Bloomberg Analysis of Unified Executors

Document #: P2024R0

Date: 2020-01-10

Project: Programming Language C++
Library Evolution

Reply-to: Dietmar Kiihl

<dkuhl@bloomberg.net>
Frank Birbacher
<frank.birbacher@gmail.com>
Marina Efimova
<mefimoval@bloomberg.net>
Michael V. Riedlin
<mriedlin@bloomberg.net>
David Sankel
<dsankel@bloomberg.net>

Contents

1 Abstract 1
2 Introduction 2
2.1 Methodology e e 2
2.2 Brief Review of [PO443R11] o e 2
2.2.1 Executor Framework L 2
2.2.2 Sender/Receiver Framework L 3
2.2.2.1 Thoughts on Using Senders 4
2.2.2.2 Comparison to Haskell Type Classes 5
3 Bloomberg Use-cases 5
3.1 Creation of a Thread Pool Executor 5
3.2 General Description of TicketClient i vt 6
3.3 Templated, Executor-based TicketClient v v it 6
3.4 Non-templated, Executor-based TicketClient 8
3.5 Sender/Receiver TicketClient ot i i vttt i e 9
4 Owur Analysis 12
4.1 Maturity of Sender/Receiver Framework L L 12
4.2 Thoughts on any_executor e 12
4.3 Potential Division of Communities 13
5 Conclusion 13
6 References 13

1 Abstract

[P0O443R11] proposes the addition of an executor and sender/receiver framework to the C4++ Standard Library.
The November 2019 discussion in Library Evolution called for a study of this framework with the (non-binding)
goal of progressing the proposal at the February 2020 meeting. Bloomberg formed a study group of experts in

mailto:dkuhl@bloomberg.net
mailto:frank.birbacher@gmail.com
mailto:mefimova1@bloomberg.net
mailto:mriedlin@bloomberg.net
mailto:dsankel@bloomberg.net

Networking and API design to review the proposal and this paper summarizes the results of this study. Our
preliminary conclusion is that the approach is promising, but lacks maturity; more user experience and study is
necessary to determine if it is appropriate for standardization.

2 Introduction

The C++ standard sorely lacks basic vocabulary types and concepts for asynchronous code. Not only does this
deficiency prevent Open Source asynchronous code from interoperating, but it has stalled progress on important
standardization proposals such as Futures and Networking.

Given this state of affairs, the authors would very much like to see a reasonable solution progress to the C++
standard. This paper is intended to aid this effort by supplying feedback on the proposal from a developer’s
perspective and a preliminary evaluation of the suitability of [P0443R11] for standardization.

2.1 Methodology

At Bloomberg it is very common for applications to use an in-house RPC framework (BAS; Bloomberg Application
Services). The typical application of this framework is using synchronous operations although the framework does
support asynchronous operations. There is a desire within the company to simplify the usage of asynchronous
operations. To see how [P0443R11] could affect our infrastructure we implemented very simplified versions of a
request using different parts proposed by [P0443R11].

In addition to the experiments we reviewed the design and compared it to other similar designs, in particular to
type classes in Haskell.

2.2 Brief Review of [P0443R11]
2.2.1 Executor Framework

Executors! provide C++ programmers a way to control the execution process of a function object, i.e. where to
execute and how to execute. The where is an ezecution context that represents resources available for execution.
A thread pool, for example, is a familiar ezecution context. Execution agents utilize the resources of an execution
context in order to invoke a callable object. Thus, the execution agent ties an operation and execution resources
together. The executor concept provides an interface to create execution agents on a specified execution context.
From a developer’s perspective, an executor is a factory that creates execution agents, entities that associate a
function object with a resource involved in its processing.

Executor properties impose requirements on executors, specifying how the executor behaves. This is particularly
useful in generic contexts where, e.g., a class or function requires its executor template parameter to have certain
behaviors.

Consider the “blocking” property, which describes the guaranteed blocking behavior an executor provides for its
execution function:

Property
Object Name Requirements

blocking.possibly Invocation of an executor’s execution function may block pending completion of one or
more invocations of the submitted function object

blocking.always Invocation of an executor’s execution function shall block until completion of all
invocations of submitted function object.

blocking.never Invocation of an executor’s execution function shall not block pending completion of the
invocations of the submitted function object.

The property mechanism is described in a separate paper, [P1393R0]. Three property “extraction” functions are

1See [PO761R2] for details

available?:

auto el = std::require(eO, p) // el is a version of e0 that has property p
auto el = std::prefer(e0, p) // el is a version of e0O that has property p if possible
auto v = std::query(eO, p) // v is the value of the p property for e0

This property mechanism (which makes use of “customization point objects”) is available so that user-defined
properties (in addition to several properties defined in the standard) can be associated with executors.

The core operations on executors are customization point objects as well. These are as follows:

execution: :execute(e, f) // exzecute the function object f on the ezecutor e
execution: :bulk_execute(e, f, n) // exzecute the function object f on the exzecutor e, n times

Every executor type must be nothrow_copy_constructable, nothrow_destructible, and equality_comparable.
Executors are additionally required to provide at least an implementation for the execution::execute cus-
tomization point object.

[P0443R11] additionally introduces the any_executor class template. This template implements a type-erased
executor that has certain properties that are accessible to the property mechanism.

The following member functions are of note:

template <class... SupportableProperties>
class any_executor
{
public:
Iooc

// Return an 'any_exzecutor' object corresponding to 'std::require(e, p)',
// where 'e' is the underlying object of *this. 'Property' must be in
// 'SupportableProperties' and "requirable”.
template <class Property>
any_executor require(Property p) const;

// Return a Property-specific "polymorphic" type corresponding to
// 'std::query(e, p) where 'e' is the underlying object of *this.
// 'Property' must be in 'SupportableProperties’' and "queryable”.
template <class Property>
typename Property::polymorphic_query_result_type query(Property p) const;

!

// Return 'true' if *this has an underlying object, and 'false' otherwise.
explicit operator bool() const noexcept;

// Return the underlying ezecutor if 4t has type 'Ezecutor'.
template<executor Executor> Executor* target() noexcept;
template<executor Executor> const Executor* target() const noexcept;

};

2.2.2 Sender/Receiver Framework

The sender /receiver framework aims at the ability to create asynchronous algorithms. The corresponding concepts
are intended to become the fundamental building blocks for asynchronous algorithms similar to how iterators
are the building blocks for algorithms on sequences. The central aspect of senders/receivers is to decouple the
creation of the operation and its actual launch: the algorithm reifies what needs to be done into a sender object.

2Variadic versions are omitted for brevity.

To actually execute anything the sender gets connected to a receiver yielding another object which can then be
started in a suitable context to kick off the operation which eventually gets to the result delivery.

The results are delivered to a receiver through function calls: set_value(std::move(receiver), result) is
called upon successful execution. Calling a function does allow delivery of multiple results without combining
them into an object like a std: :tuple<...>. Different kinds of results can be delivered by calling overloaded
functions, i.e., it isn’t necessary to aggregate all possible results int a std::variant<...>.

When an operation cannot run to successful completion it delivers its result by calling set_error(std: :move(receiver),
error). This function can be overloaded but has exactly one error parameter. Arbitrary error types rather than

a specific set of error types covered by overloads can be delivered through an std: :exception_ptr or a similar
facility. Using a separate function to deliver errors allows asynchronous algorithms to detect that results can’t be

fully achieved on the path executed so far and use an alternative path.

As algorithms may start multiple asynchronous operations whose results may become unnecessary when some of
the operations deliver a result it is useful to cancel operations. A cancelled operation delivers its result by calling
set_done(std: :move(receiver)).

The use of futures and promises doesn’t support composing different asynchronous operations because the
operation computing the result is already scheduled when a future is received. As a result, there is a need for
synchronization and the operations are type erased.

In [P0443R11] the fundamental customization points are defined. This paper does not propose any asynchronous
algorithms. The experimental [Unifex] library from Facebook implements the various customization points and
adds some asynchronous algorithms. This library differs in some ways from the interfaces proposed by [P0443R11].
For example, the submit (sender, receiver) function from [P0443R11] is called connect (sender, receiver).
However, our experiments are based on [Unifex].

2.2.2.1 Thoughts on Using Senders

The previous section outlined how senders and receivers interact. Additionally [Unifex] provides some basic
algorithms to combine senders into new senders, such as sequence and when_all. The following paragraphs
discuss a few questions on their design.

Senders can represent asynchronous work items such as reading from or writing to a socket. These operations
result in some data processing that may or may not have a natural result. A read operation naturally delivers
the data read in some way, while a write operation doesn’t have any useful results besides errors. Since errors are
handled with a separate set_error function, the set_value function just wouldn’t receive any arguments and
that’s fine.

When using sequence to compose several actions, all actions, save the last, are required to not produce arguments
for set_value. If such a sequence starts with a socket read operation the resulting data cannot be delivered
through the set_value channel. Instead, the user is required to communicate such data through a captured
shared data structure. In order to have that data structure live through the process, the user will need to use the
provided let or use management facilities such as shared pointers to control the lifetime.

Intuition somehow would suggest that results from one step will be delivered to the next. Instead the design is in
a way that every step of a sequence cannot actually consume the results of the previous step. We're left unclear
about why the design was chosen this way and how it helps a user write asynchronous programs.

On the other hand when_all contains a fair amount of logic just to support correctly forwarding any kinds of
results. All of the combined senders may produce any set of arguments for set_value and the sender returned
by when_all will send a tuple of variants of all possible argument combinations that are announced by the
individual senders. If, however, the programming model in general favors senders that don’t produce arguments
and instead communicate via shared state then the when_all can be simplified. It would not forward results and
require senders to not deliver any arguments, just like sequence does. It’s unclear what the intended use is.

Additionally these functions take the list of senders as variadic arguments. We need to see how to process a
dynamic list of items in the same way. For example given a vector of URL, how to download all of them and do

something when all are done? The when_all doesn’t really provide for that.

2.2.2.2 Comparison to Haskell Type Classes

The previous section discussed some unclarity about whether senders are generally expected to produce values or
not. This section will continue on these thoughts and compare senders to monads and related type classes found
in Haskell.

The sequence algorithm seems to prefer no results while when_all produces a tuple of the collected results of
the combined senders. From what we observed so far a sender conceptually has some associated result type like a
regular function has a return type. The type can be observed with the nested template alias value_types where
an empty tuple stands in for void.

In this sense a sender conceptually encapsulates a value that is to be produced when the operation it represents is
run and finishes. This sounds a lot like a monad which also represents one or more values produced by giving the
monad to some sort of executing function. In [Unifex] this would be the start function on the object returned
by connect.

In Unifex, connecting a sender to a receiver yields an operation that can be “started.” Looking at the implemen-
tation of sequence and when_all, this is done inside some sender that is the result of these algorithms. So, in
order to code up a sender that combines other senders the implementation will probably create a receiver, call
connect, and then call start. This is all to have means to observe the values produced by the given senders,
process them, and present the whole thing as a new sender while being oblivious of the operational details of the
sources. This basically resembles monadic binding.

A monadic value in Haskell represents an operation with a result and can be used any number of times in order
to execute this operation any number of times. This is like functions that can be called any number of times.
However, senders are for one-time use only despite looking like a monad. For every use they need to be created
again, thus all the code to combine them must also be executed again. Senders don’t truly represent just the
operation as a value. With this in mind, for an asynchronous program written against Boost.ASIO with callbacks
or even with coroutines, how would senders improve that code? Senders don’t seem to allow to code the structure
of the asynchronous control flow separate from tying in all relevant objects.

The relationship to monads goes further. The let construct solves an object life-time issue, but also looks just
like a monadic bind. The just sender implements the monadic return which is the same as the applicative pure
from Haskell. The more fundamental fmap is found in the transform algorithm.

3 Bloomberg Use-cases

To evaluate [P0443R11], we attempted to solve some asynchrony problems that are representative to the kind of
work we do at Bloomberg. This research is exploratory and is meant to demonstrate use cases of asynchronous
programming implemented in terms of executors and sender/receivers rather than verify the correctness of the
chosen implementation or measure its performance.

3.1 Creation of a Thread Pool Executor

Before we illustrate our core examples, we first create an executor that schedules using Bloomberg’s thread pool
library®. We will compare this to the thread pool executor found in the example code found in Eric Niebler’s
executors-impl GitHub repository [threadpoolexecutorl].

The interface to a BDE thread pool bd1lmt : : ThreadPool is rather small. Apart from setup and tear down functions
there is only one member for scheduling a function execution on any thread of the pool: enqueueJob(job).
The job parameter is a bsl::function<void()>*. An executor wrapping one such thread pool should call
enqueueJob from within its execute member function. Because the executor is a cheaply copyable object it
should reference the pool by pointer. This also gives rise to the definition of equality.

3See bdlmt_ threadpool in the [BDE] library.
4psl::function is an allocator aware variation of std::function.

https://github.com/bloomberg/bde/blob/master/groups/bdl/bdlmt/bdlmt_threadpool.h

// Wrap our own thread pool into an ezecutor
class PoolExecutor {
bdlmt: :ThreadPool *d_pool;
public:
explicit PoolExecutor(bdlmt: :ThreadPool *);
void execute(const bsl::function<void()>& job);
friend bool operator==(PoolExecutor lhs, PoolExecutor rhs) = default;

// ... more here which s to be discussed ...
};
/7
int main()
{
bdlmt: : ThreadPool pool(40);
TicketClient client(PoolExecutor (&pool));
}

The part of the PoolExecutor implementation shown above is intuitive and doesn’t require much thought.
However, we're missing the support for properties. As can be seen in the example implementation [threadpoolex-
ecutorl] this requires providing a range of query and require member functions overloaded on properties and
their values. If this, as it seems, is necessary in order to implement a new executor it would actually bind this
implementation to the list of properties known at that time. The amount of boilerplate around properties needs
to be justified by the benefits we get from them.

It’s unclear whether the proposed set of properties has been discovered as a universal set of necessary properties
or whether this set has been invented to fit current needs. Can users add to this set? It seems the answer is yes.
Are new properties expected to work with existing executors, e.g. the ones provided by an C++ implementation?
It seems the answer is no.

3.2 General Description of TicketClient

Within Bloomberg there is a ticketing system used to raise issues for various teams. The aforementioned BAS
RPC framework is used to operate programmatically with the system. For our examples we created various forms
of a TicketClient class that facilitates access to the system. It has a single operation, getInfo that, when
provided a ticket id, asynchronously fetches information about the corresponding ticket.

The intent is that the client of getInfo, aside from specifying what should be done with the ticket information,
should specify where to schedule/execute that work.

3.3 Templated, Executor-based TicketClient

Our first implementation of TicketClient will be executor based and takes various executors by template
arguments.

The first thing to note is that TicketClient will be performing network IO operations. The executor used to
schedule these operations cannot be any arbitrary executor as it needs to support, for example, asynchronous
write and read operations. To accomplish this we create custom operations that are enabled for any executor
that has appropriate support®.

We define customization point objects for operations connect, read and write on a socket:

class const_buffer;

5Note that in a post-networking TS world these operations will more likely be associated with an execution context.

inline constexpr struct connect_socket_cpo
{
template <typename Socket, typename Address>
auto operator() (Socket& socket, Address const& address) const
{
return unifex::tag_invoke(*this, socket, address);

}

} connect_socket;

inline constexpr struct async_write_cpo
{
template <typename Socket>
auto operator () (Socket& socket, const_buffer const& buffer) const
{
return unifex::tag_invoke(*this, socket, buffer);
}

} async_write;

inline constexpr struct async_read_cpo
{
template <typename Socket>
auto operator() (Socket& socket, bsl::vector<char>& buffer) const
{
return unifex::tag_invoke(*this, socket, buffer);
b

} async_read;

Using executor-of-impl concept proposed in the [P0443R11] and the defined connect_socket, async_write and
async_read we can introduce a net_io_executor concept:

template<class S, class B>

concept net_io_invocable =

requires(S& s, B const& b){
async_write(s, b);

T &

requires(8& s, B& b){
async_read(s, b);

};

template<class E>
concept net_io_executor = std::executor-of-impl<E, net_io_invocable>;

The interface of our TicketClient class now makes use of net_io_executor:

template<net_io_executor IOExecutor>
class TicketClient
{
I0Executor d_ioExecutor;
public:
TicketClient (I0Executor exec) : d_ioExecutor(exec) {}
/o
Irg

The getInfo function is implemented with a callback argument. It takes an additional executor parameter so

where the callback is run is explicitly specified by the caller®.

template<net_io_executor IOExecutor>
class TicketClient

{
Iooc
// Asynchronously call the 'getInfo' request for ticket service and ezecute
// the specified 'callback' with the result on the specified 'ezecutor'.
template<std::executor Exec>
void getInfo(int ticketId,
std: :function<void (std::error_code, TicketInfo)> callback,
Exec executor);
s

One open question we have is whether or not ‘IOExecutor’ could have (or should have) alternatively been
implemented with a new executor “requires” property. Our thinking is that such a TicketClient would look as
follows:

template<std::executor IOExecutor>

requires std::can_require_v(IOExecutor, IOSchedulerProperty)

class TicketClient

{
decltype(std: :require(std: :declval<IOExecutor>(), ioSchedulerProperty)) d_ioExecutor;
public:

TicketClient (Exec exec) : d_ioExecutor(std::require(exec, has_io_scheduler)) {}

VXY

s

3.4 Non-templated, Executor-based TicketClient

Our next variant of TicketClient intends to make use of polymorphic executors. Which executor used with
TicketClient should, in theory, be selectable at runtime. While we could figure out how appropriately restrict
polymorphic executors using properties, we were unable to figure out a good way how to use them for running
custom operations.

class TicketClient

{
std::any_executor<IOSchedulerProperty> d_ioExecutor;
public:
TicketClient (std::any_executor<IOSchedulerProperty> exec)
: d_ioExecutor(exec.require(ioSchedulerProperty)) {3}
void getInfo(
int ticketId,
std: :function<void (std::error_code, TicketInfo)> cb,
std: :any_executor<> executor)
{
// 22?2 How to access custom operations on d_ioEzecutor.
by
s

One possible avenue would be to use any_executor: :query call with a type-erasing function collection type
specified in I0SchedulerProperty: :polymorphic_query_result_type, but more time is required to investigate
this approach.

6While the caller could specify this implicitly in the function object it provides, that approach is generally considered error-prone.

3.5 Sender/Receiver TicketClient

In this section we describe the implementation of TicketClient using the sender/receiver framework. This
approach is substantially different from those used in our prior examples.

For the networking we created a simple networking library which is somewhat modelled after the Networking TS
[networkingts] but only implements what is needed for this experiment. It changed the async_# operations to
return a Sender instead of using a completion token. We have not, yet, tried to integrate the Sender concept into
the completion token although doing so could be possible.

Implementing I/O operations using Senders was relatively straightforward once we understood the concept. So
far our code doesn’t abstract any of the Sender implementation into components. As a result there is quite a bit
of boilerplate code for each of these operations. For example, the implementation of async_write looks like this:

template <typename Protocol>
class basic_stream_socket
: public basic_socket<Protocol>

{
public:
/.
class write_sender { ... };
friend write_sender tag_invoke(unifex::tag_t<async_write>,
basic_stream_socket& socket,
const_buffer const& buffer)
{
return write_sender (&socket, buffer);
}
I8

async_write is a customization point object. This use is an application of the proposed approach for defining
customizable functions [tag_invoke]. The Unifex library uses this approach through its implementation. The
actual reification of the asynchronous write is write_sender:

class write_sender

{

private:
basic_stream_socket *d_socket;
const_buffer d_buffer;

public:
template <template <typename...> class Variant>
using error_types = Variant<std::error_code>;
template <
template <typename...> class Variant,
template <typename...> class Tuple>
using value_types = Variant<Tuple<>>;

template <typename Receiver>
class operation { ... };

write_sender (basic_stream_socket*, const_buffer const&);

template <typename Receiver>
operation<std: :decay_t<Receiver>> connect(Receiver&& r);

First, the write_sender captures the arguments for the operation in its constructor for later execution. The
alias template error_types and value_types can be used to determine the possible parameter types for the
set_error() (in this case just std::error_code) and the possible parameter types for set_value() (in this
case no argument). The declarations are used by asynchronous algorithms for forwarding the results.

The class template operation represents the operation state and is obtained from the write_sender when
connecting it to a receiver. The connect () function just creates this object and directly returns. The operation
objects are not required to copyable or movable and are constructed into their final location using copy-elision.
The receiver is only move constructible:

template <typename Receiver>
operation<std::decay_t<Receiver>> connect(Receiver&& r)

{
return operation<std::decay_t<Receiver>>(this->d_socket,
this->d_buffer,
std: :forward<Receiver>(r));
}

All the actual execution happens in the class template operation. As it reifies the actual operation and the
destination where to send the result it also holds the arguments in addition to a receiver:

template <typename Receiver>

class operation

{

private:
basic_stream_socket *d_socket;
const_buffer d_buffer;
Receiver d_receiver;

public:
template <typename R>
operation(basic_stream_socket*, const_buffer const&, R&&);

void start() noexcept { this->write(this->d_buffer); }
void write(const_buffer const& buffer) noexcept {
int rc = ::write(this->socket->native_handle(),
buffer.data(), buffer.size());
if (rc < 0) {
unifex: :set_error(std: :move(this->d_receiver),
std: :error_code(errno, std::system_category()));
I
else if (std::size_t(rc) < buffer.size())
{
this->d_socket->d_context->add_work(
this->d_socket->native_handle(),
POLLOUT,
[this, buffer=buffer + rc, receiver] (short){
this->write (buffer);
b;
}
else
{
unifex::set_value(std: :move(this->d_receiver));

3

10

The operation is kicked off by calling start (). In this case this call just delegates to write() which tries to
write the buffer until either an error is encountered or the entire buffer was written. The socket is set up to
be non-blocking. If there is remaining work, the next call to write() is added to the io_context associated
with the socket. The implementation specific function add_work () takes the native_handle() of the socket, the
condition when to execute the function (in this case when poll() indicates that some output can be written),
and the function to be executed (in this case write() with the remaining buffer). Upon error the receiver’s
set_error () function is called; upon success the receiver’s set_value() function is called.

After we implemented this version we realized that it could be implemented in terms of the corresponding
Networking TS version: invoking the async_write() with a suitable callback from the operation::start()
function would delivery of the results to the receiver too.

We used correspondingly implemented async_read and async_connnect functions to implement a simple client
request to a server. The first attempt incorrectly created a dedicated sender for this purpose; while doable,
that approach was unnecessarily complex. It is much easier to use [Unifex] functions to create an asynchronous
request:

class TicketClient

{
public:
7Y ooo
auto asyncGetInfo(int id)
{
bsl::string req("get Ticket " + bsl::to_string(id) + "\n");
return unifex::transform(
unifex: :sequence(
unifex::let(unifex::just(req),
[this] (bsl::string const& r){
return async_write(
this->d_socket,
const_buffer(r.data(), r.size()));
b,
async_read(this->d_socket, buffer(this->d_buffer),
[b = &this->d_buffer, p = Ou] (bsl::error_code const&,
bsl::size_t s) mutable{
auto e = bsl::find(b->begin() + p, b->begin() + s, '\n');
return e == b->begin() + (p = s)? b->end() - e: 0;
b
)¢
[this] (bsl::size_t size) {
return TicketInfo(begin(this->d_buffer),
begin(this->d_buffer) + size);
}
)3
}
/)
i

This implementation uses unifex::let() to pass an object living long enough to async_write() to finish.
unifex::sequence(sl, ..., sn) starts the next sender in the sequence once a sender is finished. This way
the read operation isn’t started before the write operation completed. The async_read() uses a condition
determining whether a complete line was read and pretends that there isn’t any data following a newline to
keep thing simple (a real implementation would buffer any excess data for the next read). Finally, the result is
converted into the destination type using unifex: :transform().

Note that nothing in asyncGetInfo() actually starts an operation: the result is a sender which can be connected

11

to a receiver. This operation could be use like this:

unifex::sync_wait(
unifex: :sequence(

client.asyncConnect (endpoint),

unifex::transform(client.asyncGetInfo(123),

[] (TicketClient: :TicketInfo const& value){

std::cout << "asyncGetInfo(123)='"

<< std::string(begin(value), end(value))
<< "'\n";

1))
)

The resulting asynchronous code looks reasonably readable. On the other hand during development we did
encounter some rather unreadable error messages. These will hopefully be improved when the various operations
require appropriate concepts. Once we got more familiar with the use of Unifex, though, we got better at guessing
what the error is actually hinting at without trying to read all of the errors.

For some of the code tested we observed fairly long compile-times. These happened when using a slightly bigger
number of operations inside a sequence().

4 Our Analysis

4.1 Maturity of Sender/Receiver Framework

The sender /receiver abstraction seems to be rather fresh and somewhat complicated. The assessment of complexity
may be due to being unfamiliar. Using alias templates taking template template arguments to create a structure
of tuples nested inside a variant is surprising although it is helpful for computing actual types.

The concepts and algorithms in the Unifex library also seem a bit immature. For example, there is a concept
for ManySender which calls set_value() any number of times and finishes with a call to either set_done() or
set_error(). That is, a normal sequence of values is terminated with set_done(). For a Sender set_done ()
indicates an incomplete result, such as a cancelled operation. For a ManySender there is no obvious way to
distinguish between a complete sequence and a partial sequence that was prematurely cancelled.

For the algorithm when_all() the result is a std::tuple (one entry for each sender) of std::variant of
std: :tuples (one std: :tuple for each result of the corresponding sender). It seems the outer tuple isn’t really
needed and could be replaced by multiple arguments to set_value(). Likewise, it seems odd that the sequence ()
algorithm doesn’t propagate results between consecutive operations.

These examples don’t imply that the entire approach is flawed and the design may actually be exactly correct.
However, we have the impression that different choices can be made and may be a better fit.

It seems the Unifex library is the first publicly available implementation of these ideas. Correspondingly, there is
a lack of user experience. It would be good to see some successful use of these abstractions, ideally in an Open
Source project before dropping such a library into the standard.

4.2 Thoughts on any_executor

We were not able to get much implementation experience with any_executor in time for this paper but did have
some thoughts.

For a typical application, we aren’t sure any_executor is a compelling construct, particularly if the set of
properties is for introspection only. For our representative TicketClient, it’s sufficient to have the single executor
which the application developer could choose or otherwise be aware of. If properties are only for introspection,
they seem to have little to offer as a developer could simply choose an executor with the required properties
without the added boilerplate.

12

It seems somewhat compelling to have the type erased any_executor as an enforcement mechanism. In this case
though, it seems like defining a narrower custom concept as we did for the templated TicketClient above, would
be more straightforward.

We would like to see examples using any_executor that better demonstrate its capabilities.

4.3 Potential Division of Communities

During the LEWG discussion the concern was raised that the communities between users of executors
and senders/receivers would be fragmented. This concern doesn’t seem to be warranted: executors and
senders/receivers compose well. The point of senders/receivers is to produce a reification of an operation which
can be further composed to achieve a higher-level goal. Eventually, this operation needs to be executed which
can be done by executing the operation on an executor.

The Unifex library uses the on(sender, scheduler) algorithm to yield a Sender indicating that the operation
was scheduled or failed to do so as its result. The Unifex library so far doesn’t have direct support for executors
but there are plans to add these.

5 Conclusion

The executor and sender/receiver framework in [P0443R11] are promising as a means to provide core vocabulary
types for asynchrony in the C++ standard. While they may be the right abstractions for this work, our analysis
concluded that more reports of user-experience would be required to make that determination.

6 References

[BDE] 2020. BDE Library.
https://github.com/bloomberg/bde/wiki

[networkingts] 2018. Working Draft, C++ Extensions for Networking.
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018 /n4734.pdf

[P0443R11] Jared Hoberock, Michael Garland, Chris Kohlhoff, Chris Mysen, Carter Edwards, Gordon Brown,
David Hollman, Lee Howes, Kirk Shoop, Eric Niebler. 2019. A Unified Executors Proposal for C++.
https://wg21.link /p0443r11

[P0761R2] Jared Hoberock, Michael Garland, Chris Kohlhoff, Chris Mysen, Carter Edwards, Gordon Brown,
Michael Wong. 2018. Executors Design Document.
https://wg21.link /p0761r2

[P1393R0] David Hollman, Chris Kohlhoff, Bryce Lelbach, Jared Hoberock, Gordon Brown, Michal Dominiak.
2019. A General Property Customization Mechanism.
https://wg21.link /p1393r0

[tag_invoke] 2019. tag_invoke: A general pattern for supporting customisable functions.
http://open-std.org/JTC1/SC22/WG21/docs/papers/2019/p1895r0.pdf

[threadpoolexecutorl] 2018. Thread Pool Executor with Property Support.
https://github.com/ericniebler/executors-impl/blob/5{25108b760e2f59707299739896{98cfba’59cc0/include/e
xperimental /bits/static_ thread_pool.h

[Unifex] 2020. libunifex.
https://github.com /facebookexperimental /libunifex

13

https://github.com/bloomberg/bde/wiki
http://open-std.org/JTC1/SC22/WG21/docs/papers/2018/n4734.pdf
https://wg21.link/p0443r11
https://wg21.link/p0761r2
https://wg21.link/p1393r0
http://open-std.org/JTC1/SC22/WG21/docs/papers/2019/p1895r0.pdf
https://github.com/ericniebler/executors-impl/blob/5f25108b760e2f59707299739896f98efba59cc0/include/experimental/bits/static_thread_pool.h
https://github.com/ericniebler/executors-impl/blob/5f25108b760e2f59707299739896f98efba59cc0/include/experimental/bits/static_thread_pool.h
https://github.com/facebookexperimental/libunifex

	Abstract
	Introduction
	Methodology
	Brief Review of [P0443R11]
	Executor Framework
	Sender/Receiver Framework
	Thoughts on Using Senders
	Comparison to Haskell Type Classes

	Bloomberg Use-cases
	Creation of a Thread Pool Executor
	General Description of TicketClient
	Templated, Executor-based TicketClient
	Non-templated, Executor-based TicketClient
	Sender/Receiver TicketClient

	Our Analysis
	Maturity of Sender/Receiver Framework
	Thoughts on any_executor
	Potential Division of Communities

	Conclusion
	References

