
Proposing std::is_specialization_of

Document #: WG21 P2098R1
Date: 2020–04–10
Audience: ((((LEWG-I done ⇒ LEWG ⇒ LWG
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Bob Steagall <bob.steagall.cpp@gmail.com>

Contents

1 Introduction 1
2 Proposal details 2
3 Discussion 3
4 Proposed wording 5

5 Acknowledgments 6
6 Bibliography 6
7 Document history 6

Abstract

[P2078R0] “proposes the addition [to the standard library] of a new unary type traits class
template, is_complex<T>.” Recognizing that there are numerous similar traits templates that
could profitably be added to the standard library, this paper proposes to add instead a single,
more general trait that can be straightforwardly customized via a simple alias, to obtain any
such trait as needed.

To think is to forget a difference, to generalize, to abstract.
— JORGE LUIS BORGES

Generalizations, like brooms, ought not to stand in a corner forever;
they ought to sweep as a matter of course.

— JOHN LUKACS

1 Introduction

[P2078R0] “proposes the addition [to the standard library] of a new unary type traits class
template, is_complex<T>.” Such a trait can be straightforwardly implemented as follows:

1 template< class T >
2 struct
3 is_complex : std::false_type;

5 template< class U >
6 struct
7 is_complex<std::complex<U>> : std::true_type;

9 template< class T >
10 inline constexpr bool
11 is_complex_v = is_complex<T>::value;

Copyright c© 2020 by Walter E. Brown. All rights reserved.

1

mailto:webrown.cpp@gmail.com
mailto:bob.steagall.cpp@gmail.com

2 P2098R1: Proposing std::is_specialization_of

However, there are numerous very similar trait templates that could profitably be added to the
standard library.

For example, each of the following exemplifies a useful trait much like the above is_complex<T>.
Further, the authors know that these and many others have already been implemented (albeit
under an uglified or slightly different name, in some cases) using essentially the same technique
as was used above to implement is_complex<T>.

• is_reference_wrapper<T>,
• is_string<T>,
• is_pair<T>,
• is_tuple<T>,
• is_vector<T>,
• and many more!

Therefore, this paper proposes to add instead a single, more general trait that can be
straightforwardly customized via a simple alias, to obtain any such trait as needed.

2 Proposal details

2.1 Expository implementation
As motivated above, we propose to add a more general is_specialization_of trait to the
standard library. Such a trait can be defined along the following lines such that it corresponds to
true_type when a given type is a specialization of a given template; otherwise, it corresponds to
false_type when the given type is not a specialization of that given template:

1 template< class T
2 , template<class...> class Primary >
3 struct
4 is_specialization_of : false_type;

6 template< template<class...> class Primary
7 , class... Args >
8 struct
9 is_specialization_of< Primary<Args...>, Primary> : true_type;

11 template< class T
12 , template<class...> class Primary >
13 inline constexpr bool
14 is_specialization_of_v = is_specialization_of<T, Primary>::value;

2.2 Expository application
Given the above primitive, we can produce [P2078R0]’s proposed is_complex<T> as follows:

1 template< class T >
2 using
3 is_complex = is_specialization_of<T, std::complex>;

5 template< class T >
6 inline constexpr bool
7 is_complex_v = is_specialization_of_v<T, std::complex>;

Each of the other examples listed in §1 can be produced in like manner. This frees programmers
from the need to comprehend the intricacies of template template parameters (a topic often not

P2098R1: Proposing std::is_specialization_of 3

well-understood by non-experts). Moreover, the nature of the proposed trait is such that it can be
used in a very wide variety of contexts, not just within namespace std.

3 Discussion

3.1 Naming
Q: Isn’t the trait’s proposed name, is_specialization_of, somewhat longer than might be
considered convenient?

A: While shorter names are of course possible,1 we prefer the proposed longer name in the interest
of clarity of purpose: we believe that the longer name succinctly and correctly captures the mission
of the trait and follows the naming precedent of the long-standing is_base_of trait.

3.2 Prior art
Q: Is there prior art for the proposed is_specialization_of type trait?

A: Investigation has revealed that yes, there is prior art for the proposed trait. In particular,
MSVC’s standard library implementation provides this exact trait. Specifically, the MSVC trait:

• is found in their <type_traits> header,
• bears the uglified name _Is_specialization,
• is implemented equivalently to the expository implementation shown above, and
• is applied in their library exactly as is shown in the above expository application.

3.3 Template aliases
Q: How does the proposed is_specialization_of type trait behave when (one or both of) its
arguments are template aliases?

A: Because compilers are already required2 to look through template aliases, the trait behaves as
if the template alias argument were replaced by the underlying (i.e., aliased) entity. For example,
the following code produces no diagnostic when compiled:

1 template< class > struct S { };
2 template< class T > using A = S<T>;

4 static_assert(is_specialization_of_v< S<int>, A>);
5 static_assert(is_specialization_of_v< A<int>, A>);
6 static_assert(not is_specialization_of_v< double, A>);
7 static_assert(not is_specialization_of_v< double, S>);

3.4 Inheritance
Q: How does the proposed is_specialization_of type trait behave when (one or both of) its
template arguments have bases?

A: The proposed trait considers only specialization. Since specialization is unrelated to inheri-
tance,3 the trait’s result is unaffected when any template argument happens to be defined via
inheritance. For example, the following code produces no diagnostic when compiled:

1Examples of such shorter names include is_specialization, specializes, is_spec_of, and the like.
2See [temp.alias]/2.
3We already have a trait, std::is_base_of (specified in [tab:meta.rel]), to detect an inheritance relationship between

two types.

4 P2098R1: Proposing std::is_specialization_of

1 template< class > struct B { };
2 template< class T > struct D : B<T> { };

4 static_assert(is_specialization_of_v< B<int>, B>);
5 static_assert(is_specialization_of_v< D<int>, D>);

7 static_assert(not is_specialization_of_v< B<int>, D>);
8 static_assert(not is_specialization_of_v< D<int>, B>);

10 static_assert(not is_specialization_of_v< double, B>);
11 static_assert(not is_specialization_of_v< double, D>);

3.5 Inherent limitation
Q: Why does the proposed is_specialization_of type trait not compile when passed a template
such as std::array or std::ratio as its second argument?

A: The trait is subject to the core language limitation that there is no syntax to declare a parameter
pack composed of any but a single kind of parameter. Therefore, any template that has a non-type
template parameter (e.g., std::array and std::ratio) can’t today be passed as an argument
where a template taking only a parameter pack of types4 is specified. Any attempt to do so yields
an ill-formed program; for example, each static_assert declaration in the following code results
in a diagnostic when compiled:

1 template< class > struct S { };

3 static_assert(is_specialization_of_v< S<int>, std::ratio>);
4 static_assert(not is_specialization_of_v< S<int>, std::array>);

3.6 Lifting the inherent limitation
Q: How can the proposed is_specialization_of type trait be generalized to accept, as its
second argument, a template taking any combination of type, non-type, and/or template template
parameters? (As mentioned above, std::array and std::ratio are notable examples of such a
template.)

A: To provide such a generalization of the proposed trait would require a significant change to the
core language, namely, to allow a universal (i.e., any kind of) template parameter feature such
as is proposed in [P1985R0].5 Once there is a syntax to specify such a template parameter, it
is merely a matter of adopting that syntax into a (future) minor revision of the present paper’s
proposed wording for the is_specialization_of type trait.

3.7 Timing
Q: Should we wait to adopt the proposed is_specialization_of type trait until it can be fully
generalized as discussed above?

A: No, as discussed during this paper’s LEWG-I review at the Prague (2020-02) WG21 meeting:

• The proposals should proceed independently, as this one is library-only while the other
requires a significant core language adjustment that does not yet have proposed wording.

• Should some form of universal template parameter be ultimately adopted, it will be straight-
forward to adjust the trait’s specification, as well as its implementation, so as to provide the
desired generalization with no ABI break.

4Thus forced to choose, we opted to support parameter packs composed of types only, as (in our experience) templates
taking only type parameters have arisen far more often than have templates taking any non-type or template template
parameter.

5In fact, that paper puts forth, as one of its major use cases, a variation of this paper’s proposed is_
specialization_of trait!

P2098R1: Proposing std::is_specialization_of 5

• However, waiting for such a proposal’s adoption, and then waiting for compilers to implement
it, would needlessly delay what is a demonstrably useful facility already in use in several
code bases.

3.8 Summary
For all the reasons above, we believe the is_specialization_of trait to be a worthy candidate
for C++23 standardization.

4 Proposed wording6

4.1 After adjusting yyyymm (below) so as to denote this proposal’s month of adoption, insert the
following line among the similar directives following [version.syn]/2:

#define __cpp_lib_is_specialization_of yyyymmL // also in <type_traits>

4.2 Augment [meta.type.synop] as shown:

namespace std {
...
template<class Base, class Derived>

struct is_pointer_interconvertible_base_of;
template<class T, template<class...> Primary>

struct is_specialization_of;
...
template<class Base, class Derived>

inline constexpr bool is_pointer_interconvertible_base_of_v
= is_pointer_interconvertible_base_of<Base, Derived>::value;

template<class T, template<class...> Primary>
inline constexpr bool is_specialization_of_v

= is_specialization_of<T,Primary>::value;
...

}

4.3 Augment Table [tab:meta.rel] (Type relationship predicates) as shown:

Primary Condition Comments
...
template<class Base, class Derived is unambiguously If Base and Derived are
Derived>
struct is_pointer_-
interconvertible_base_of;
template<class T, T is a specialization
class<class...> Primary> ([temp.spec]) of Primary
struct is_specialization_of;
...

6Proposed additions (there are no deletions) are based on [N4849]. Editorial instructions and drafting notes look like
this .

6 P2098R1: Proposing std::is_specialization_of

5 Acknowledgments

Many thanks to the readers of early drafts of this paper for their thoughtful comments.

6 Bibliography

[N4849] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4849 (pre-Prague mailing), 2020–01–14. https://wg21.link/n4849.

[P1985R0] Mateusz Pusz and Gašper Ažman: “Universal Template Parameters.” ISO/IEC JTC1/SC22/
WG21 document P1985R0 (pre-Prague mailing), 2020–01–13. https://wg21.link/P1985R0.

[P2078R0] Bob Steagall: “Add new traits type std::is_complex<T>.” ISO/IEC JTC1/SC22/WG21 docu-
ment P2078R0 (pre-Prague mailing), 2020–01–13. https://wg21.link/P2078R0.

7 Document history

Rev. Date Changes

0 2020–02–13 • Published as P2098R0, post-Prague mailing, incorporating minor guidance from very fa-
vorable (10|7|0|0|0) LEWG-I review of a draft of this paper.

1 2020–04–10 • Added §3 (Discussion) and moved some existing remarks there. • Slightly adjusted §4
(Proposed wording). • Performed other minor editorial cleanup. • Published as P2098R1,
2020–04 mailing.

https://wg21.link/n4849
https://wg21.link/P1985R0
https://wg21.link/P2078R0

	Title
	Contents
	Abstract
	1 Introduction
	2 Proposal details
	3 Discussion
	4 Proposed wording
	5 Acknowledgments
	6 Bibliography
	7 Document history

