
Document: D2034R1
Author: Ryan McDougall <rmcdougall@aurora.tech>

Patrick McMichael <patrick@aurora.tech>
Audience: EWG-I
Project: ISO/IEC JTC1/SC22/WG21 14882: Programming Language — C++

Partially Mutable Lambda Captures
Or

A More Uniform Const for Lambdas

Revision History

Changes from R0: Concerns from EWG-I
● Interactions with ​this ​ pointer.
● Interactions with init-capture packs.
● Clarify const as it applies to pointers.
● Add const-reference use case.
● Expanded prose.

Background
Lambdas were introduced in ​N2550​, and while ​previous​ drafts considered mutable capture
by value, the original wording left captures entirely const. ​N2658​ salvaged mutable for ​all
captures by allowing ​mutable ​ keyword to modify the call.

P0288​ (any_invocable) was approved by LEWG, and a central improvement is that it
respects the const modifier on function types (ie. ​any_invocable<void(int) const> ​).
This means an ​any_invocable ​ with a const modifier on its call type will only bind to
lambdas that are not marked ​mutable ​.

A type that is “​logically const​” is a type that has some mutable members that do not
fundamentally change the invariants of the object, even when it is const. This means
any_invocable ​, and ​any​ other const-correct library, ​cannot​ work with logically const
lambdas.

Motivation
Type erased callables like ​std::function ​ or ​std::any_invocable ​ are the backbone
of most asynchronous systems. Users of such systems close their operations in lambdas
and place them in a concurrent queue to be processed elsewhere. Performance is often key

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2550.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2529.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2658.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0288r5.html
https://isocpp.org/wiki/faq/const-correctness#mutable-data-members

in such systems, and such operations may want its own local reusable scratch memory. Or
perhaps an accumulator for hysteresis over multiple calls.

struct MyRealtimeHandler {

 const Callback callback_;

 const State state_;

 mutable Buffer accumulator_;

 void operator()(Timestamp t) const {

 callback_(state_, accumulator_, t);

 }

};

concurrent::queue<any_invocable<void(Timestamp) const> queue;

queue.push(MyRealtimeHandler{f, s});

Moreover, a classic use for mutable members in bespoke classes is ​std::mutex ​.

struct MyThreadedAnalyzer {

 const State& state_;

 std::mutex& mtx_;

 void operator()(Slice slice) const {

 std::lock_guard<std::mutex> lock{mtx_};

 analyze(state_, slice);

 }

};

concurrent::queue<any_invocable<void(Slice) const> queue;

queue.push(MyThreadedAnalyzer{s, m});

L ​ambdas in such cases require work-arounds, such as abandoning logical const
correctness, or using intermediary types (such as ​std::ref ​) that do not propagate
constness.

Proposal

Mutable Capture By Value
Allow ​lambda capture initialization​ to be ​mutable ​ qualified, as below. This would have the
effect of declaring the captured variable to be mutable.

auto a = [mutable x, y]() {};

// ​equivalent to​:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3610.html

struct A {

 mutable X x;

 const Y y;

 void operator()() const {}

};

Before After

struct A {

 const State state;

 mutable Buffer buf;

 void operator()() const {

 // ...

 }

};

// ​manual bespoke type
any_invocable<void() const> f = A{s, b};

any_invocable<void() const> f =

 [s, mutable b] {

 // ...

 };

// ​loss of const correctness
any_invocable<void()> f =

 [s, b]() mutable {

 // ...

 };

any_invocable<void() const> f =

 [s, mutable b] {

 // ...

 };

// ​loss of regular value type
any_invocable<void()> f =

 [s, buf_ptr = &b]() mutable {

 // ...

 };

any_invocable<void() const> f =

 [s, mutable buf = b] {

 // ...

 };

Possible Extensions
Extensions are motivated by use cases, and listed in order of perceived usefulness --
however it should be noted that they also introduce increasing consistency and symmetry,
which the authors believe is a justification in its own right.

1. Const Capture on Mutable Call Operator
If lambda capture initialization can be modified by ​mutable ​ and lambda call can be modified
by ​mutable ​, then lambda calls modified by ​mutable ​ should be able to declare some of
their captures ​const ​.

auto b = [x, const y]() mutable {};

// ​equivalent to​:

struct B {

 X x;

 const Y y;

 void operator()() {}

};

Before After

struct A {

 const float *iter;

 const float *const end;

 void operator()() {

 for(; iter != end; ++iter) {

 // end never modified...

 }

 }

};

// ​manual bespoke type
any_invocable<void()> f = A{

 a.cbegin(), a.cend()

};

any_invocable<void()> f = [

 iter = a.cbegin(),

 const end = a.cend()

] () mutable {

 for(; iter != end; ++iter) {

 // end never modified...

 }

 };

// ​extraneous mutable copy
any_invocable<void()> f = [

 iter = a.cbegin(),

 end = a.cend()

] () {

 auto copy = iter;

 for(; copy != end; ++copy) {

 // end never modified...

 }

 };

any_invocable<void()> f = [

 iter = a.cbegin(),

 const end = a.cend()

] () mutable {

 for(; iter != end; ++iter) {

 // end never modified...

 }

 };

2. Const Capture by Reference
Capture by reference is not implicitly ​const ​, as capture by value is. However there are
situations where it would be useful to capture by const reference, such as when a read-only
object is too large to copy, or as a novel means to create a read-only code block.

auto b = [&x, const &y]() {};

// ​equivalent to​:

struct B {

 X &x;

 const Y& y;

 void operator()() const {}

};

Before After

struct A {

 const Huge &huge;

 void operator()() const {

 // huge.mutate(); is error

 }

};

// ​manual bespoke type
any_invocable<void() const> f = A{huge};

any_invocable<void() const> f =

 [const &huge] {

 // huge.mutate(); is error

 };

// ​extraneous cast
any_invocable<void() const> f = [

 &huge = static_cast<const Huge&>(huge)] {

 // huge.mutate(); is error

 };

any_invocable<void() const> f =

 [const &huge] {

 // huge.mutate(); is error

 };

X a, b, c;

a = foo();

b = bar();

c = baz();

{

 // ​manual redeclaration and assignment
 const X& const_a = a;

 const X& const_b = b;

 const X& const_c = c;

 // ... enter const context

}

X a, b, c;

a = foo();

b = bar();

c = baz();

[const &] {

 // ... const context

}();

3. Const Call Operator
For symmetry with the call operator of bespoke types, declaring the lambda const should not
be an error.

auto c = [x]() const {};

// ​equivalent to​:

struct C {

 const X x;

 void operator()() const {}

};

4. Const Capture on Const Call Operator
For symmetry and principle of least surprise, declaring a const capture of a const lambda
should not be an error.

auto c = [const x]() {};

// ​equivalent to​:

struct C {

 const X x;

 void operator()() const {}

};

5. Mutable Capture on Mutable Call Operator
For symmetry and principle of least surprise, declaring a mutable capture of a mutable
lambda should not be an error.

auto c = [mutable x]() mutable {};

// ​equivalent to​:

struct C {

 X x;

 void operator()() {}

};

Benefits of Consistency and Symmetry
The core benefits of extensions 3, 4 and 5 is lower cognitive load for programmers learning
C++, and principle of least surprise. We can teach why lambdas default the way they do, but
lambdas should have consistent and symmetric vocabulary for teaching how lambdas
transform into callable types under the hood.

Experienced users will also benefit from additional self-documentation, especially in critical
reliability contexts where verbosity and redundancy are preferred. Users would declare the
lambda ​mutable ​ or ​const ​ according to ideal or majority semantics, and some minority of
capture initialization would be the opposite, as an exception.

For example:

auto c = [const x, mutable y]() const {};

// ​equivalent to​:

struct C {

 const X x;

 mutable Y y;

 void operator()() const {}

};

Concerns

1. East v. West Const
In both East or West-const, the const always appears before the identifier. This proposal
does not change that.

2. Pointer to Const v. Const Pointer
Current lambda behavior mandates bitwise const, which is const-pointer (not pointer to
const). This proposal seeks to continue and not to modify that rule.

auto c = [const x = ptr]() {

 *x = {}; // ok

 x = nullptr; // error

};

3. Interactions with ​this

The keyword ​this ​ is a prvalue expression, and is special cased with regard to lambda
captures. As such, the meaning of ​mutable this ​ and ​const this ​ doesn’t have obvious
semantics -- or if we defined them may be hard to teach. We recommend these two
combinations be disallowed until further experience is accrued.

Students will likely expect the following to compile (it would not):
struct A {

 void mutate() {}

 void test() const {

 [mutable this] {

 this->mutate();

 }();

 }

};

Whereas the following would compile and work:
struct B {

 void mutate() {}

};

void test(B* that) {

 [mutable that] {

 that->mutate();

 that = nullptr;

 }();

}

Recall const pointer lambda capture is​ bitwise​ const, which affects if the pointer itself can be
modified. The ​this ​ pointer can never be modified and so ​mutable this ​ or ​const this
would either be meaningless if bitwise const, or inconsistent if logically const.

The meaning of ​mutable *this ​ and ​const *this ​ is much clearer, but for the sake of
consistency when teaching “​this ​ is special”, we recommend dis-allowing this form as well.

4. Interactions with init-capture Packs
Following the direction set out in ​P2095​, using the example in ​P0780​, we are able to move
arguments from caller, to lambda, to callee -- without having to stop at the lambda:

template <class... Args>

auto delay_invoke_foo(Args... args, State s) {

 return

 [const s, mutable ...args=std::move(args)] const { // <--

new

 return foo(s, std::move(args)...); // <--

improvement

 };

}

5. These extensions seem like a lot. Could traps be lurking?
Everything being proposed has a direct and consistent transformation into callable types that
are ​already allowed​. Consistency and symmetry improve the teachability of lambdas, and
the defaults chosen for C++11 lambdas can be easily explained.

That said, this proposal is easily separable.

Thanks
Thanks Patrick McMichael for suggesting the idea. Thanks to Matt Calabrese for offering
important corrections.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2095r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0780r2.html

