assignment Operators There are several relatively trivial differences
between basic_mdspan and basic_mdarray constructors and assignment operators. Most trivially,
basic_mdspan provides a compatible basic_mdspan copy-like constructor and copy-like assignment operator,
with proper constraints and expectations to enforce compatibility of shape, layout, and size. Since
basic_mdarray has owning semantics, we also need move-like versions of these:1

template<class ElementType, class Extents, class LayoutPolicy, class ContainerPolicy>
class basic_mdarray {

/* ... */

// analogous to basic_mdspan:
template<class ET, class Exts, class LP, class CP>

constexpr basic_mdarray(const basic_mdarray<ET, Exts, LP, CP>&);
template<class ET, class Exts, class LP, class CP>

constexpr basic_mdarray& operator=(const basic_mdarray<ET, Exts, LP, CP>&);
// only in basic_mdarray:
template<class ET, class Exts, class LP, class CP>

1Arguably, basic_mdspan should also have these constructors because of the potential cost of copying stateful mapping and
accessor policy members, but we are not proposing that change here.

4

constexpr basic_mdarray(basic_mdarray<ET, Exts, LP, CP>&&) noexcept(see-below);
template<class ET, class Exts, class LP, class CP>

constexpr basic_mdarray& operator=(basic_mdarray<ET, Exts, LP, CP>&&) noexcept;

/* ... */
};

(The noexcept clauses on these constructors and operators should probably actually derive from noexcept
clauses on the analogous functionality for the element type and policy types).

Additionally, the analog of the basic_mdspan(pointer, IndexType...) constructor for basic_mdarray
should not take the first argument, since the basic_mdarray owns the data and thus should be able to
construct it from sizes:
template<class ElementType, class Extents, class LayoutPolicy, class ContainerPolicy>
class basic_mdarray {

/* ... */

// only in basic_mdarray
template <class... IndexType>
explicit constexpr basic_mdarray(IndexType...);

/* ... */
};

Note that in the completely static extents case, this is ambiguous with the default constructor. For consistency
in generic code, the semantics of this constructor should be preferred over those of the default constructor in
that case.

There is some question as to whether we should also have constructors that take container_type instances in
addition to indices. Consistency with standard container adapters like std::priority_queue would dictate
that we should; however allowing this would prevent the ContainerPolicy (discussed below) from having
full control over the container creation process. For simplicity, we omit these constructors for now, leaving
the question open to further discussion.

By this same logic, we arrive at the mapping_type and container_policy constructor analogs:
template<class ElementType, class Extents, class LayoutPolicy, class ContainerPolicy>
class basic_mdarray {

/* ... */

// only in basic_mdarray
explicit constexpr basic_mdarray(const mapping_type&);
constexpr basic_mdarray(const mapping_type&, const container_policy_type&);

/* ... */
};

Finally, we remmove the constructor that takes an array<IndexType, N> of dynamic extents because of the
possible ambiguity or confusion with a (potential future work) constructor that takes a container instance in
the case where the container_type happens to be an array<IndexType, N>.

5

2.3 Extents Design Reused

As with basic_mdspan, the Extents template parameter to basic_mdarray shall be a template instantiation
of std::extents, as described in [P0009R9]. The concerns addressed by this aspect of the design are exactly
the same in basic_mdarray and basic_mdspan, so using the same form and mechanism seems like the right
thing to do here.

2.4 LayoutPolicy Design Reused

While not quite as straightforward, the decision to use the same design for LayoutPolicy from basic_mdspan
in basic_mdarray is still quite obviously the best choice. The only piece that’s a bit of a less perfect
fit is the is_contiguous() and is_always_contiguous() requirements. While non-contiguous use cases
for basic_mdspan are quite common (e.g., subspan()), non-contiguous use cases for basic_mdarray are
expected to be a bit more arcane. Nonetheless, reasonable use cases do exist (for instance, padding of the
fast-running dimension in anticipation of a resize operation), and the reduction in cognitive load due to
concept reuse certainly justifies reusing LayoutPolicy for basic_mdarray.

2.5 AccessorPolicy Replaced by ContainerPolicy

By far the most complicated aspect of the design for basic_mdarray is the analog of the AccessorPolicy
in basic_mdspan. The AccessorPolicy for basic_mdspan is clearly designed with non-owning semantics
in mind–it provides a pointer type, a reference type, and a means of converting from a pointer and an
offset to a reference. Beyond the lack of an allocation mechanism (that would be needed by basic_mdarray),
the AccessorPolicy requirements address concerns normally addressed by the allocation mechanism itself.
For instance, the C++ named requirements for Allocator allow for the provision of the pointer type to
std::vector and other containers. Arguably, consistency between basic_mdarray and standard library
containers is far more important than with basic_mdspan in this respect. Several approaches to addressing
this incongruity are discussed below.

2.5.1 Expected Behavior of Motivating Use Cases

Regardless of the form of the solution, there are several use cases where we have a clear understanding of how
we want them to work. As alluded to above, perhaps the most important motivating use case for mdarray is
that of small, fixed-size extents. Consider a fictitious (not proposed) function, get-underlying-container, that
somehow retrieves the underlying storage of an mdarray. For an mdarray of entirely fixed sizes, we would
expect the default implementation to return something that is (at the very least) convertible to array of the
correct size:
auto a = mdarray<int, 3, 3>();
std::array<int, 9> data = get-underlying-container (a);

(Whether or not a reference to the underlying container should be obtainable is slightly less clear, though
we see no reason why this should not be allowed.) The default for an mdarray with variable extents is
only slightly less clear, though it should almost certainly meet the requirements of contiguous container
([container.requirements.general]/13). The default model for contiguous container of variable size in the
standard library is vector, so an entirely reasonable outcome would be to have:
auto a = mdarray<int, 3, dynamic_extent>();
std::vector<int> data = get-underlying-container (a);

6

Moreover, taking a view of a basic_mdarray should yield an analogous basic_mdspan with consistent
semantics (except, of course, that the latter is non-owning). We provisionally call the method for obtaining
this analog view():
template <class T, class Extents, class LayoutPolicy, class ContainerPolicy>
void frobnicate(basic_mdarray<T, Extents, LayoutPolicy, ContainerPolicy> data)
{

auto data_view = data.view();
/* ... */

}

Using data_view should be analogous to using data in most ways (with the exception of things that relate to
ownership, like the copy constructor). This means that decltype(data_view)::accessor_policy should
implement the same access semantics as ContainerPolicy. For ContainerPolicys provided by the standard,
this is not a problem, but for an arbitrary ContainerPolicy, we probably require more information than is
provided by the Container concept or any of its refinements. (See below for more discussion of “probably”).

The tension between consistency with existing standard library container concepts and interoperability with
basic_mdspan is the crux of the design challenge for the ContainerPolicy customization point (and, indeed,
for mdarray as a whole).

2.5.2 Analogs in the Standard Library: Container Adapters

Perhaps the best analogs for what basic_mdarray is doing with respect to allocation and ownership are
the container adaptors ([container.adaptors]), since they imbue additional semantics to what is otherwise
an ordinary container. These all take a Container template parameter, which defaults to deque for stack
and queue, and to vector for priority_queue. The allocation concern is thus delegated to the container
concept, reducing the cognitive load associated with the design. While this design approach overconstrains
the template parameter slightly (i.e., not all of the requirements of the Container concept are needed by
the container adaptors), the simplicity arising from concept reuse more than justifies the cost of the extra
constraints.

It is difficult to say whether the use of Container directly, as with the container adaptors, is also the correct
approach for basic_mdarray. There are pieces of information that may need to be customized in some
very reasonable use cases that are not provided by the standard container concept. The most important of
these is the ability to produce a semantically consistent AccessorPolicy when creating a basic_mdspan
that refers to a basic_mdarray. (Interoperability between basic_mdspan and basic_mdarray is considered
a critical design requirement because of the nearly complete overlap in the set of algorithms that operate
on them.) For instance, given a Container instance c and an AccessorPolicy instance a, the behavior
of a.access(p, n) should be consistent with the behavior of c[n] for a basic_mdspan wrapping a that
is a view of a basic_mdarray wrapping c (if p is c.begin()). But because c[n] is part of the container
requirements and thus may encapsulate any arbitrary mapping from an offset of c.begin() to a reference,
the only reasonable means of preserving these semantics is to reference the original container directly in the
corresponding AccessorPolicy. In other words, the signature for the view() method of mdarray would
need to look something like (ignoring, for the moment, whether the name for the type of the accessor is
specified or implementation-defined):
template<class ElementType,

class Extents,
class LayoutPolicy,
class Container>

struct basic_mdarray {
/* ... */

7

basic_mdspan<
ElementType, Extents, LayoutPolicy,
container_reference_accessor<Container>>

view() const noexcept;
/* ... */

};

template <class Container>
struct __container_reference_accessor { // not proposed

using pointer = Container*;
/* ... */
template <class Integer>
reference access(pointer p, Integer offset) {

return (*p)[offset];
}
/* ... */

};

But this approach comes at the cost of an additional indirection (one for the pointer to the container, and
one for the container dereference itself), which is likely unacceptable cost in a facility designed to target
performance-sensitive use cases. The situation for the offset requirement (which is used by subspan) is
potentially even worse for arbitrary non-contiguous containers, adding up to one indirection per invocation of
subspan. This is likely unacceptable in many contexts.

Nonetheless, using refinements of the existing Container concept directly with basic_mdarray is an incredibly
attractive option because it avoids the introduction of an extra concept, and thus significantly decreases
the cognitive cost of the abstraction. Thus, direct use of the existing Container concept hierarchy should
be preferred to other options unless the shortcomings of the existing concept are so irreconcilable (or so
complicated to reconcile) as to create more cognitive load than is needed for an entirely new concept.

2.5.3 (Not Proposed) Alternative: A Dedicated ContainerPolicy Concept

Despite the additional cognitive load, there are a few arguments in favor of using a dedicated concept for the
container description of basic_mdarray. As is often the case with concept-driven design, the implementation
of basic_mdarray only needs a relatively small subset of the interface elements in the Container concept
hierarchy. This alone is not enough to justify an additional concept external to the existing hierarchy; however,
there are also quite a few features missing from the existing container concept hierarchy, without which an
efficient basic_mdarray implementation may be difficult or impossible. As alluded to above, conversion
to an AccessorPolicy for the creation of a basic_mdspan is one missing piece. (Another, interestingly,
is sized construction of the container mixed with allocator awareness, which is surprisingly lacking in the
current hierarchy somehow.) For these reasons, it is worth exploring a design based on analogy to the
AccessorPolicy concept rather than on analogy to Container. If we make that abstraction owning, we
might call it something like _ContainerLikeThing (not proposed here; included for discussion). In that case,
a model of the _ContainerLikeThing concept that meets the needs of basic_mdarray might look something
like:
template <class ElementType, class Allocator=std::allocator<ElementType>>
struct vector_container_like_thing // models _ContainerLikeThing
{
public:

using element_type = ElementType;
using container_type = std::vector<ElementType, Allocator>;

8

using allocator_type = typename container_type::allocator_type;
using pointer = typename container_type::pointer;
using const_pointer = typename container_type::const_pointer;
using reference = typename container_type::reference;
using const_reference = typename container_type::const_reference;
using accessor_policy = std::accessor_basic<element_type>;
using const_accessor_policy = std::accessor_basic<const element_type>;

// analogous to `access` method in `AccessorPolicy`
reference access(ptrdiff_t offset) { return __c[size_t(offset)]; }
const_reference access(ptrdiff_t offset) const { return __c[size_t(offset)]; }

// Interface for mdspan creation
accessor_policy make_accessor_policy() { return { }; }
const_accessor_policy make_accessor_policy() const { return { }; }
typename pointer data() { return __c.data(); }
typename const_pointer data() const { return __c.data(); }

// Interface for sized construction
static vector_container_policy create(size_t n) {

return vector_container_like_thing{container_type(n, element_type{})};
}
static vector_container_policy create(size_t n, allocator_type const& alloc) {

return vector_container_like_thing{container_type(n, element_type{}, alloc)};
}

container_type __c;
};

This approach solves many of the problems associated with using the Container concept directly. It is the most
flexible and provides the best compatibility with mdspan, since the conversion to analogous AccessorPolicy
is fully customizable. This comes at the cost of additional cognitive load, but this can be justified based on
the observation that almost half of the functionality in the above sketch is absent from the container hierarchy:
the make_accessor_policy() requirement and the sized, allocator-aware container creation (create(n,
alloc)) have no analogs in the container concept hierarchy. Non-allocator-aware creation (create(n)) is
analogous to sized construction from the sequence container concept, the data() method is analogous to
begin() on the contiguous container concept, and access(n) is analogous to operator[] or at(n) from
the optional sequence container requirements. Even for these latter pieces of functionality, though, we are
required to combine several different concepts from the Container hierarchy. Based on this analysis, we
have decided it is reasonable to pursue designs for this customization point that diverge from Container,
including ones that use AccessorPolicy as a starting point. Given a better design, we would definitely
consider reversing direction on this decision, but despite significant effort, we were unable to find a design
that was more than an awkward and forced fit for the Container concept hierarchy.

2.5.4 Proposed Alternative: ContainerPolicy subsumes AccessorPolicy

The above approach has the significant drawback that the _ContainerLikeThing is an owning abstrac-
tion fairly similar to a container that diverges from the Container hierarchy. We initially explored this
direction because it avoids having to provide a basic_mdarray constructor that takes both a Container
and a ContainerPolicy, which we felt was a “design smell.” Another alternative along these lines is to
make the basic_mdarray itself own the container instance and have the ContainerPolicy (name sub-

9

ject to bikeshedding; maybe ContainerFactory or ContainerAccessor is more appropriate?) be a non-
owning abstraction that describes the container creation and access. While this approach leads to an
ugly basic_mdarray(container_type, mapping_type, ContainerPolicy) constructor, the analog that
constructor affords to the basic_mdspan(pointer, mapping_type, AccessorPolicy) constructor is a rea-
sonable argument in favor of this design despite its quirkiness. Furthermore, this approach affords the
opportunity to explore a ContainerPolicy design that subsumes AccessorPolicy, thus providing the
needed conversion to AccessorPolicy for the analogous basic_mdspan by simple subsumption. More im-
portantly, this subsumption would significantly decrease the cognitive load for users already familiar with
basic_mdspan. A model of ContainerPolicy for this sort of approach might look something like:
template <class ElementType, class Allocator=std::allocator<ElementType>>
struct vector_container_policy // models ContainerPolicy (and thus AccessorPolicy)
{
public:

using element_type = ElementType;
using container_type = std::vector<ElementType, Allocator>;
using allocator_type = typename container_type::allocator_type;
using pointer = typename container_type::pointer;
using const_pointer = typename container_type::const_pointer;
using reference = typename container_type::reference;
using const_reference = typename container_type::const_reference;
using offset_policy = vector_container_policy<ElementType, Allocator>

// ContainerPolicy requirements:
reference access(container_type& c, ptrdiff_t i) { return c[size_t(i)]; }
const_reference access(container_type const& ptrdiff_t i) const { return c[size_t(i)]; }

// ContainerPolicy requirements (interface for sized construction):
container_type create(size_t n) {

return container_type(n, element_type{});
}
container_type create(size_t n, allocator_type const& alloc) {

return container_type(n, element_type{}, alloc);
}

// AccessorPolicy requirement:
reference access(pointer p, ptrdiff_t i) { return p[i]; }
// For the const analog of AccessorPolicy:
const_reference access(const_pointer p, ptrdiff_t i) const { return p[i]; }

// AccessorPolicy requirement:
pointer offset(pointer p, ptrdiff_t i) { return p + i; }
// For the const analog of AccessorPolicy:
const_pointer offset(const_pointer p, ptrdiff_t i) const { return p + i; }

// AccessorPolicy requirement:
element_type* decay(pointer p) { return p; }
// For the const analog of AccessorPolicy:
const element_type* decay(pointer p) const { return p; }

};

10

The above sketch makes clear the biggest challenge with this approach: the mismatch in shallow versus
deep constness in for an abstractions designed to support basic_mdspan and basic_mdarray, respectively.
The ContainerPolicy concept thus requires additional const-qualified overloads of the basis operations.
Moreover, while the ContainerPolicy itself can be obtained directly from the corresponding AccessorPolicy
in the case of the non-const method for creating the corresponding basic_mdspan (provisionally called
view()), the const-qualified version needs to adapt the policy, since the nested types have the wrong
names (e.g., const_pointer should be named pointer from the perspective of the basic_mdspan that the
const-qualified view() needs to return). This could be fixed without too much mess using an adapter (that
does not need to be part of the specification):
template <ContainerPolicy P>
class __const_accessor_policy_adapter { // models AccessorPolicy
public:

using element_type = add_const_t<typename P::element_type>;
using pointer = typename P::const_pointer;
using reference = typename P::const_reference;
using offset_policy = __const_accessor_policy_adapter<typename P::offset_policy>;

reference access(pointer p, ptrdiff_t i) { return acc_.access(p, i); }
pointer offset(pointer p, ptrdiff_t i) { return acc_.offset(p, i); }
element_type* decay(pointer p) { return acc_.decay(p); }

private:
[[no_unique_address]] add_const_t<P> acc_;

};

We feel that this approach provides the best balance of cognitive load and flexibility for designs that meet
the requirements of this customization point for basic_mdarray. Because of this and the other arguments
discussed above, we have decided to proceed with this design for ContainerPolicy at this point.

3 Synopsis

In the interest of promoting further discussion in design review, a synopsis of the final basic_mdarray class
template is included here. Much of the design is identical or analogous to basic_mdspan, with most of the
important differences already discussed above.
template<class ElementType, class Extents, class LayoutPolicy, class ContainerPolicy>
class basic_mdarray {
public:

// Domain and codomain types (also in basic_mdspan)
using extents_type = Extents;
using layout_type = LayoutPolicy;
using mapping_type = typename layout_type::template mapping_type<extents_type>;
using element_type = typename container_policy::element_type;
using value_type = remove_cv_t<element_type>;
using index_type = ptrdiff_t;
using difference_type = ptrdiff_t;
using pointer = typename container_policy::pointer;
using reference = typename container_policy::reference;

11

// Domain and codomain types (unique to basic_mdarray)
using container_policy_type = ContainerPolicy;
using container_type = typename container_policy_type::container_type;
using const_pointer = typename container_policy_type::const_pointer;
using const_reference = typename container_policy_type::const_reference;
using view_type =

basic_mdspan<element_type, extents_type, layout_type, ContainerPolicy>;
using const_view_type =

basic_mdspan<const element_type, extents_type, layout_type, see-below >;

// basic_array constructors, assignment, and destructor
constexpr basic_mdarray() noexcept = default;
constexpr basic_mdarray(const basic_mdarray&) noexcept = default;
constexpr basic_mdarray(basic_mdarray&&) noexcept = default;
template<class... IndexType>

explicit constexpr basic_mdarray(IndexType... dynamic_extents);
explicit constexpr basic_mdarray(const mapping_type& m);
constexpr basic_mdarray(const mapping_type& m, const container_policy_type& p);
template<class ET, class Exts, class LP, class CP>

constexpr basic_mdarray(const basic_mdarray<ET, Exts, LP, CP>& other);
template<class ET, class Exts, class LP, class CP>

constexpr basic_mdarray(basic_mdarray<ET, Exts, LP, CP>&& other);

~basic_mdarray() = default;

constexpr basic_mdarray& operator=(const basic_mdarray&) noexcept = default;
constexpr basic_mdarray& operator=(basic_mdarray&&) noexcept = default;
template<class ET, class Exts, class LP, class CP>

constexpr basic_mdarray& operator=(const basic_mdarray<ET, Exts, LP, CP>&) noexcept;
template<class ET, class Exts, class LP, class CP>

constexpr basic_mdarray& operator=(basic_mdarray<ET, Exts, LP, CP>&&) noexcept;

// basic_mdarray mapping domain multidimensional index to access codomain
// element (also in basic_mdspan)
constexpr reference operator[](index_type);
constexpr const_reference operator[](index_type) const;
template<class... IndexType>

constexpr reference operator()(IndexType... indices);
template<class... IndexType>

constexpr const_reference operator()(IndexType... indices) const;
template<class IndexType, size_t N>

constexpr reference operator()(const array<IndexType, N>& indices);
template<class IndexType, size_t N>

constexpr const_reference operator()(const array<IndexType, N>& indices) const;

// basic_mdarray observers of the domain multidimensional index space
// (also in basic_mdspan)
static constexpr int rank() noexcept;
static constexpr int rank_dynamic() noexcept;
static constexpr index_type static_extent(size_t) noexcept;
constexpr extents_type extents() const noexcept;

12

constexpr index_type extent(size_t) const noexcept;
constexpr index_type size() const noexcept;
constexpr index_type unique_size() const noexcept;

// creation of analogous mdspan (unique to basic_mdarray)
constexpr view_type view() noexcept;
constexpr const_view_type view() const noexcept;

// observers of the codomain (also in basic_mdspan)
constexpr pointer data() noexcept;
constexpr const_pointer data() const noexcept;
constexpr container_policy_type container_policy() const noexcept;

// basic_mdarray observers of the mapping (also in basic_mdspan)
static constexpr bool is_always_unique() noexcept;
static constexpr bool is_always_contiguous() noexcept;
static constexpr bool is_always_strided() noexcept;
constexpr mapping_type mapping() const noexcept;
constexpr bool is_unique() const noexcept;
constexpr bool is_contiguous() const noexcept;
constexpr bool is_strided() const noexcept;
constexpr index_type stride(size_t) const;

private:
container_type c_; // exposition only
mapping_type map_; // exposition only
container_policy cp_; // exposition only

};

4 Wording

Wording will be added after design review is completed and after wording review is completed for [P0009R9],
but most of the challenges associated with wording for basic_mdarray have already been solved in the
context of [P0009R9].

5 References

[P0009R9] H. Carter Edwards, Bryce Adelstein Lelbach, Daniel Sunderland, David Hollman, Christian Trott,
Mauro Bianco, Ben Sander, Athanasios Iliopoulos, John Michopoulos, Mark Hoemmen. 2019. mdspan: A
Non-Owning Multidimensional Array Reference.
https://wg21.link/p0009r9

13

https://wg21.link/p0009r9

	Motivation
	Design
	Design Overview
	Principal Differences between mdarray and mdspan
	Extents Design Reused
	LayoutPolicy Design Reused
	AccessorPolicy Replaced by ContainerPolicy
	Expected Behavior of Motivating Use Cases
	Analogs in the Standard Library: Container Adapters
	(Not Proposed) Alternative: A Dedicated ContainerPolicy Concept
	Proposed Alternative: ContainerPolicy subsumes AccessorPolicy

	Synopsis
	Wording
	References

