N. Josuttis: P2276R0: Fix std::cbegin(), ranges::cbegin, and provide const_iterator support for std::span

Project: ISO JTC1/SC22/WG21: Programming Language C++
Doc No: WG21 P2276R0

Date: 2021-01-15

Reply to: Nicolai Josuttis (nico@josuttis.de)

Audience: LEWG, LWG

Issues: Iwg3320

Fix std: :cbegin(), std: :ranges: :cbegin,
and provide const_i1terator support for
std: :span, Rev0

Currently, if a class provides cbegin() and cend() members, these members are neither called by
std: :cbegin() and std: :cend() nor by std: :ranges: :cbegin() and std: :ranges: :cend().
This means that these functions may not provide ready-only access to elements, which is clearly against
the whole purpose of cbegin() and cend().

This problem was revealed by http://wg21.link/lwg3320, which, however, caused a reaction that made the
situation even worse: const_iterator and cbegin() support was removed from std: :span so that
programmers now no longer are able to iterate read-only over the elements (instead of calling
sp-cbegin() they can only use std: :cbegin(sp) or std: :ranges: :cbegin(sp), which does not
provide read-only access).

This paper proposes to fix the situation so that everything works as expected:

e Letstd::cbegin() and std: :ranges: :cbhegin() call cbegin() members if available
(same for all other c... functions).

e Bring support for const_iterator, cbegin() members, etc. back to std::span so that it is
possible to iterate read-only over its elements.

This paper does not propose in any form to bring const_iterator support to ranges or views. There is
probably another paper fixing that.

The reason to fix std::span is because we have a special case here: it is a view, but it is it is not part of
the ranges library (i.e., not in the ranges sub-namespace). std::span is more like std::string_view and
should therefore provide the same API. Note that there are already bug reports because of the last-
minute removal of const iterator support for std::span.

Rev0:

First initial version.

N. Josuttis: P2276R0: Fix std::cbegin(), ranges::cbegin, and provide const_iterator support for std::span

Tony Table:

Before

After

std: :vector<int> coll{l, 2, 3, 4, 5};
std: :span<int> sp{coll._begin(), 3};
for (auto it = std::cbegin(sp);
it = std::cend(sp); ++it) {
*it = 42; //is no error (but it should be)

}

std: :vector<int> coll{l, 2, 3, 4, 5};
std: :span<int> sp{coll.begin(), 3};
for (auto it = std::cbegin(sp);
it 1= std::cend(sp); ++it) {
*it = 42; // error (good)
}

std: :vector<int> coll{l, 2, 3, 4, 5};
std: :span<int> sp{coll.begin(), 3};
for (auto it = std::ranges::cbegin(sp);
it !I= std::ranges::cend(sp); ++it) {
*it = 42; //is no error (but it should be)

}

std: :vector<int> coll{l, 2, 3, 4, 5};
std: :span<int> sp{coll.begin(), 3};
for (auto it = std::ranges::cbegin(sp);
it = std::ranges::cend(sp); ++it) {
*it = 42; // error (good)
}

/I can’t use cbegin() members for spans:

std: :vector<int> coll{l, 2, 3, 4, 5};

std: :span<int> sp{coll_begin(), 2};

for (auto it = sp.cbegin(); // ERROR
it = sp.cend(); ++it) {

std: :vector<int> coll{l, 2, 3, 4, 5};
std: :span<int> sp{coll.begin(), 2};
for (auto it = sp.cbegin(); // OK
it = sp.cend(); ++it) {
... Il read-only access to elements

}

viewv; // some view with cbegin() members
std: :is_same_v<decltype(v.chegin()),
decltype(std: :cbegin(v))>
/I if valid, may be false

view v; // some view with cbegin() members
std: :is_same_v<decltype(v.cbegin()),
decltype(std: :cbegin(v))>
/I if valid, always true

/I generic code ensuring cbegin() members are called:
if constexpr (requires { rg.cbegin(Q) }) {
for (auto it = rg.chegin(Q);
it = rg.cend(); ++it) {

,

}
else {
for (auto it = std::ranges::cbegin(rg);
it = std::ranges::cend(rg);
++it)
}
bs

/I generic code ensuring that cbegin() members are called:
for (auto it = std::ranges::cbegin(rg);
it = std::ranges::cend(rg);
++it)

N. Josuttis: P2276R0: Fix std::cbegin(), ranges::cbegin, and provide const_iterator support for std::span

History
Purpose of cbegin()

In the C++ standard, "constant iterators" are defined as nonmutable iterators that are no output iterators
(being able to write). For their support we introduced:

e With C++98 const_iterator defined as:
"iterator type pointing to const T"
e With C++11 we changed const_iterator to be:
"constant iterator type whose value type is T"
cbegin() members were introduced in 2005 (formally supported since C++11) as follows:
Motivation:

"when a container traversal is intended for inspection only, it is a generally preferred practice to
use a const_iterator in order to permit the compiler to diagnose const-correctness violations".

Therefore cbegin() members were proposed so that
"a programmer can directly obtain a const_iterator from even a non-const container."

It is an important common design goal for C++ that you can use APls in slightly different contexts and if
they serve the same purpose they should have the same behavior. Therefore de-facto, we introduced a
concept that does not only apply to containers.

If provided, const_iterator and cbegin()/cend() members are a useful way for all sequences "in
order to permit the compiler to diagnose const-correctness violations".

In the C++ standard we already have cbegin() members also for

- match_results
- basic_string_view
-tzdb_list

and we planned to have it for

- span

Purpose of std::cbegin()
std: :cbegin() was added with LWG2128 (so it is formally supported since C++14).

Its goal always was that is has the same effect as calling the corresponding members if they are
available:

"Step 1: Implement std: :cbegin/cend() by calling std: :begin/end().

[container.requirements.general] guarantees that this is equivalent to calling cbegin/cend()
members."

And it also was a clear intention of std::cbegin() not only to work for containers:

"It automatically works with arrays,

It works with initializer_list,"

N. Josuttis: P2276R0: Fix std::cbegin(), ranges::cbegin, and provide const_iterator support for std::span

Why std::cbegin() and std::ranges::cbegin are broken
Until C++17, everything was fine, because as long as the members

begin() const

and

cbegin() const

yield the same type, the design goal of std: :cbegin(c) matching any c.cbegin() was fulfilled.

But there are useful sequence types where providing const_iterator and cbegin() might makes
sense, but design goal would be broken.

In general, for sequences with reference semantics and shallow constness it is useful to specify:
iterator begin() const; /I const container doesn't mean const elements
const_iterator cbegin() const; // but cbegin() still provides constant iterators

Since C++20, we started to have sequence types with reference semantics and shallow constness in the
standard:

- std::span
- Several views

Realizing that the design goal of cbegin() and std: :cbegin() was broken, http://wg21.link/lwg3320
was raised.

Unfortunately the resolution didn’t solve the problem. The situation got even worse.

Now in C++20 as specified, if a programmer wants to use a const_iterator in order to permit the
compiler to diagnose const-correctness violations, he/she can no longer use cbegin() members. And
using std: :cbegin() or std: :ranges: :cbegin() still does not work. Making the container const
does also not work and a const_iterator we could convert to is also not defined.

Thus, there is no easy way to iterate read-only over the elements of a span.

Therefore, this paper proposes to ensure that for any collection/container/range/view if the programmer
provides cbegin() members, std: :cbegin() and std: :ranges: :cbegin() call them or do the
equivalent thing.

Everything else leads to significant confusion of application programmers.

Why not only providing a mechanism to yield const iterators
automatically?

There is another solution proposed by Barry Revzin.

It provides a solution for all situations, where cbegin() members are not provided and should be
adopted independent from this paper.

However, if a container provides cbegin() members (for whatever reason) it still breaks the design goal
of std: :cbegin() being equivalent to calling the member, because it might yield a constant iterator but
of different type. This especially applies to all sequences with reference semantics and shallow constness
currently providing cbegin() (which they have to to work properly).

This for sure creates confusion. But even worse: If the types are different then code that uses
std: :cbegin(c) is no longer equivalent to code that uses c.cbegin().

N. Josuttis: P2276R0: Fix std::cbegin(), ranges::cbegin, and provide const_iterator support for std::span

This has the following consequences:
a) Functions that use both API's to return something no longer compile:
auto foo() { / ERROR: can’t deduce return type

return std::cbegin(c); // may happen indirectly

return c.cbegin(); /I may happen indirectly

b) Functions that require the same type, no longer compile:
auto posl = cfindl(coll); /I might use std::cbegin(c) or use std::ranges::cbegin(c)
cfind2(coll); /I might use c.cbegin()
std: :distance(posl, pos2); //ERROR
posl - pos2 /l ERROR

auto pos2

c) If for whatever reason a const_iterator provides a different API than an iterator:
coll .cbegin().foo(); /I might compile
std: :cbegin(coll).foo(); // might not compile

or vice versa.

a) and b) is likely to happen in practice (we would have it with std::span supporting const_iterator again).

¢) might not be on the agenda right now, but there are scenarios where this might be useful (e.g., proxy
iterators providing different proxy types for the element access).

So, the obvious proposal is to always call corresponding members if available.

Otherwise any other solution (existing or proposed in other papers) can be used.

N. Josuttis: P2276R0: Fix std::cbegin(), ranges::cbegin, and provide const_iterator support for std::span

Proposed fix for std::cbegin() and std::ranges::cbegin() etc.

Fix for std::cbegin() and std::cend()

The first fix proposed in this paper is to modify the current definition of std: :cbegin(c):

- If c supports c.cbegin(), we call it

It should first try to call a cbegin() member before it falls back to the current behavior:
- If ¢ supports c.cbegin(), we call it
- Otherwise, ...

Here, “...” might be the current wording or any other wording provided by other papers to automatically
provide const iterators).

This means that std::cbegin(c) always does the same as c.cbegin() if the member function is provided.

std: :cend() should be fixed accordingly.

Fix for std::crbegin() and std::crend()

The current definition of std: :crbegin(c)is as follows:

- If c supports std: :rbegin(c), we call it

However, here we have we have the following options for a fix:
a) According to std::crbegin() prefer to call a crbegin() member function:
- If c supports c.crbegin(), we call it

- Otherwise, if ¢ supports std: :rbegin(c), we call that

b) Prefer also to call make_reverse_iterator() using cbegin() and cend() members:
- If c supports c.crbegin(), we call it

- Otherwise, if c.cend() is valid (and a bidirectional iterator),
call make_reverse_iterator(c.cend())

- Otherwise, if ¢ supports std: :rbegin(c), we call that

c) Prefer also to call make_reverse_iterator() using std::cbegin() and std::cend():
- If c supports c.crbegin(), we call it

- Otherwise, if std: :cend(c) is valid (and a bidirectional iterator),
call make reverse_iterator(std::cend(c))

- Otherwise, if ¢ supports std: :rbegin(c), we call that

d) Also strike the fallback to std::rbegin():
- If c supports c.crbegin(), we call it

- Otherwise, if std: :cend(c) is valid (and a bidirectional iterator),
call make_reverse_iterator(std::cend(c))

N. Josuttis: P2276R0: Fix std::cbegin(), ranges::cbegin, and provide const_iterator support for std::span

However, a possible fix for reverse iterators is not the purpose of this paper.
Other papers should do it.

So, | propose, that std::rbegin() should also first try to call a crbegin() member before it falls back to the
current behavior:

- If c supports c.crbegin(), we call it

- Otherwise, ...

std: :crend() should be fixed accordingly.

Fix for std::ranges::cbegin(), std::ranges::crbegin() etc.

This paper proposes also to fix std: :ranges: :cbegin, std::ranges::cend,
std: :ranges: :crbegin, and std: :ranges: :crend accordingly.

For example, for std::ranges::cbegin():

The name ranges::cbegin denotes a customization point object (16.3.3.3.6). The expression
ranges::cbegin(E) for a subexpression E of type T is expression-equivalent to:

(1.1) — E.cbegin() if this is valid.
(1.2) — ranges::begin(static_cast<const T&>(E)) if E is an Ivalue.

(1.3) — Otherwise, ranges::begin(static_cast<const T&&>(E)).

Bringing back const_iterator support to std::span

With that fix we propose to bring back constant iterator support to std::span<>.

That means that we in fact revert the proposed resolution of http://wg21.link/lwg3320 and add the
following members back to std::span:

- Type const_iterator

- Type const_reverse_iterator
- cbegin() const

- cend() const

- crbegin() const

- crend() const

N. Josuttis: P2276R0: Fix std::cbegin(), ranges::cbegin, and provide const_iterator support for std::span

Q&A

Do we have evidence that this is a major problem in practice?

We already get bug reports about this problem:

“I've just received a bug report on one of my open source libraries
caused by span<T>::const_iterator no longer existing.”

Without const_iterator support we can’t iterate safely over a non-const span/view having the
guarantee that we don’t modify the elements:
template<typename T>
void fool(T&& coll)
{
/I read-only iteration over elements:
for (auto pos = coll.begin(); pos != coll.end(); ++pos) {
process(*pos); // may modify elements
}
}

template<typename T>
void foo2(T&& coll)
{
/I read-only iteration over elements:
for (auto pos = std::cbegin(coll); pos != std::end(coll); ++pos) {
process(*pos); // may modify elements
}
}

template<typename T>
void foo3(T&& coll)
{
/I read-only iteration over elements:
for (auto pos = coll.cbegin(); pos = coll.cend(); ++pos) {
process(*pos); // OK, butrequires cbegin() and cend() support

}
}

template<typename T>
void foo4(T&& coll)
{
/I read-only iteration over elements:
for (typename std::decay_ t<decltype(coll)>::const_iterator
pos = coll.begin(); pos !'= coll.end(); ++pos) {
process(*pos); // OK, butrequires const_iterator support

}
}

Note that especially foo2() is a severe violation of the principles and naive understanding of what using
cbegin() and cend() does (it is breaking logical const correctness).

Also note that std: :as_const() does not help here, because again it only makes the container/iterator
const, not the elements.

N. Josuttis: P2276R0: Fix std::cbegin(), ranges::cbegin, and provide const_iterator support for std::span

Proposed Wording
(All against N4861)

Proposed Wording for std::cbegin etc.

In 23.2 Header <iterator> synopsis [iterator.synopsis]:

Change

template<class C>
constexpr auto cbegin(const C& c) noexcept(noexcept(std::begin(c)))

-> decltype(std: :begin(c));

template<class C>
constexpr auto cend(const C& c) noexcept(noexcept(std::end(c)))

-> decltype(std::end(c));
and

template<class C> constexpr auto crbegin(const C& c)
-> decltype(std: :rbegin(c));

template<class C> constexpr auto crend(const C& c)
-> decltype(std: :rend(c));

To

template<class C>
constexpr requires seebelow auto cbegin(const C& c) noexcept(see below)

-> see below;

template<class C>
constexpr requires seebelow auto cend(const C& c) noexcept(see below)

-> see below;
and

template<class C> constexpr requires seebelow auto crbegin(const C& c)
-> see below;

template<class C> constexpr requires seebelow auto crend(const C& c)
—-> see below;

In 23.7 Range access [iterator.range]:
Change:
template<class C> constexpr auto cbegin(const C& c)
noexcept(noexcept(std::begin(c))) -> decltype(std::begin(c));
6 Returns: std::begin(c).
template<class C> constexpr auto cend(const C& c)
noexcept(noexcept(std::end(c))) -> decltype(std::end(c));
7 Returns: std::end(c).
And:

template<class C> constexpr auto crbegin(const C& c) -> decltype(std::rbegin(c));

N. Josuttis: P2276R0: Fix std::cbegin(), ranges::cbegin, and provide const_iterator support for std::span

14 Returns: std::rbegin(c).
template<class C> constexpr auto crend(const C& c) -> decltype(std::rend(c));

15 Returns: std::rend(c).

To:

template<class C> requires see below
constexpr auto cbegin(const C& c)

noexcept(see below) -> see below;

6 Effects:
- If c.cbegin() is a valid expression then expression-equivalent to c.cbegin()
- Otherwise, if begin(c) is a valid expression then expression-equivalent to begin(c)
- Otherwise, ill-formed.

template<class C> requires see below
constexpr auto cend(const C& c)

noexcept(see below) -> see below;

7 Effects:
- If c.cend() is a valid expression then expression-equivalent to c.cend()
- Otherwise, if end(c) is a valid expression then expression-equivalent to end(c)
- Otherwise, ill-formed.

And:
template<class C> requires see below
constexpr auto crbegin(const C& c) -> see below;

14 Effects:

- If c.crbegin() is a valid expression then expression-equivalent to c.crbegin()

- Otherwise, if rbegin(c) is a valid expression then expression-equivalent to rbegin(c)
- Otherwise, ill-formed.

template<class C> requires see below
constexpr auto crend(const C& c) -> see below;

15 Effects:

- If c.crend() is a valid expression then expression-equivalent to c.crend()

- Otherwise, if rend(c) is a valid expression then expression-equivalent to rend(c)
- Otherwise, ill-formed.

Proposed Wording for std::ranges::cbegin etc.

In 24.3.3 ranges::cbegin [range.access.cbegin]:
Fix as follows:

The name ranges::cbegin denotes a customization point object (16.4.2.2.6).
The expression ranges::cbegin(E) for a subexpression E of type T is expression-equivalent to:
(1.1) — If decay-copy(t.cbegin()) is a valid expression whose type models

input_or_output_iterator, ranges::cbegin(E) is expression-equivalent to decay-copy(t.cbegin()).

(1.2) — Otherwise, ranges::begin(static_cast<const T&>(E)) if E is an Ivalue.

(1.3) — Otherwise, ranges::begin(static_cast<const T&&>(E)).

10

N. Josuttis: P2276R0: Fix std::cbegin(), ranges::cbegin, and provide const_iterator support for std::span

In 24.3.4 ranges::cend [range.access.cend]:
Fix as follows:

The name ranges::cend denotes a customization point object (16.4.2.2.6).
The expression ranges::cend(E) for a subexpression E of type T is expression-equivalent to:

(1.1) —If decay-copy(t.cend()) is a valid expression whose type models
sentinel_for<iterator_t<T>> then ranges::cend(E) is expression-equivalent to decay-copy(t.cend()).

(1.2) — Otherwise, ranges::end(static_cast<const T&>(E)) if E is an Ivalue.

(1.3) — Otherwise, ranges::end(static_cast<const T&&>(E)).

In 24.3.7 ranges::crbegin [range.access.crbegin]:
Fix as follows:

1 The name ranges::crbegin denotes a customization point object (16.4.2.2.6).
The expression ranges::crbegin(E) for a subexpression E of type T is expression-equivalent to:

(1.1) — If decay-copy(t.crbegin()) is a valid expression whose type models
input_or_output_iterator, ranges::crbegin(E) is expression-equivalent to decay-copy(t.crbegin()).

(1.3) — Otherwise, ranges::rbegin(static_cast<const T&>(E)) if E is an Ivalue.

(1.3) — Otherwise, ranges::rbegin(static_cast<const T&&>(E)).

In 24.3.8 ranges::crend [range.access.crend]:
Fix as follows:

1 The name ranges::crend denotes a customization point object (16.4.2.2.6).
The expression ranges::crend(E) for a subexpression E of type T is expression-equivalent to:

(1.1) — If decay-copy(t.crend()) is a valid expression whose type models
sentinel_for<decltype(ranges::rbegin(E))> then ranges::crend(E) is expression-equivalent to decay-
copy(t.crend()).

(1.2) — Otherwise, ranges::rend(static_cast<const T&>(E)) if E is an Ivalue.

(1.3) — Otherwise, ranges::rend(static_cast<const T&&>(E)).

Proposed Wording for std::span

This fix reverts the overload resolution of http://wg21.link/lwg3320

In 22.7.3.1 Overview [span.overview]:

Fix as follows:

namespace std {

template<class ElementType, size_t Extent = dynamic_extent>

class span {

public:

// constants and types
using element_type = ElementType;
using value_type = remove_cv_t<ElementType>;
using size_type = size_t;
using difference_type = ptrdiff_t;
using pointer = element_type*;
using const_pointer = const element_type*;
using reference = element_type&;

11

N. Josuttis: P2276R0: Fix std::cbegin(), ranges::cbegin, and provide const_iterator support for std::span

using const_reference = const element_type&;

using iterator = implementation-defined ; // see 22.7.3.7

using const_iterator = implementation-defined;

using reverse_iterator = std::reverse_iterator<iterator>;

using const_reverse_iterator = std::reverse_ iterator<const_iterator>;
static constexpr size_type extent = Extent;

// 22.7.3.7, iterator support

constexpr iterator begin() const noexcept;

constexpr iterator end() const noexcept;

constexpr const_iterator cbegin() const noexcept;
constexpr const_iterator cend() const noexcept;

constexpr reverse_iterator rbegin() const noexcept;
constexpr reverse_iterator rend() const noexcept;
constexpr const_reverse_iterator crbegin() const noexcept;
constexpr const_reverse_iterator crend() const noexcept;

In 22.7.3.7 Iterator support [span.iterators]:
Modify as follows:
using iterator = implementation-defined ;

using const_iterator = implementation-defined ;

1The types models contiguous_iterator (23.3.4.14), meets the Cppl7RandomAccesslterator requirements

(23.3.5.6), and meets the requirements for constexpr iterators (23.3.1). All requirements on

container iterators (22.2) apply to span::iterator and span::const_iterator as well.

constexpr const_iterator cbegin() const noexcept;

-6- Returns: A constant iterator referring to the first element in the span. If empty() is true, then

it returns the same value as cend().

constexpr const_iterator cend() const noexcept;

-7- Returns: A constant iterator which is the past-the-end value.

constexpr const_reverse_iterator crbegin() const noexcept;

-8- Effects: Equivalent to: return const_reverse_iterator(cend());

constexpr const_reverse_iterator crend() const noexcept;

-9- Effects: Equivalent to: return const_reverse_iterator(cbegin());

Feature Test Macro

New macro or do we have a versioned macro?

One or multiple feature test macros (cbegin fix, span fix, ranges fix)?

12

N. Josuttis: P2276R0: Fix std::cbegin(), ranges::cbegin, and provide const_iterator support for std::span

Acknowledgements

Thanks to all the people who discussed the issue, proposed information, and helped with possible
wording. Especially: The people in the C++ library (evolution) working group, Walter E. Brown, Niall
Douglas, Alisdair Meredith, Barry Revzin, Ville Voutilainen.

Forgive me if | forgot anybody.

13

