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1 Introduction
This paper proposes a unified model for universal template parameters (UTPs) and dependent names, enabling
more comprehensive and consistent template metaprogramming. Universal template parameters allow for a
generic apply and other higher-order template metafunctions, including certain type traits.

2 Change Log
2.1 R2 -> R3

— Complete paper rewrite to make it more obvious what is proposed and what has been considered.
— Proposed examples have been expanded.
— Added universal aliases
— Merged variable template template parameters paper into this one
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— Merged the concept template parameters paper into this one
— Respecified UTPs as dependent names and continued cleanup started with “down with typename”

2.2 R1 -> R2
Having found overwhelming support for the feature in EWGI, and a concern about contra- and co-variance of
the template auto parameters, we include discussion of these topics in the paper, together with the decision
and comparison tables that underpin the decision.

The decision was to explore both and put it to a vote.

Added list of questions for EWGI.

2.3 R0 -> R1
— Greatly expanded the number of examples based on feedback from the BSI panel.
— Clarified that we are proposing eager checking

3 Related work
— [P0634R3] [accepted] got rid of typename where it was obviously redundant; we hope to get rid of it in

even more places (though not all).
— [P0945R0] [discarded] explored universal aliases; this proved unworkable, and the minutes of discussion

informed this paper.
— [P2601R1] explores dropping empty <>. This might take up syntactic space that we need, but we haven’t

explored whether it does yet due to lack of time.
— [P0522R0] explores related partial ordering around partial template specialization; To our knowledge, this

paper does not interact with the present proposal.
— [P2008R0] proposes variable-template template-parameters

4 Motivation and Examples
This paper unifies the model of template parameters with the model for dependent tokens (types, values, tem-
plates, and at some point hopefully concepts). This model is not uniform in C++23 because it lacks a way to
treat all of the above uniformly, ironically denying the ability of generic code to treat itself generically.

Note: template auto is a placeholder syntax for such a parameter, albeit not a bad one; see the spelling
discussion section later in the paper.

Consider the following examples this paper aims to enable.

4.1 Checking whether a type is a specialization of a given template
Main discussion of feature in [P2098R0] by Walter Brown and Bob Steagall.

When writing template libraries, it is useful to check whether a given type is a specialization of a given template.
Such a trait is currently impossible to implement, as a template may potentially take an arbitrary mix of type
and non-type template parameters. By introducing universal template parameters (UTPs), such a concept may
be written easily, as follows:
// is_specialization_of
template <typename T, template <template auto...> typename Type>
constexpr bool is_specialization_of_v = false;

template <template auto... Params, template <template auto...> typename Type>
constexpr bool is_specialization_of_v<Type<Params...>, Type> = true;

3



template <typename T, template <template auto...> typename Type>
concept specialization_of = is_specialization_of_v<T, Type>;

This enables constraining to specific class templates:
// example from a units library
template <auto N, auto D>
struct ratio {
static constexpr decltype(N) n = N;
static constexpr decltype(D) d = D;

};

template <specialization_of<ratio> R1, specialization_of<ratio> R2>
using ratio_mul = simplify<ratio<R1::n * R2::n, R1::d * R2::d>>;

// std::array<class, size_t>
static_assert(specialization_of<std::array<int, 4>, std::array>);
// std::vector<class, class>, but with a default argument.
static_assert(specialization_of<std::vector<int>, std::vector);

4.1.1 Contrast with Reflection

The authors would like to thank Daveed Vandevoorde for this example.

With [P1240R2], the implementation would be like so:
template<typename Type, template <template auto...> typename Templ>
constexpr bool is_specialization_of_v = (template_of(^Type) == ^Templ);

Alternatively, using a functional interface to avoid instantiations:
consteval bool is_specialization_of(std::meta::info r_instance, std::meta::info r_templ) {
return template_of(r_instance) == r_templ;

}

4.2 apply1
A contrived-for-simplicity example which avoids the complexity of variadics:
template <template <template auto> typename F, template auto Arg>
using apply1 = F<Arg>;

template <typename X> struct takes_type {};
template <auto X> struct takes_value {};
template <template <template auto...> typename X> struct takes_template {};

using r1 = apply1<takes_type, int>; // takes_type<int>
using r2 = apply1<takes_value, 3>; // ok, takes_value<3>
using r3 = apply1<takes_template, takes_template>; // takes_template<takes_template>

4.3 Full apply metafunction
The non-contrived example is the apply metafunction, achievable like so:
template <template <template auto...> typename F, template auto... Args>
using apply = F<Args...>; // easy peasy!
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// ok, r1 is std::array<int, 3>
using r1 = apply<std::array, int, 3>;
// ok, r2 is std::vector<int, std::pmr::allocator>
using r2 = apply<std::vector, int, std::pmr::allocator>;

In C++23, this is impossible to do; the various metaprogramming libraries get around that by boxing, or by
only supporting type-taking metafunctions.

4.4 New Traits (also an example)
Universal template parameters allow new and useful kind-traits to be implemented. Note the partial specializa-
tion mechanism should work as one would expect.

Note: We define variable templates first because they compile faster.
template <template auto> constexpr bool is_typename_v = false;
template <typename T> constexpr bool is_typename_v<T> = true;
template <template auto> constexpr bool is_value_v = false;
template <auto V> constexpr bool is_value_v<V> = true;
template <template auto> constexpr bool is_template_v = false;
template <template <template auto...> typename A>
constexpr bool is_template_v<A> = true;

// As we propose variable-template template-parameters
template <template auto>
constexpr bool is_variable_template_v = false;
template <template <template auto...> auto A>
constexpr bool is_variable_template_v<A> = true;

// As we propose concept template-parameters
template <template auto> constexpr bool is_concept_v = false;
template <template <template auto...> concept A>
constexpr bool is_concept_v<A> = true;

// The associated type for each trait:
template <template auto X> struct is_typename : std::bool_constant<is_typename_v<X>> {};
template <template auto X> struct is_value : std::bool_constant<is_value_v<X>> {};
template <template auto X> struct is_template : std::bool_constant<is_template_v<X>> {};
template <template auto X> struct is_variable_template

: std::bool_constant<is_variable_template_v<X>> {};
template <template auto X> struct is_concept

: std::bool_constant<is_concept_v<X>> {};

4.5 A variable-to-type adaptor that exposes ::result
A box is an important way of bridging to type-based metaprogramming, so we need to define it, also for the
purposes of further examples.

Note: box is less necessary as we propose variable-template template-parameters.
template <template auto> struct box; // impossible to define body

template <auto X>
struct box<X> { static constexpr decltype(X) result = X; };

template <typename X>
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struct box<X> { using result = X; };

template <template <template auto...> typename X>
struct box<X> {
template <template auto... Args>
using result = X<Args...>;

};

// As we prropose variable-template template-parameters
template <template <template auto...> auto X>
struct box<X> {
template <template auto... Args>
static constexpr decltype(X<Args...>) result = X<Args...>;

};

4.6 map_reduce :: Total Example
We believe all the required features are used in the map_reduce example, where metafunction results are mapped
into a ::result member (we don’t use the proposed variable template parameters here yet and instead use the
box defined above).
template <template <template auto> typename Map,

template <template auto...> typename Reduce,
template auto... Args>

using map_reduce = Reduce<Map<Args>::result...>;

Note: notice that the above is a type-alias template. box allows us to return anything because it’s a type.

Note: notice we expect the metafunction Map to return a box.

As an example usage of map_reduce let’s count the number of types in the argument list:
template <int... xs> using sum = box<(0 + ... + xs)>;
template <template auto X> using boxed_is_typename = box<is_typename_v<X>>;
static_assert(2 == map_reduce<boxed_is_typename, sum, int, 1, long, std::vector>::result);

With variable-template template-parameters, we don’t need to box is_typename_v and a better definition of
map_reduce can be written. This version still needs box for the result of Reduce as it does not rely on universal
aliases.
template <template <template auto> typename Map,

template <template auto...> template auto Reduce,
template auto... Args>

using map_reduce_better = Reduce<Map<Args>...>;

We can use it more comfortably, as well:
static_assert(2 == map_reduce_better<is_typename_v, sum, int, 1, long, std::vector>::result);

Note: the kind of Reduce can be anything as it is enclosed in a box, which is a type.

5 Mechanism
This chapter describes the mechanics of universal template parameters (UTPs). Effectively, a UTP acts like a
dependent name. This paper also cleans up dependent expressions so that they are more useful and consistent.
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5.1 Specializing class templates on parameter kind
UTPs introduce similar generalizations as the auto universal NTTP did; in order to make it possible to pattern-
match on the parameter, class templates need to be able to be specialized on the kind of parameter as well:
template <template auto> struct X;

template <typename T>
struct X<T> {
// T is a type
using type = T;

};

template <auto val>
struct X<val> {

using type = decltype(val);
};

template <template <typename> typename F>
struct X<F> {

// F is a unary metafunction
template <typename T>
using type = F<T>;

};

template<template auto U> user()
{

using type = X<U>;
}

This basic mechanism allows the utterance of a UTP only in:

— template-parameter-list as the declaration of such a parameter.
— template-argument-list as the usage of such a parameter. It can bind only to a template parameter declared

template auto.

This allows building enough traits to connect the new feature to the rest of the language with library facilities
and rounds out template parameters as just another form of a compile-time parameter. However, it has the
same kinds of limitations we saw before if constexpr was introduced: Function templates often had to rely on
helper structs to do simple things.

5.2 Allowing UTPs in code
To make this feature useful, UTPs must be usable in code. Parsing of UTPs is made possible via disambiguation
according to dependent name rules.

The disambiguation problem occurs often. Consider the following overloaded template functions and their
interaction with dependent names:
template<typename T> int f() { return sizeof(T); } // f#1
template<auto V> int f() { return V; } // f#2

template<typename T> int caller()
{

std::vector<T::name> x; // error in C++23, for little reason.
return f<T::name>(); // "down with typename"++
return f<T::name*>(); // Error: T::name* is syntactically not a constant expression

}

7



In C++23, the f#2 is called if T::name is a value; but if a type, it is an error, instead of dispatching to f#1.

Note: No C++23 code is broken by this change as caller is only callable when T::name resolves to a value in
C++23.

With UTPs this problem is more articulated:
template<template auto U> int caller2()
{

return f<U>();
}

This paper proposes we keep parsing dependent expressions as-if they are values (C++23 rules) (unless dis-
ambiguated with typename and template), but we actually defer checking their kind until instantiation time.
Conceptually, dependent expressions can be thought of as universal template parameters whose disambiguation
can be deferred when knowing what kind of entity they are is not needed in the immediate context.

5.2.1 Deferring kind checking to instantiation

Dependent expressions are still parsed as constant-expression, but kind-checks are always deferred to substitution
time.

UTPs are just dependent expressions.
template<template auto U> int caller3()
{

auto u = f<U>(); // Instantiates for values and types
auto v = f<U*>(); // Error: U* is not syntactically a constant expression
auto v = f<typename U*>(); // OK: U* is disambiguated
using type = X<U>; // Instantiates for all kinds.

// Can fail instantiation if argument kind is wrong:
auto v = U; // Parses U as a value.
using t = U*; // Parses U as a type thanks to "down with typename".

// Error during parse:
U x; // Error: U is parsed as a value
template<typename T> using tpl = U<T>; // Error: U is parsed as a value.

// Disambiguation needed when UTP is used outside of template argument:
template<typename T> using tpl = template U<T>; // OK if U is bound to a class template
typename U x;
typename template U<int> i; // Note: New double disambiguation. See below.
auto vi = template U<int>; // OK if U bound to a variable-template taking a typename

}

Dependent names also bind to universal template parameters without being disambiguated to value when they
appear as template arguments, thanks to the deferred kind checking. This behavior enables utility structs to
perform transformations on packs of template parameters involving mixes of types and NTTPs:

5.2.2 Automatic disambiguation when :: is applied

When a UTP is parsed it is presumed to be a value like any dependent name. However, we need to express that
it is a type when it has a subordinate value or type.
template<template auto U> struct S {

int x = U::value;
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typename U::type v;
};

This had worked fine if U was a typename template parameter, and we want it to work just as fine when U
is a UTP. But a non-disambiguated UTP is not a type and we can’t disambiguate it as a type by writing
int x = typename U::value; as this is the same syntax as when disambiguating U::value as a type.

To solve this we propose that :: automatically disambiguates its left hand side as a type for all dependent left
hand sides and that typename disambiguation applies to the final nested name only.

This solves the problem and as a side effect also solves a similar problem we already have with nested dependent
names.

A full discussion can be found in a separate chapter below.

5.2.3 Manual disambiguation to template

To disambiguate a UTP as a template requires using a prefix template keyword. This is novel but unsurprising.
As a specialization of a dependent name disambiguated as template is treated as a value it must in itself be
disambiguated as a type to be used as such:
template<template auto U> struct TT {

int x = template U<int, 3>;
typename template U<int, 3> v;

};

The double disambiguation when declaring v is required as U is first disambiguated as a template and then the
template specialization U<int, 3> also has to be disambiguated as a type.

6 Universal aliases
A universal alias is a name given to a dependent name or universal template parameter. A universal alias is in
itself a dependent name, just like a UTP.

The grammar for a universal alias is simply:

universal-alias:
template auto identifier = template-argument ;

The box example is now trivial, but also unnecessary.
template<template auto U> struct box {

template auto result = U;
};

With this definition the map_reduce example can be further refined:
template<template<template auto> template auto Map,

template<template auto...> template auto Reduce,
template auto... Args>

template auto map_reduce_best = Reduce<Map<Args>...>;

We can use it more comfortably, as well:
template<int... xs> constexpr int sum = (0 + ... + xs);
static_assert(2 == map_reduce_best<is_typename_v, sum, int, 1, long, std::vector>);

Note: Map is now declared as a template auto metafunction, meaning that it could be a class template or as
in the case of sum a variable template.
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Note: Now we no longer need sum to be a box. map_reduce_best is a universal alias template. We still need
to disambiguate these when used. In this example, however, as the result of sum is a value, we don’t have to
disambiguate inside the static_assert.

6.1 Properties of universal aliases
6.2 Universal aliases are purely compile-time entities

— if values, their initializer is consteval
— if types, that is trivially true.

In other words, a universal alias behaves like a UTP, but one that is introduced by a declaration as opposed to
introduced as a template parameter.

The grammar production with template-argument as the initializer is correct, with one of its alternatives being
constant-expression.

Note: in a previous iteration of [P0945R0], the initializer of value kind did not have to be constexpr, and the
universal alias was just another name for a variable or function.

6.3 Universal aliases are always treated as dependent names
This is regardless of whether their initializer is dependent or not. This is to allow changing whether the initializer
is dependent without impact to parsing.

7 Variable and Concept template template parameters
Initially proposed in [P2008R0], variable template template parameters would allow passing variable templates,
such as value type traits as template parameter.

Because concepts almost act like variable template of type bool, while offering more capabilities, we should also
allow concept template template parameters.

This allows to express important ideas such as range_of<std::integral> or tuple_like<std::regular>
template <typename R, template<typename> concept C>
concept range_of =

ranges::input_range<R>
&& C<remove_cvref_t<ranges::range_reference_t<R>>>;

The syntax for these new entities is straightforward (and leaves little room for invention).
template <auto N> // Variable template parameter
template <template </*...*/> typename> // Type-template template-parameter
template <template </*...*/> auto> // Variable-template template-parameter
template <template </*...*/> concept> // Concept-template template-parameter

We can not have template <concept> as a concept is by definition a template itself and therefore only makes
sense in the context of a template template parameter.

We are also not proposing supporting passing partially applied concepts (such as same_as<int>) as a concept
template parameter. In the presence of packs or defaulted template parameter, it would be impossible to
distinguish between a bool variable and a concept without some additional disambiguator. More work would
be needed to establish the feasibility of supporting partially applied concepts.

Variable templates of a specific type (template <template <> int>) are also impossible, as the type of a
template variable can vary across specializations, and there is no real way to restrict specializations from doing
that.
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In addition of the “sequence of entity satisfying some concept” use cases (like range_of<integral>), we can
use this feature to better express complex, repetitive concepts. Barry Revzin offered a number of extremely
compelling such use cases in this blog post. For example, we can describe more succinctly and expressively the
many “indirect” iterator concepts used to support projections.
template<class F, class I, template <typename> concept direct>
concept indirect =

indirectly_readable<I> &&
copy_constructible<F> &&
direct<F&, iter_value_t<I>&> &&
direct<F&, iter_reference_t<I>> &&
direct<F&, iter_common_reference_t<I>> &&
common_reference_with<

invoke_result_t<F&, iter_value_t<I>&>,
invoke_result_t<F&, iter_reference_t<I>>>

;

template<class F, class I>
concept indirectly_unary_invocable =

indirect<F, I, invocable>;

template<class F, class I>
concept indirectly_regular_unary_invocable =

indirect<F, I, regular_invocable>;

Universal template parameters and variable/concept template parameters are orthogonal features, in that they
could be standardized separately. However, when combined, these features are even more expressive. Notably,
we can support both range_of<int> and range_of<std::integral>, by combining both features. IE:
template <typename R, template auto T> // Primary universal template
constexpr bool is_range_of = delete;

template <typename R, template <typename> concept C> // Specialization for concepts
constexpr bool is_range_of<R, C> = C<R>;

template <typename R, typename T> // Specialization for concrete types
constexpr bool is_range_of<R,T> = std::is_same_v<R, T>;

template <typename R, template auto T>
concept range_of = is_range_of<std::remove_cvref_t<std::ranges::range_reference_t<R>>, T>;

// We can now constrain a range to a specific type
static_assert(range_of<std::string, char>);
// Or a concept
static_assert(range_of<std::string, std::integral>);

In addition of the compelling synergy, it would be hard to ensure these features integrate well with one another
if standardized separately, given the interactions. In particular, it means that:

— Universal parameters can be used as parameter to concept/variable template template parameters.
// A pack of variable template template parameter
// parametrized on universal template parameters
template <template<template auto...> auto... V>

template auto and auto are not ambiguous here, but it might be confusing for the reader.
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A UTP can then be:

— A type
— A value
— A type template
— A variable template
— A concept

We need to ensure that the product of these interactions is coherent, especially for dependant expressions (Even
if neither variable or concept template template parameters should not require new disambiguators, template
is enough to disambiguate all types of template template parameters). The best way to ensure that coherence
is to evolve both features at the same time, in the same paper.

8 Clarifying examples
8.1 Single parameter examples

template <int> struct takes_int {};
template <typename T> using takes_type = T;
template <template auto> struct takes_anything {};
template <template <typename> typename F> struct takes_metafunc {};

template <template <template auto> typename F, template auto Arg>
struct fwd {
using type = F<Arg>; // ok, passed to template auto parameter

}; // ok, correct definition

void f() {
fwd<takes_int, 1>{}; // ok; type = takes_int<1>
fwd<takes_int, int>{}; // error, takes_int<int> invalid
fwd<takes_type, int>{}; // ok; type = takes_type<int>
fwd<takes_anything, int>{}; // ok; type = takes_anything<int>
fwd<takes_anything, 1>{}; // ok; type = takes_anything<1>
fwd<takes_metafunc, takes_type>{}; // ok; type = takes_metafunc<takes_type>
fwd<takes_metafunc, takes_int>{}; // error. (1)

}

(1): takes_int is not a metafunction on a type, so takes_metafunc<takes_int> is invalid (true as of C++98).

8.2 Variadic Examples
Consider the expansion of a non-homogeneous pack of universal template parameters. The result should not be
surprising:
template <template auto X, template auto Y>
struct is_same : std::false_type {};
template <template auto V>
struct is_same<V, V> : std::true_type {};

template <template auto V, template auto ... Args>
struct count : std::integral_constant<

size_t,
(is_same<V, Args>::value + ...)> {};

// ok, ints = 2:
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constexpr size_t ints = count<int, 1, 2, int, is_same, int>::value;
// ok, twos = 1:
constexpr size_t twos = count<2, 1, 2, int, is_same, int>::value;

Similarly a transformation of pack element kind can be easily implemented, such as unwrapping any inte-
gral_constant types into their enclosed value:
template<typename T>
struct unwrap
{
using result = T;

};

template<typename T, T t>
struct unwrap<std::integral_constant<T, t>>
{
static constexpr T result = t;

};

Using the above, the following is valid:
template <template <template auto...> typename T, typename... Params>
using apply_unwrap = T<unwrap<Params>::result...>;

apply_unwrap<std::array, int, std::integral_constant<std::size_t, 5>> arr;

unwrap<Params>::result... forms a pack of UTPs with any integral_constant unwrapped to its underlying
value.

8.3 Example of parsing ambiguity
UTPs must follow dependent name rules to avoid parsing ambiguities. Example courtesy of [P0945R0], and
adapted:
template <template auto A>
struct X {
void f() { A * a; } // multiplication

};

If A were indeterminate, potentially being a type or a value, the expression could be parsed as either a declaration
or a multiplication. By treating A as just a dependent name, this expression always parses as a multiplication.
To treat A as a typename and a as a variable being declared, A has to be disambiguated, as any dependent name
would.

Original example from [P0945R0]:
template <typename T> struct X {
using A = T::something; // P0945R0 proposed universal alias
void f() { A * a; }

};

9 Example Applications
This feature is very much needed in very many places. This section lists examples of usage.
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9.1 Enabling higher order metafunctions
This was the introductory example. Please refer to the [Proposed Solution].

Further example: curry:
template <template <template auto...> typename F,

template auto ... Args1>
struct curry {
template <template auto... Args2>
using func = F<Args1..., Args2...>;

};

9.2 Making dependent static_assert(false) work
Dependent static assert idea is described in [P1936R0] and [P1830R1]. In the former the author writes:

Another parallel paper [P1830R1] that tries to solve this problem on the library level is submitted. Unfortu-
nately, it cannot fulfill all use-case since it is hard to impossible to support all combinations of
template template-parameters in the dependent scope.

The above papers are rendered superfluous with the introduction of this feature. Observe:
// stdlib
template <bool value, template auto... Args>
constexpr bool dependent_bool = value;
template <template auto... Args>
constexpr bool dependent_false = dependent_bool<false, Args...>;

// user code
template <template <typename> typename Arg>
struct my_struct {
// no type template parameter available to make a dependent context
static_assert(dependent_false<Arg>, "forbidden specialization.");

};

However, a language change, such as proposed by [P2593R0] would still be beneficial.

9.3 Universal alias as a library class
See the initial box<> example.

While this paper does not try to relitigate Richard Smith’s [P0945R0], it does provide a solution to aliasing
anything as a library facility, without running into the problem that [P0945R0] ran into, even if EWG chooses
to not allow the universal aliases described herein.

9.4 Bringing CTAD to make_unique et. al.
With the introduction of CTAD (constructor template argument deduction) a discrepancy was created which
favors using plain new instead of make_unique as the latter needs the template arguments of a template class
to be spelled out.

With UTPs we can add overloads to make_unique which make CTAD work in these situations:
auto a = std::tuple(1, true, 'a'); // ok
auto ap = new std::tuple(1, true, 'a'); // ok

// not ok in C++23.
auto up = std::make_unique<std::tuple>(1, true, 'a');
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int arr[] = {1, 2, 3};

auto s = std::span(arr); // ok
auto sp = new std::span(arr); // ok

// not implementable in C++23 as span has a NTTP.
auto sup = std::make_unique<std::span>(arr);

An overload to implement this would look something like:
template<template<template auto...> class C, typename... Ps>
auto make_unique(Ps&&... ps) {

return unique_ptr<decltype(C(std::forward<Ps>(ps)...))>(new C(std::forward<Ps>(ps)...));
}

Note that the decltype is required as there is no deduction guide for plain pointers, this is however not a
problem specific to the universal template overload.

10 Interactions with other language features
10.1 Impacts on function template overloading
The existence of UTPs requires backwards-compatible fixes to template overloading; there aren’t two ways about
it though, it behaves as a universal match that is the worst match in all cases.
template<template auto X> const char* kind_name() { return "type"; }
template<template<template auto...> X> const char* kind_name() { return "template"; }
template<auto X> const char* kind_name() { return "value"; }

10.2 Impact on class template specialization
UTPs can be used to implement what appears like overloading of class templates.

Class template specialization is finally unified with function template overloading with regards to its power - with
a completely unconstrained base template (template <template auto...> struct my_container;), partial
template specializations can span the entire universe of possible template parameter kinds and arities.
template <template auto...> struct my_container;

template <typename T> struct my_container<T> {
my_container(T* data, size_t count);
// A basic implementation

};

template <typename T, typename A> struct my_container<T, A> {
my_container(T* data, size_t count);
my_container(T* data, size_t count, const A& alloc);
// An implementation using an allocator A

};

template <typename T, size_t SZ> struct my_container<T, SZ> {
my_container(T* data, size_t count);
// An implementation with an internal storage of SZ bytes

};
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template <typename T> my_container(T*, size_t) -> my_container<T>;
template <typename T, typename A> my_container(T*, size_t, const A&) -> my_container<T, A>;

10.3 Impact on the partial specialization of NTTP templates
It is a common pattern in C++ to use SFINAE to constrain template parameter types:
template <typename T, typename=void>
struct A;

template <template <typename> typename T, typename U>
struct A<T<U>,std::enable_if_t<std::is_integral_v<U>>>
{

// Implementation for templates with integral parameter types
};

template <template <typename> typename T, typename U>
struct A<T<U>,std::enable_if_t<std::is_floating_point_v<U>>>
{

// Implementation for templates with floating point parameter types
};

template <typename T>
struct X {};

A<X<int>> a; // Uses integral partial specialization

The loose matching behaviour of template auto allows a similar pattern to be used for NTTPs.
template <typename T, typename=void>
struct B;

template <template <template auto> typename T, auto U>
struct B<T<U>,std::enable_if_t<std::is_integral_v<decltype(U)>>>
{

// Implementation for templates with integral parameter types
};

template <template <template auto> typename T, auto U>
struct B<T<U>, std::enable_if_t<std::is_floating_point_v<decltype(U)>>>
{

// Implementation for templates with floating point parameter types
};

template <int I>
struct Y {};

B<Y<5>> b; // Uses integral partial specialization

For reference, auto used with NTTPs behaves as follows:
template <typename T, typename=void>
struct C;

template <template <auto> typename T, auto U>
struct C<T<U>,std::enable_if_t<std::is_integral_v<decltype(U)>>>
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{};

template <int I>
struct Z1 {};

template <auto I>
struct Z2 {};

C<Z1<5>> c1; // Error: T does not match Z1
C<Z2<5>> c2; // Ok: NTTP can only be `auto`

10.4 Impacts on the specialization of variable templates
UTPs can be used to implement what appears like overloading of variable templates.

The problem of not being able to delete the base case then becomes more pressing than in C++23, as the designer
might wish that selecting the base case trigger an error, when it is still selected when none of the specializations
matches. This is solved by [P2041R0], which is assumed in the example below.
// Metafunction to find a tuple element by a type predicate.
template <template <typename> typename Pred, size_t Pos, typename Tuple>
constexpr size_t tuple_find() {

if constexpr (Pos == tuple_size_v<Tuple>())
return npos;

else if constexpr (Pred<remove_cvref_t<tuple_element_t<Pos, Tuple>>>::value)
return Pos;

else
return tuple_find<Pred, Pos + 1, Tuple>();

}
template <template <typename> typename Pred, typename Tuple>
constexpr size_t tuple_find() { return tuple_find<Pred, 0, Tuple>(); }

// Helper to bind the first arguments of a provided template
template <template <template auto...> typename TPL, template auto... Bs> struct curry {

template <template auto... Ts> using func = TPL<Bs..., Ts...>;
};

// Unimplemented base case.
template <template auto... Ps>
constexpr size_t tuple_find_v = delete;

template <template <typename> typename Pred, typename Tuple>
constexpr size_t tuple_find_v<Pred, Tuple> = tuple_find<Pred, Tuple>();

template <template <typename> typename Pred, size_t Pos, typename Tuple>
constexpr size_t tuple_find_v<Pred, Pos, Tuple> = tuple_find<Pred, Pos, Tuple>();

// Convenience specialization for use with binary predicate
template <template <typename, typename> typename Pred, typename M, typename Tuple>
constexpr size_t tuple_find_v<Pred, M, Tuple> = tuple_find_v<curry<Pred, M>::template func, Tuple>;

// Convenience specialization to match particular type.
template <typename T, typename Tuple>
constexpr size_t tuple_find_v<T, Tuple> = tuple_find_v<std::is_same, T, Tuple>;
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This example contains a metafunction tuple_find to find a matching element in a tuple based only on its type.
Unfortunately, it must be implemented as a constexpr function in C++23 if we want it to be usable with or
without the start position (which would mimic the std::find function in the value domain).

With UTPs we can specialize a template variable tuple_find_v to regain the symmetry with current tuple
oriented metafunctions such as tuple_size_v and tuple_element_t.

Given further overloads of the constexpr function tuple_find we could simplify the variable template definition
to:
template <template auto... Ps> constexpr size_t tuple_find_v = tuple_find<Ps...>();

This relies on the power of UTPs in another way, and has the same simplicity as the current variable templates
and type aliases of the standard library type traits.

To take the consistency a step further tuple_find could be implemented as a class template with UTPs as
shown in the previous example instead of as the function it must be in C++23.

11 Choice of syntax and keyword
The template auto syntax in this proposal is a placeholder. EWG needs to decide on a spelling.

This section is written to aid this process.

11.1 Drawbacks of template auto
The initially suggested spelling template auto is close to existing syntax to explicit function template special-
ization.
template <typename T> auto f(T x) { return x; }

template auto f<float>(float y);

11.2 Choices
We can do any of the following:

— repurpose an existing keyword (like register, inline or constexpr)
— use a combination of keywords (see table)
— make a new keyword
— put a ? after a keyword

A distinct feature like UTPs would generally require a new keyword.

Introducing a new keyword may have backward compatibility difficulties. Nonetheless, C++23 introduced 8 new
keywords, including the relatively common words concept and requires.

This paper proposes a specialist feature, which led us to try to use a compound keyword instead of introducing
a new one. This is novel.

As shown by the previous section subtle use cases of template auto went undetected for years, and even 1.5
implementations were made without detecting it as the grammar productions where the two uses are valid are
distinct.

In conclusion, introducing a new keyword has a risk of breaking old code, while using two keywords in combination
to mean a distinct thing is unprecedented in C++ and carries some risk of its own.

Therefore we suggest an initial poll to make the selection whether to search for a usable and understandable
combination of current keywords, or to select a new keyword with suitably obscure spelling to avoid too much
code breakage.
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To aid in this decision we have brainstormed a set of reasonable token combinations and a set of possible new
keywords. None of the lists is exhaustive and additional suggestions are welcomed by the authors.

Keyword combinations New Keywords
template auto any_name
auto template any_kind
auto typename auto_kind
typename auto unknown_kind
template? universal_name

universal_kind
univ_name
univ_kind

indeterminate
indet_name

dependent_name
any_kind_name

11.2.1 Keyword discussion

If a new keyword is to be recommended, the list above contains two word combinations except for one long and
complicated word that could be useable in isolation.

Apart from the collision risk it is of course important that the keyword describes the semantics of the feature as
closely as possible. Succinctly the feature semantics can be stated as:

A template parameter that can be bound to any kind of template argument.

This sentence conveys a few facts:

— It is a template parameter
— It can be bound to any kind
— It can have a name (as can all template parameters)

Of these facts we can disregard the first as it is conveyed by the context where the keyword is used, and thus
need not be indicated by the keyword. The second fact is the central idea and the word any is what conveys
this information. The third fact is also given by the context but the spelling typename still includes name which
is to be noted.

This said the list of suggested names include mostly synonyms of any in a wide sense: any, auto, unknown,
universal, indeterminate, dependent. The word dependent was included as it exactly describes how a UTP
works to a C++ expert. We also included somewhat obscure abbreviations of universal and dependent which
could help reduce the amount of code breakage.

For the last half of the keyword we only came up with name or kind. We think that name is probably best
although it may viewed as redundant. One reason is that typename exists and another is that kind seems to
refer to a reflection of a UTP, which indicates which kind it was bound to. When reflections on UTPs the kind
it was bound to for a certain instantiation will be of interest.

11.2.2 To underscore or not to underscore

While the keyword parts are written separately in the table above the intent is to either write the words together
or with an interposed underscore.

Checking the current C++ keywords list the keywords consisting of two English words sometimes have an
underscore, sometimes not, in a fairly even mix. The authors can’t see a pattern which could direct whether
to use an underscore in a new keyword. We tested hypotheses that old keywords had no underscore and that
longer words requires an underscore, but could not find any correlation.
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There are 15 keywords without underscore: alignas, alignof, bitand, bitor, consteval, constexpr,
constinit, decltype, inline, noexcept, nullptr, sizeof, typedef, typeid, typename.

There are 12 keywords with underscore: and_eq, co_await, co_return, co_yield, const_cast, dynamic_cast,
not_eq, or_eq, reinterpret_cast, static_assert, static_cast, thread_local, xor_eq.

11.2.3 Second and third polls

A second poll is either to select a suitable combination of tokens or to select the preferred new keyword spelling
recommended from EWG(I?).

If a keyword is selected in the first poll a third poll regarding underscore or not is warranted. It is the opinion
of the author that more two word lower case identifiers in C++ code have an underscore than not, therefore
making a keyword without underscore less likely to break code.

11.3 Other Considered Syntaxes
In addition to the syntax presented in the paper, we have considered the following syntax options:

11.3.1 . and ... instead of template auto and template auto ...

template <template <...> typename F, . x, . y, . z>
using apply3 = F<x, y, z>;

The reason we discarded this one is that it is very terse for something that should not be commonly used, and
as such uses up valuable real estate.

12 Integration with reflection
The authors expect that code using reflection will have a need for this facility. Spliced entities also have to follow
the same set of disambiguation rules, as they are fundamentally dependent entities.

The examples in this paper are pending discussion with reflection authors.

13 Digging into the nested disambiguation jungle
The situation for disambiguating nested dependent names in C++23 is as follows. Consider this example code:
template<typename T> struct S1 {

typename T::type1::type2 v1; // OK
int x1 = T::type1::value1; // Error(C++23), OK(proposed)

};

Only types (and namespaces and enumerations) can have named members accessible with operator ::.

One would imagine, therefore, that T::type1 could be automatically disambiguated as a type so that ::value1
could be applied.

This is not currently the case: The typename in the declaration of v1 disambiguates both type1 and type2 to
be typenames. The error in the initializer of x1 is due to type1 not being treated as a type.

We are left in an unfortunate situation where value1 can’t be used as a value. A workaround is to extract
T::type1 into a type alias, and apply the ::value1 portion to the alias. Then, value1 can be treated as a
value by not prefixing typename:
template<typename T> struct S2 { // OK(C++23)

using type1 = T::type1; // Intermediate name
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int x2 = type1::value1; // Access dependent name value1 as a value.
};

If we take a look at dependent names which are subordinate to a dependent name disambiguated as a template
we have a similar situation, but not exactly equivalent:
template<typename T> struct S3 {

typename T::template t_tpl<int, 2> v2; // typename required (C++23)
typename T::template t_pl<int, 2>::type2 v3;
int x3 = T::template t_tpl<int, 2>::value1; // OK(C++23), but WHY?

};

For v2 the leading typename disambiguates t_tpl<int, 2> as being a type, as it would otherwise be parsed as
a variable-template specialization.

For v3, typename disambiguates both t_tpl<int, 2> and its member type2 as types, consistent with the v1
declaration.

That x3 can be initialized while x1 can’t (in C++23) is curious; clearly, though, t_tpl<int, 2> is parsed as a
typename, which allows ::value1 to be applied. This is not consistent with the non-template case x1.

We can also reverse the order between the template and the typename, so that T must contain a type containing
a template. This template can be a class template or variable template as above.
template<typename T> struct S4 {

typename T::type1::template t_tpl<int, 3> v4; // OK
int x4 = T::type1::template v_tpl<int, 3>; // OK(C++23), but WHY?

};

The leading typename again disambiguates both type1 and t_tpl<int, 3> as types when declaring v4, while
the declaration of x4’s v_tpl<int, 3> is inconsistent with x1’s T::type1::value1.

Clearly, if we want UTPs to work like dependent names, we don’t want dependent names to behave this strangely.
Below all the cases above are listed inside one class template taking a universal template parameter U.
template<template auto U> struct S5 { // all proposed

// Please note every line is independent :)

int x5 = U; // U is treated as a value
typename U v5; // U can be disambiguated to typename.

// U disambiguated as variable template.
int x5 = template U<int, 3>;
// U disambiguated as a class template
typename template U<int, 3> v5;

// U can be a type containing a value or subtype
int x6 = U::value1;
typename U::type2 v6;

// U disambiguated as a template,
// U<int, 3> followed by :: parsed as a type
int x7 = template U<int, 3>::value1;
typename template U<int, 3>::type2 v7;

// U followed by :: parsed as a type
// v_tpl<int, 3> disambiguated as a template variable
int x8 = U::template v_tpl<int, 3>;
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// t_tpl<int, 3> disambiguated as a class template by leading typename
typename U::template t_tpl<int, 3> v8;

};

In C++23 int x1 = T::type1::value1; is invalid, whereas this paper defines it to be valid, as long as T::type1
ends up being a type at instantiation time, and is parsed as a type at parse time.

To rectify the x1 situation, we change the rule for typename disambiguation to only affect the last of a set of
nested dependent names, while a :: automatically marks a dependent name to its left as a type. This does
not change the meaning of v1’s declaration, but makes x1’s initializer a value as type1 is disambiguated by the
trailing :: and value1 is a value as there is no leading typename. The x3 and x4 initializers behave the same
as in C++23, but with a clearer rationale.

In the template cases x5, x7, v5 and v7, we must explicitly specify template to correctly parse < as the template-
head introducer. This is novel (template could only appear after :: in C++23) but utterly unsurprising.
int x5 = T::template name<int, 3>
typename T::template name<int, 3> v5;

int x7 = T::template name<int, 3>::value1;
typename T::template name<int, 3>::type2 v7;

Note: the proposed syntax is close to explicit template instantiation.
template SomeClassTemplate<int, 3>;

This is an explicit instantiation of a class template SomeClassTemplate.

Variable declarations are allowed in namespace scope, which in the presence of universal alias templates comes
close to the proposed syntax:
template <typename auto ... >
template auto U = int; // for the purposes of this example

typename template U<int, 3> x;

14 Compendium: Former design questions
14.1 Discussion on co- and contra-variance
14.2 A survey of covariance and contravariance in C++23
14.2.1 Explanatory example

For the people who, like most of us, don’t do type theory every day, let’s start with an explanation of contravari-
ance and covariance.

It’s basically about match-into-wider and match-into-narrower.

Consider the two concepts:
template <typename T> concept A = true;
// B subsumes A
template <typename T> concept B = A<T> && true;
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Covariance Contravariance

auto returns_a() -> A auto;
auto returns_b() -> B auto;

// Return types generally should behave covariantly.
auto f() {

// OK, requirement less constrained than returned value
A auto x = returns_b();
// Error, requirement stricter than returned value
B auto y = returns_a();

}

// Parameter matching should behave contravariantly

template <template <B> typename f>
using puts_b = void;
template <template <A> typename f>
using puts_a = void;
template <B> using takes_b = void;
template <A> using takes_a = void;
using x = puts_b<takes_a>; // ok
// Error, constraint mismatch (gcc)
// clang accepts (in error)
using w = puts_a<takes_b>;

14.2.2 Discussion

We are used to the covariant case, but the usage of contravariant cases is not as common. The issue with
puts_a<takes_b> is that puts_a requires a metafunction with a wider interface than one that just accepts Bs.

We have seen that concept-constrained template parameters behave correctly - covariantly on returns, contravari-
antly on parameters; but do other template parts as well?

Let’s just replace A with auto and B with int:
template <template <int> typename f> using puts_int = void;
template <template <auto> typename f> using puts_auto = void;
template <int> using takes_int = void;
template <auto> using takes_auto = void;
using x = puts_int<takes_auto>; // OK
using w = puts_auto<takes_int>; // Error, but MSVC, GCC and clang all accept

This behaviour is specified in [P0552R0].

Function pointers do not convert in either co- or contravariant ways:
struct X {}; struct Y : X {};
using f_of_x = void(*)(X&);
using f_of_y = void(*)(Y&);
// Error, no conversions between function pointers
f_of_y fy = static_cast<f_of_x>(nullptr);

using f_to_x = X&(*)();
using f_to_y = Y&(*)();
// Error, no conversions between function pointers
f_to_x xf = static_cast<f_to_y>(nullptr);

Virtual functions can have covariant return types, though:
struct ZZ {};
struct Z : ZZ {

virtual auto f() -> Z&;
virtual void g(Z&);

};
struct W : Z {

auto f() -> W& override; // OK, covariant return type
// Error, no contravariant parameter types
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void g(ZZ&) override;
};

How about parameter packs?
template <template <typename> typename f> using puts_one = void;
template <template <typename...> typename f> using puts_var = void;
template <typename> using takes_one = void;
template <typename...> using takes_var = void;
using x = puts_one<takes_var>; // OK in 17 and 20, Error in 14
using w = puts_var<takes_one>; // OK, compiles

Turns out parameter packs behave both co- and contra-variantly (what we call loosely) - while inconsistent with
the above examples, it is the authors’ opinion the choice was correct.

14.3 Why settle on loose matching for template auto
Let’s say we did the strict thing and made template auto behave contravariantly, like concepts.
template <template <auto> typename f> using puts_value = void;
template <template <template auto> typename f> using puts_any = void;
template <auto> using takes_value = void;
template <template auto> using takes_any = void;
using x = puts_value<takes_any>; // OK
using w = puts_any<takes_value>; // Error because contravariant.

But then, how to write apply? Let’s do it for a single argument to avoid complications with a loose ...:
template <template <template auto T> typename f, template auto arg>
using apply1 = f<arg>;

The above is correct, but useless - it requires fs signature to be template <template auto T>. What we
want to express is that f is any kind of unary template metafunction, so we can pass in something like
template <int x> using int_constant = std::integral_constant<int, x>;.

As a thought experiment, let’s call the covariant version of template auto (with the meaning “deduce this from
the argument”) __:
template <template <__ T> typename f, template auto arg>
using apply1 = f<arg>;

This is what we want to express (and check at instantiation time), but now the args constraint is spelled
differently from f’s constraint, and that might be very, very difficult to teach.

It also requires us to reserve an additional combination of tokens. Contrast what happens if we just made
template auto behave covariantly (the way __ behaves above) if used in that position. What do we lose?

At first glance, we lose the ability to define the contravariant meaning of template auto - a template parameter
that can bind to anything. But can we get that back?

Recall that concepts behave contravariantly. Consider this one:
namespace std {
template <template auto arg>
concept anything = true;

};

We could say this:
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template <template <std::anything ARG> typename takes_anything,
template auto arg>

using apply1 = takes_anything<arg>;

This would behave contravariantly! While template auto ARG means “deduce”, a metafunction taking a concept
(which behaves contravariantly!) that anything satisfies has to be a metafunction taking template auto (or
std::anything).

In light of this, the paper authors have come to the conclusion that trying to make template auto behave
contravariantly is all downside and little upside. The example to follow with template auto should be the
behavior of ... (deduction behavior, both co- and contravariant).

This allows for usage to look the same as declaration, and like bind to like. We anticipate the feature being
much easier to teach this way, and in the rare cases when someone really needs the contravariant behavior, they
will know to use a concept. It is also consistent with the rest of the non-concept template language.

This paper takes the stance that mathematically correct behaviour can be obtained by defining a concept, upon
which subsumption and concept matching rules will obey the correct norms. Defining a concept also gives a
library name and frees up a keyword.

The language facility, however, should stay loosely matched, principally because packs are already loosely
matched, and because loose matching is not something the programmer is able to reclaim, whereas strict match-
ing is recoverable by defining a concept.
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