
P1771R1 - [[nodiscard]] for constructors
Peter Sommerlad

2019-07-19

Document Number: P1771R1
Date: 2019-07-19
Project: Programming Language C++

Programming Language Vulnerabilities C++
Audience: EWGI/EWG/CWG

1 Introduction

The paper p0189 that introduced the [[nodiscard]] attribute did not consider constructors. How-
ever, gcc for example implements the checking for constructors, even so it warns about putting
[[nodiscard]] on a constructor definition. Here I propose to allow [[nodiscard]] also on con-
structors (which it implicitly is allowed by the current wording) and suggest checking it for cast
expressions so that we can put it on things like scoped_lock etc.

The need is more obvious in C++ 17 and later, where CTAD allows for fewer factory functions and
thus the easy to make mistake by just typing the type and constructor arguments instead of defining
a local variable.

Since this change is editorial only, it might be considered to be applied for the current working
paper.

R1 of this paper extends the example to demonstrate the added cases and integrates feedback by
CWG in Cologne 2019.

Reviewers, please note that a constructor declaration is a function declaration.

Thanks to EWG, CWG, Mike Miller, and Alisdair Meredith for helping with this paper and giving
feedback.

2 Wording

The following changes are relative to n4820.

Change in Table 16 ([tab:cpp.cond.ha]) in section 15.1 ([cpp.cond]) the entry nodiscard from
201603L to 201907L.

Change section [dcl.attr.nodiscard] as follows.

1



2 P1771R1 2019-07-19

2.0.1 Nodiscard attribute [dcl.attr.nodiscard]
1 The attribute-token nodiscard may be applied to the declarator-id in a function declaration or to

the declaration of a class or enumeration. It shall appear at most once in each attribute-list and no
attribute-argument-clause shall be present.

2 A nodiscard type is a (possibly cv-qualified) class or enumeration type marked nodiscard in a
reachable declaration. A nodiscard call is either

—(2.1) a function call expression (7.6.1.2 [expr.call]) that calls a function previously declared nodiscard
in a reachable declaration, or whose return type is a possibly cv-qualified class or enumeration
type marked nodiscard nodiscard type, or.

—(2.2) an explicit type conversion (7.6.1.8 [expr.static.cast], 7.6.3 [expr.cast], 7.6.1.3 [expr.type.conv])
that constructs an object through a constructor declared nodiscard, or that initializes an
object of a nodiscard type.

3 [Note: Appearance of a nodiscard call as a potentially-evaluated discarded-value expression (7.2)is
discouraged unless explicitly cast to void. Implementations should issue a warning in such cases.
This is typically because discarding the return value of a nodiscard call has surprising consequences.
—end note ]

4 [Example:
struct [[nodiscard]] my_scopeguard { /* ... */ };
struct my_unique {

my_unique() = default; // does not acquire resource
[[nodiscard]] my_unique(int fd) { /* ... */ } // acquires resource
~my_unique() noexcept { /* ... */ } // releases resource, if any
/* ... */

};

struct [[nodiscard]] error_info { /* ... */ };
error_info enable_missile_safety_mode();
void launch_missiles();
void test_missiles() {

my_scopeguard(); // warning encouraged
void(my_scopeguard()), // warning not encouraged, cast to void

launch_missiles(); // comma operator, statement continues
my_unique(42); // warning encouraged
my_unique(); // warning not encouraged
enable_missile_safety_mode(); // warning encouraged
launch_missiles();

}
error_info &foo();
void f() { foo(); } // warning not encouraged: not a nodiscard call, because neither

// the (reference) return type nor the function is declared nodiscard

—end example ]


	1 Introduction
	2 Wording

