constexpr class

Document Number: P2350 R2

Date: 2021-10-14
Project: ISO JTC1/SC22/WG21: Programming Language C++
Reply-to: Andreas Fertig (isocpp@andreasfertig.info)
Audience: EWG
Contents
1 Introduction o . L e 2
2 Motivation o e e e e e e e e e e e e e e e e e e 2
3 Thedesign . . .o i i it e e e e e e e e e e e e e e e e e e e 4
3.1 What about out-of-line definitions? o oL 4
3.2 What about a member function that already carries constexpr? 4
3.3 Do we need constexpr(false)? i i i i i i e e e e e e e 4
3.4 Whatabout friend? e e e 4
3.5 What about static member functions? 4
3.6 What about staticdatamembers? L L L 5
3.7 What about inheritance? 5
3.8 What about a forward declaration? o L 5
3.9 Isadding or removing constexpr from the class-head a breaking change? 6
3.10 What about consteval e 6
3.11 (an this be solved with metaclasses? 8
3.12 Syntaxchoices e e e e 8
3.13 Orderofthespecifiers 9
4 Controversial parts i i i i i it e 9
5 Otherproposalsttt it i ittt e e 10
51 Whatotherlanguagesdo 11
6 Otherpartsofthelanguage i i i it e e 11
6.1 Whatabout noexcept e 11
6.2 Whataboutconst e 11
6.3 What about override e e e 12
6.4 What about free functions? 12
7 Implementation e e e e e e e e e e e e e e e 12
8 Polls . . i e e e e e e e e e e e e e e e 12
8.1 EWG 2021 Octobera3 (virtual) 12
82 EWG=2021June21(virtual). 13

2 P2350 R2: constexpr class

9 Proposedwording e e e e e e e e e e e e e e e 15
10 Acknowledgements e e e e e e e e e e e 16
11 Revision History . . . o o o i i i e e e e e e e e e e e e e 17
Bibliography o i e e e e e e e e e e 17

1 Introduction

The evolution of constexpr since C++11 allows us to make more and more parts constexpr. For exam-
ple, [P0980R1] makes std: :string constexpr. [P1004R2] does the same for std: :vector. Microsoft’s
implementation [MSV(CVector] shows that all member functions in std: :vector are constexpr now.
When | wrote the test implementation for [P2273Ro0] (Making unique ptr constexpr) | more or less
simply added constexpr to all member functions of unique ptr.

[P1235R0] proposed to make all functions implicitly constexpr. Looking at the examples of vector
and [P1235R0] there seems to be a desire to reduce decl-specifiers.

| propose to allow constexpr in the class-head, acting much like final, declaring that all member
functions, including special member functions, in this class are implicitly constexpz:

2 Motivation

Marking all member functions as constexpr in a class is an absolutely unnecessary burden for the
author of a class. What we can do with constexpr has improved over the last couple of years so much
that constexpr code doesn’t differ from the one, which is pure run-time code, a few exceptions aside.

Having to read a class where constexpr is attached to each member function is a burden for users
of such a class. It disturbs readability. As we still and ever will, write more run-time than compile-
time code, the question of whether a certain member function is constexpr and by that usable in a
compile-time context comes up way less than the other way around. Then if all member functions
of a class are constexpr have that information at the very top at the class definition spares looking
up each member function to figure out whether it is usable at compile-time or not.

This paper proposes to introduce a way of marking all member functions in a class as constexpr
with a single specifier in the class-head, like we can already do it with final.

Currently With proposal
1 class SomeType { 1 class SomeType constexpr {
2 public: 2 public:
3 constexpr bool empty() const { /% %/ } 3 bool empty() const { return true; }
4 constexpr auto size() const { /% %/ } 4 auto size() const { /% *x/ }
5 constexpr void clear() { /*x %/ } 5 wvoid clear() { /% %/ }
6 // ... 6 // ...
7} 7%

P2350 R2: constexpr class

Currently
1 struct BaseA {
2 constexpr bool fun() { return true; }
3}
4
5 struct DerivedA BaseA {
6 bool run() { return true; }
7%
8
9 static_assert(DerivedA{}.fun());
10 //static_assert(DerivedA{}.run());
11
12 struct BaseB {
13 bool fun() { return true; }
14 };
15
16 struct DerivedB BaseB {
17 constexpr bool run() { return true; }
18 };
19
20 //static_assert(DerivedB{}.fun());
21 static_assert(DerivedB{}.run());
22
23
24 struct BaseC {
25 BaseC() = default;
26 BaseC(int) {}
27 };
28
29 struct DerivedC BaseC {
30 constexpr DerivedC(double) BaseC{} {}
31
32 using BaseC::Base(;
33 };
34
35 // BaseC::BaseC(int) isn’t constexpr
36 //constexpr DerivedC c1{3};
37 // DerivedC(double) and BaseC() are constexpr
38 constexpr DerivedC c2{3.4};
39
40
41 struct BaseD {
42 constexpr BaseD(int) {}
43 };
44
45 struct DerivedD BaseD {
46 // Will never produce a
47 // constant expression because
48 // DerivedD(double) isn’t constexpr
49 DerivedD(double) BaseD{2} {}
50
51 using BaseD::BaseD;
52 };
53
54 // BaseD::BaseD(int) is constexpr
55 constexpr DerivedD di{3};
56 // DerivedD(double) isn’t constexpr

57

//constexpr DerivedD d2{3.4};

With proposal

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

struct BaseA constexpr {
bool fun() { return true; }
bs

struct DerivedA BaseA {
bool run() { return true; }

b3

static_assert(DerivedA{}.fun());
//static_assert(DerivedA.run());

struct BaseB {
bool fun() { return true; }

¥

struct DerivedB constexpr BaseB {
bool run() { return true; }

¥

//static_assert(DerivedB{}.fun());

static_assert(DerivedB{}.run());

struct BaseC {
BaseC() = default;
BaseC(int) {}

¥

struct DerivedC constexpr : BaseC {
DerivedC(double) BaseC{} {}

using Base(::BaseC(;

13

// BaseC::BaseC(int) isn’t constexpr
//constexpr DerivedC c1{3};

// DerivedC(double) and Base() are constexpr
constexpr DerivedC c2{3.4};

struct BaseD constexpr {
BaseD(int) {}
bg

struct DerivedD : BaseD {
// Will never produce a
// constant expression because
// DerivedD(double) isn’t constexpr
DerivedD(double) BaseD{2} {}

using BaseD::BaseD;

13

// BaseD::BaseD(int) is constexpr
constexpr DerivedD di{3};

// DerivedD(double) isn’t constexpr
//constexpr DerivedD d2{3.4};

4 P2350 R2: constexpr class

3 The design

The goal is to use the existing model of final and apply it to constexpr. This reduces the noise
resulting from entirely constexpr-classes as we have it now.

3.1 What about out-of-line definitions?

This proposal does not change how out-of-line definitions of constexpr member functions work.
They continue to work the same way as if someone puts constexpr directly at the member function.
The out-of-line definition will not compile.

3.2 What about a member function that already carries constexpx?

Well, doing things twice to be sure never hurts. The member function will be constexprin a constexpr
class regardless of whether it is declared constexpr again at member function level.

3.3 Do we need constexpr(false)?

| received feedback that a constexpr (false) could, in fact, be desirable. Aside from the STL, other
libraries come with dependencies to 3rd party functions, often C, making it impossible to have the
using function to be constexpr. See [QTPoint] for an example. QPoint is fully constexpr except for
toCGPoint.

Sometimes only a few functions of a class are deliberately implemented out of line in a cpp-file
to avoid code bloat. An example is QRect: :operator| (const QRect &r)[QRect].

[P2448Ro0] solves this without requireing some constexpr(false) fasiclities.

My anser remains no, we don’t need constexpr (false).

3.4 What about friend?

A friend declaration is different. Such a declaration is only in the namespace of a class but isn't a
member of that class. On the reflector, Ville Voutilainen provided a good example that even in a
constexpr class, we might have a friend declaration for an ostream operator [ml16332], which
cannot be constexpr.

Therefore, this paper proposes that friend declaration are unaffected by a constexpr class.
They remain as they are and need to be marked constexpr even in a constexpr class.

3.5 What about static member functions?

By this proposal, static member functions get implicitly marked constexpr in a constexpr class.

P2350 R2: constexpr class 5

3.6 What about static data members?

By this proposal, static data members get implicitly marked constexpr in a constexpr class.

3.7 What about inheritance?

Consider the following examples:

1 struct BaseCxpr constexpr {

2 int foo() { return 42; } // this member function is constexpr

3}

4

5 struct DerivedA : BaseCxpr {

6 int bar() { return 21; } // this member function is not_ constexpr
7%

8

9

10 struct Base {

11 int foo() { return 42; } // this member function is _not_ constexpr
12 };

13

14 struct DerivedB constexpr : Base {

15 int bar() { return 21; } // this member function is constexpr

16 };

Listing 3.1: constexpr class and inheritance

In the case of DerivedA, where a class derives from a constexpr class, only the member functions
of the constexpr base class are constexpr. There is no constexpr inheritance. It seems to constrain
the design space of classes too much if only constexpr classes can derive from constexpr classes.

In the case of DerivedB, where the derived class is marked as constexpr, but the base class isn't,
this proposal makes all member functions of the derived class constexpr while those of the base
class remain as they are. constexpr for member functions explicitly marked constexpr in the base
class and non-constexpr for all the others.

3.8 What about a forward declaration?

Consider this:

1 struct Forward constexpr;
Listing 3.2: constexpr class and forward declaration

Analogous to final, the above is only a forward declaration that cannot have a specifier. Hence,
the code above is ill-formed by this proposal.

The same goes for class templates or specializations of class templates. Only the specialization
marked as constexpr does have all member functions implicitly constexpr. All others don't.

6 P2350 R2: constexpr class

3.9 Is adding or removing constexpr from the class-head a breaking change?

Say we have a class before this proposal, and after this proposal, the class author adds constexpr

in the class-head, is this a breaking change? The short answer is no. The longer is, it depends.
By adding constexpr in the class-head all member functions of a class become constexpr. If this
class had non-constexpr member functions before this change, then users can observe a behavioral
change. However, this change is equal to adding constexpr to all the member functions of a class
manually, which we have done in [P1004R2] to std::vector. This was not considered a breaking
change nor an ABI change.

3.10 What about consteval

This paper does not propose a class-level consteval. The following sections is kept for futur explo-
rations.

For consistency reasons, consteval should be allowed like constexpr. That being said, consteval
comes with some things to consider.

Only one of the two keywords should then be allowed in the class-head.

The mental model of a consteval class would be that such a class is absolutely compile-time
only.

3.10.1 A consteval copy constructor

Consider the following example:

struct Test consteval {
bool fun() const { return true; }

¥

1

2

B

4

5 struct Derived : Test {};

6

7 static_assert(Test{}.fun());
8
9

consteval auto X()

10 {

11 Test t{};

12 Test t2 = t;

13

14 return true;

15 }

16

17 static_assert(X()); // OK
18

19 consteval auto D()

20 {

21 Derived t{};

22 Derived t2 = t; // Derived copy ctor must be consteval!
23

24 return true;

25 }

P2350 R2: constexpr class 7

26

27 static_assert(D()); // ERROR: Test::Test is not a constant expression
28

29 namespace working {

30 struct Derived : Test {

31 Derived() = default;
32 consteval Derived(const Derived&) {}; // notice: consteval now!
33 13

34

35 consteval auto D()

36 {

37 Derived t{};

38 Derived t2 = t;

39

40 return true;

41 3

42

43 static_assert(D()); // OK

44 } // namespace working

The function ::D doesn’t pass the static assert because it is not a constant expression. The
reason is that the copy constructor of Derived isn't constexpr or consteval. Once | add either of
these keywords to D’s copy constructor, as in working: :Derived, the code compiles fine. The reason
here seems to be the unknown reference of Derived when it gets passed to the base classes copy
constructor. Barry Rezin has a paper [P2280R0] that aims to relax things here.

3.10.2 Implicit consteval static data members

With static data members being implicitly constexpr in a constexpr class what should we do with
static data members in a consteval class?

The code on the left compiles even without being a constexpr class. However, the standard does
not allow consteval variables, making the code on the right fail to compile.

1 class Test { 1 class Test {

2 public: 2 public:

3 constexpr static inline int i{}; // OK 3 consteval static inline int i{}; // ERR
4%; L

5 5

6 static_assert(Test::i == 0); 6 static_assert(Test::i == 0);

3.10.3 Upgrading and Downgrading

Assume a class is marked constexpr. Do we like to allow that a member function can be marked
consteval and those overriding constexpr:

1 class SomeType constexpr {

2 public:

3 bool empty() const { /% x/ }

4 /] ...

5 consteval bool whatheverFun() { /% %/ }
6

Y

8 P2350 R2: constexpr class

The same goes the other way around. Assume we have a consteval class, should it be allowed
that a member function can be down-grade to constexpx?
Options:

A No up- or downgrading is allowed. A constexpr class has only constexpr member functions, as a
consteval class has only consteval member functions.

B Allow up- ordowngrading. A constexpr class can have consteval member functions, as a consteval
class can have constexpr member functions.

C A constexpr class can have consteval member functions but not the other way around.
D A consteval class can have constexpr member functions but not the other way around.

Option D carries the issue that someone can add a virtual constexpr function and by that require
a consteval class to emit a virtual function table that conflicts with the idea of a compile-time-only
class.

C seems the best option.

3.11 Can this be solved with metaclasses?

Another question that came up is, can this feature be implemented with metaclasses. One idea is
to provide such a facility with the STL. [MCSrc] lists a possible implementation that was shown in a
Twitter discussion [MCSrcTweet].

While a constexpr class is implementable with the current state of metaclasses, it doesn’t seem
like the right tool for the job. A constexpr class is something simple and generic. There is no
need to let the compiler generate something for us. The combination of such a metaclasses library
part with other metaclasses elements, like promising shape example [P0707R4], is unclear.

3.12 Syntax choices

We have a couple of different syntax options:

class D constexpr : B {}; // A
class constexpr D : B {}; // B
class D : B constexpr {}; // C
constexpr class D : B {}; // D

A W N R

A seems natural. final would be right of constexpr: constexpr final.

B seems a bit confusing because its before the class name. The question is does it go before or after
attributes.

C seems very confusing. It creates the impression that constexpr applies to the base class.

D is ambiguous. We already have constexpr class D{} d.

This paper proposes syntax A.

P2350 R2: constexpr class 9

3.13 Order of the specifiers

This paper allows a flexible order of the specifiers final and constexpr or consteval.

class Awesome constexpr final {};
class Awesome final constexpr {};
class Awesome consteval final {};
class Awesome final consteval {};

A W NP

4 Controversial parts

4.0.1 The meaning should be that a constexpr class type is usable as NTTP

On the reflector, the BSI provided feedback that the NB would support the paper only if constexpr
class would enforce the type to be usable as an NTTP. As pointed out during the reflector discussion,
the meaning would be very weak, to say at least. Consider Listing 4.1. Suppose MyType would be
constexpr by this paper and enforcing the type being usable as an NTTP. Using it with int would
work as NTTP to Fun. However, once it is be used with A, which isn’t a literal type, it would result in
an error.

template<typename T>

struct MyType /% constexpr x/ {
T t;

bs

template<auto N>
void Fun() {}

00 NN O U~ WN B

Vo]

struct A {
virtual ~A() {}
¥

B R R R
W NP S

int main()

14 {

15 Fun<MyType<int>{}>(); // OK int is a literal type

16

17 Fun<MyType<A>{}>(); // ERROR: A is not a literal type
18 }

Listing 4.1: Don’t make a promise you can’t keep.

We already get this error from compilers today. The promise to users that MyType is always usable
as an NTTP is wrong, and by that constexpr class meaningless. It would be especially bad to intro-
duce such a behavior as we have a paper [P2448R0] which | support as the right direction, aiming to
relax constexpr restrictions as long as something is not used in a constexpr context.

This paper does not enforce the requirement that constexpr class means that a type is always
usable as a NTTP.

10 P2350 R2: constexpr class

4.0.2 constexpr class should ensure constexprness of the inheritance hierarchy

Another point that was mentioned during the reflector discussion was that constexpr class should
enforce that all base classes are constexpr as well.

struct Base {
bool fun() { return true; }

¥

struct Derived constexpr : Base { // ERROR: Base is not constexpr

1
2
3
4
5
6 bool run() { return true; }
7

bs
Listing 4.2: Deriving from a non-constexpr class

The first question that comes up is, what if all member functions in Base are constexpr? Should
it then be counted as a constexpr class, oris it only a constexpr class if constexpr is used in the
class-head?

Regardless of the answer to the question above, enforcing the base class to be constexpr as well
limits the design space. Derived::run is constexpr in Listing 4.2. The constructor of B is implicitly
constexpr. Deriving from a class that isn’t entirely constexpr and use only the constexpr part during
constant evaluation is desirable.

This paper does not enforce that the entire inheritance hierarchy must be constexpr if constexpr

class is used with a derived class. This is also outlined in 3.7.

4.0.3 The position of the decl-specifier

The position where the constexpr should go to carry its meaning as best is already discussed in 3.12.
All of these choices leave room for misinterpretation.

The introduction of group member specifiers was mentioned. Such a facility was proposed as
[N3955]. As pointed out in 5 that proposal did not reach consensus and another poll during the
discussion of P2350 for such a syntax did also not reach consensus.

Down this road, Erich Keane came up with the idea of something like a constexpr scope:

1 struct Base {

2 constexpr {

3 // Every function in here is constexpr.
4

5 };}

However, this approach was not explored by this proposal.

5 Other proposals

During a discussion on the reflector [N3955] was mentioned. It proposes to have group member
specifiers allowing things like:

1 class A {

2 public constexpr:

3 // everyhting in here is implicitly constexpr
4};

P2350 R2: constexpr class 11

This proposal did not reach consensus back in 2014 and a vote during presenting this paper for
an access specifier syntax did again not reach consensus.

5.1 What other languages do

D, for example, doesn’t require (or have) a specifier like constexpr [DCTFE]. It uses Compile Time
Function Execution (CTFE) which automatically happens in various contexts.

6 Other parts of the language

The ability to list other specifiers like noexcept is something that comes up with this proposal.

6.1 What about noexcept

noexcept acts differently than constexpr or final. Should |, as a developer, do something that is
not allowed in, for example, a constexpr context the compiler gives me an error. Should | invoke
a throwing function in a noexcept member function, | end up with a run-time error. It seems less
desirable to me to create implicit noexcept member functions.

Another angle here are out-of-line definitions. If a full noexcept-class adds the implicit noexcept
to all in-class definitions, what about out-of-line definitions? Should the also be implicitly noexcept?
Should such out-of-line definitions need to be attributed with noexcept?

On the reflector, Giuseppe D’Angelo mentioned QT’s Point and std::complex as examples for
noexcept data structures. A quick check revealed that both data structures seem not to throw ex-
ceptions, but even std::complex is not marked noexcept in the standard. The assumed reason for
them not have been marked noexcept in C++11 is that adding or removing noexcept is an observable
change. If we have two functions where one is marked noexcept, and the other isnt, the typeid of
them is different:

#include <cassert>
#include <typeinfo>

void f1();
void f2() noexcept;

int main() {
assert(typeid(f1) == typeid(f2));

W o o ul b WN B

}
Listing 6.1: Comparison of the typeid of two functions with and without noexcept.

This paper does not propose to add noexcept as a specifier in the class-head.

6.2 What about const

Another thing that could be imaginable is to have const in the class-head, declaring all member
functions in a class implicitly const. This proposal does not propose this. If there is a desire for it, a
dedicated proposal seems best.

12 P2350 R2: constexpr class

In general const is different because we can have out-of-line definitions which are explicitly
marked const to distinguish them from the non-const overload. A const-only class would have
only const member functions, making this issue simpler, but regarding teachability and readability,
dropping the const from these functions does create a new kind that seems not desirable.

This paper does not propose to add const as a specifier in the class-head.

6.3 What about override

An override class where all member functions override those in a base class would at least solve the
situation with an unwanted non-virtual destructor in the base class.
This paper does not propose to add override as a specifier in the class-head.

6.4 What about free functions?

Free functions are an interesting question. While with this proposal, the noise from constexpr’fying
entire classes is reduced, we also have a lot of cases where many free functions are constexpr. One
example is [P1645R1], which made more algorithms constexpr.

One approach here can be a constexpr namespace like below.

1 namespace constexpr {

2 bool Fun() { /% %/ } // this function is constexpr
3 bool Run() { /% *x/ } // this function is constexpr
4}

This paper does not propose a constexpr namespace. If something like this is desirable, the author
is open to bring another paper dedicated to such a feature.

7 Implementation

This proposal was implemented in a fork of LLVM/Clang from the author [GHUPImpl], including
consteval and static data members of a constexpr class. The change was small and easy to apply.

8 Polls
8.1 EWG 2021 October 13 (virtual)

Poll: Having seen what class-level consteval looks like, we still want it in P2350.

SF|F|NJA|SA
o (1|7 (8]0

Result: Consensus against, we don’t want consteval in P2350.

P2350 R2: constexpr class 13

Poll: Send P2350 to electronic polling, targeting CWG for (++23.

SFIF|[N]A|SA

4 |82 3]0

Result: Consensus

Poll: Given that Committee time is limited, wed like to see a different paper which further explores class-level consteval.

SFIF|[NJ]A|SA

3 |5/8 0|0

Result: Consensus

Poll: Given that Committee time is limited, we'd like to see a different paper which proposes implicit constexpr.

SEFIF|[NJ]A|SA

7 |al1]a]12

Result: Consensus

8.2 EWG 2021 June 21 (virtual)

Poll: we are interested in pursuing a way to specify that multiple/all class members are constexpr, either as suggested
in this paper or through another mechanism, considering that time is limited and there is only so much work we can do

SF|F|NJA|SA
2 |5(2]2]0

Result: ?

Poll: support class-level consteval at the same time or before supporting constexpr, to inform the design of class const-
expr.

Result: Consensus

14 P2350 R2: constexpr class

SFIF|NJA|SA

Poll: use access specifier constexpr instead of c1ass-level constexpr

SFIF|INJA|SA
0 |13]4]|5

Result: no Consensus

Poll: class-level constexpr should also affect friend functions

SF|F|NJA|SA
0 |12 |51

Result: no Consensus

Poll: it should be ill-formed to put constexpr on a c1ass which can’t be entirely constexpr (e.g. because of it’s base
or data members not being constexpr)

SF|F|N|A|SA
0 (4|2 4|1

Result: no Consensus

Poll: static data members should also be constexpr in a constexpr class

SF|F|N|A/|SA
3 [4]of1]o0

Result: consensus

Poll: allow constexpr and final to appear in either order.

P2350 R2: constexpr class 15

SF|F|N|A|SA
2 |6|4]|]0]0

Result: consensus

9 Proposed wording

This wording is based on the working draft [N4885].

The wording does not include changes to STL containers. If this is desired, the author believes that
it requires a new paper targeting LEWG.

Change in [dcl.constexpr] 9.2.5:

The constexpr specifier shall be applied only to the definition of a variable or variable template er,
the declaration of a function or function template, or the definition of a class or class template. The
consteval specifier shall be applied only to the declaration of a function or function template. ...
A constexpr or consteval specifier used in the declaration of a function declares that function to
be a constexpr function. Further, the constexpr specifier used as a class-prop-specifier in a class definition
(11.1) declares all direct member functions and all direct static data members of that class to be
constexpr. A function or constructor declared with the consteval specifier is called an immediate
function. A destructor, an allocation function, or a deallocation function shall not be declared with the
consteval specifier.

Change in [class.pre] 11.1:

class-head:

class-key attribute-specifier-seq,,,; class-head-name elass-virt-specifiersp class-prop-specifier-seq,,,, - base-clause,;
class-key attribute-specifier-seq,,,: base-clause,;

class-head-name:
nested-name-specifier,,,; ~class-name

class-prop-specifier-seq:

class-prop-specifier

class-prop-specifier-seq class-prop-specifier

[. Eor

class-prop-specifier:
constexpr
final

16 P2350 R2: constexpr class

Add after p5 in [class.pre] 11.1:

If a class is marked with the elass-virt-specifier class-prop-specifier final and it appears as a class-or-decltype
in a base-clause (class.derived), the program is ill-formed. Whenever a class-key is followed by a class-
head-name, the identifier final, and a colon or left brace, final is interpreted as a €lass-virt-specifier
class-prop-specifier. [Example:

struct A;
struct A final {}; // OK: definition of struct A,

// not value-initialization of variable final
struct X {

struct C { constexpr operator int() { return 5; } };
struct B final : C{}; // OK: definition of nested class B,
// not declaration of a bit-field member final
I¥

- end example]
Each class-prop-specifier shall appear at most once in a complete class-prop-specifier-seq.
[Note: The class-prop-specifier constexpr means that all direct member functions of that class and all
direct static data members are declared constexpr (9.2.5) . —end note]

Add after p18 in [temp.inst] 13.9.1:

18 e

19

[Example: The class S1<T>: :Innerl is ill-formed, no diagnostic required, because it has no valid
specializations. S2 is ill-formed, no diagnostic required, since no substitution into the constraints of
its Inner2 template would result in a valid expression. - end example]

If a class template is declared with the class-prop-specifier constexpr, any implicit instantiation is also
constexpr.

Modify [tab:cpp.predefined.ft]

__cpp_constexpr 281987:202002L

10 Acknowledgements

Thanks to Ville Voutilainen, Barry Revzin, Matthew Woehlke, Giuseppe D’Angelo, Nevin Liber, Balog
Pal, Joshua Berne, Anthony Williams, and Andrew Tomazos for their feedback on the reflector.
Thanks to Jens Maurer for spontaneously jumping on a wording review of this paper’s R1 and R2.
Thanks to Daveed Vandevoorde for sharing his ideas about consteval class.

P2350 R2: constexpr class 17

Thanks to Giuseppe D’Angelo for his feedback on why constexpr(false) could be desirable.

11 Revision History

Version Date Changes

0 Initial draft

1 + Added section about specifier order.
+ Updated wording.

2 + More examples.
+ Added poll results.
- Added 3.6 (static data members).
- Added reason for constexpr (false).

Bibliography
[P0980R1] Louis Dionne: “"Making std:string constexpr”, P0980R1, 2019-07-19.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/pog8or1.pdf

[P1004R2] Louis Dionne: "Making std:vector constexpr”, PL004R2, 2019-07-19.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1004r2.pdf

[P1645R1] Ben Deane: “constexpr for <numeric> algorithms”, P1645R1, 2019-05-14.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1645r1.html

[P2273Ro0] Andreas Fertig: "Making std:unique_ptr constexpr”, P2273R0, 2020-11-27.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2273ro.pdf

[P1235R0] Bryce Adelstein Lelbach, Hana Dusikova: "Implicit constexpr”, P1235R0, 2018.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1235ro.pdf

[Po707R4] Herb Sutter: "Metaclassfunctions: Generative (++”, P0707R4, 2019.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/po707r4.pdf

[N3955] Andrew Tomazos: "Group Member Specifiers”, N3955, 2014-02-25.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3955.pdf

[P2280R0] Barry Revzin: "Using unknown references in constant expressions”, P2280R0, 2021-01-13.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p228oro.html

[P2448Ro0] Barry Revzin: "Relaxing some constexpr restrictions”, P2448R0, 2021-09-28.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/P2448Ro.html

[N4885] Thomas Koppe: "Working Draft, Standard for Programming Language (++”, N4885, 2021-03-17.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/n4885.pdf

[MSVCVector] MSVC STL: "Po980R1 constexpr std:string (#1502)”.
https://github.com/microsoft/STL/blob/62137922ab168f8e23ec1a95c946821e24bde230/stl/inc/vector

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0980r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1004r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1645r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2273r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1235r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0707r4.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3955.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2280r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/P2448R0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/n4885.pdf
https://github.com/microsoft/STL/blob/62137922ab168f8e23ec1a95c946821e24bde230/stl/inc/vector

18 P2350 R2: constexpr class

[GHUPImpl] Andreas Fertig: "LLVM/Clang constexpr class implementation on GitHub”.
https://github.com/andreasfertig/llvm-project/tree/P2350

[ml16332] Ville Voutilainen: "on constexpr class EWG mailing list”.
https://lists.isocpp.org/ext/2021/04/16332.php

[MCSrc] Jean-Michaél Celerier: “constexpr class with metaclasses”.
https://cppx.godbolt.org/z/oGP5MY(ja

[MCSrcTweet] Jean-Michaél Celerier: "constexpr class with metaclasses”.
https://twitter.com/jcelerie/status/1380271683408396288

”

[DCTFE] dlang.org "Compile Time Function Execution (CTFE)
https://dlang.org/spec/function.html#interpretation

[QTPoint] QPoint implementation”.
https://github.com/qt/qtbase/blob/9db7cc79a26ced4997277b5c206ca15949133240/src/corelib/tools/qpoint.
h

[QRect] QRect implementation”.
https://code.wobog.org/qts/qtbase/src/corelib/tools/qrect.cpp.html#_ZNKs5QRectorERKS _

https://github.com/andreasfertig/llvm-project/tree/P2350
https://lists.isocpp.org/ext/2021/04/16332.php
https://cppx.godbolt.org/z/oGP5MYcja
https://twitter.com/jcelerie/status/1380271683408396288
https://dlang.org/spec/function.html#interpretation
https://github.com/qt/qtbase/blob/9db7cc79a26ced4997277b5c206ca15949133240/src/corelib/tools/qpoint.h
https://github.com/qt/qtbase/blob/9db7cc79a26ced4997277b5c206ca15949133240/src/corelib/tools/qpoint.h
https://code.woboq.org/qt5/qtbase/src/corelib/tools/qrect.cpp.html#_ZNK5QRectorERKS_

	1 Introduction
	2 Motivation
	3 The design
	3.1 What about out-of-line definitions?
	3.2 What about a member function that already carries [columns=fullflexible,breaklines=true,prebreak=,postbreak=,basicstyle=maincolor]constexpr?
	3.3 Do we need [columns=fullflexible,breaklines=true,prebreak=,postbreak=,basicstyle=maincolor]constexpr(false)?
	3.4 What about [columns=fullflexible,breaklines=true,prebreak=,postbreak=,basicstyle=maincolor]friend?
	3.5 What about [columns=fullflexible,breaklines=true,prebreak=,postbreak=,basicstyle=maincolor]static member functions?
	3.6 What about [columns=fullflexible,breaklines=true,prebreak=,postbreak=,basicstyle=maincolor]static data members?
	3.7 What about inheritance?
	3.8 What about a forward declaration?
	3.9 Is adding or removing [columns=fullflexible,breaklines=true,prebreak=,postbreak=,basicstyle=maincolor]constexpr from the class-head a breaking change?
	3.10 What about [columns=fullflexible,breaklines=true,prebreak=,postbreak=,basicstyle=maincolor]consteval
	3.11 Can this be solved with metaclasses?
	3.12 Syntax choices
	3.13 Order of the specifiers

	4 Controversial parts
	5 Other proposals
	5.1 What other languages do

	6 Other parts of the language
	6.1 What about [columns=fullflexible,breaklines=true,prebreak=,postbreak=,basicstyle=maincolor]noexcept
	6.2 What about [columns=fullflexible,breaklines=true,prebreak=,postbreak=,basicstyle=maincolor]const
	6.3 What about [columns=fullflexible,breaklines=true,prebreak=,postbreak=,basicstyle=maincolor]override
	6.4 What about free functions?

	7 Implementation
	8 Polls
	8.1 EWG 2021 October 13 (virtual)
	8.2 EWG 2021 June 21 (virtual)

	9 Proposed wording
	10 Acknowledgements
	11 Revision History
	Bibliography

