Document Number: P2545R1

Date: 2022-10-04

Revises: None

Reply to: Paul E. McKenney
Meta

paulmckrcu@gmail.com

Why RCU Should be in C++4-26

Authors:
Paul McKenney, Michael Wong, Maged M. Michael, Andrew Hunter, Daisy Hollman, JF Bastien, Hans
Boehm, David Goldblatt, Frank Birbacher, Erik Rigtorp, Tomasz Kaminski, Olivier Giroux, David Vernet

email:
paulmckrcu@fb.com, michael@codeplay.com, maged.michael@acm.org, andrewhhunter@gmail.com,
dhollman@google.com, cxx@jfbastien.com, hboehm@google.com, davidtgoldblatt@gmail.com,
frank.birbacher@gmail.com, erik@rigtorp.se, tomaszkam@gmail.com, ogiroux@apple.com, dvernet@fb.com

©ISO/IEC P2545R1

Contents

1 Introduction 1
1.1 Proposed Entry to C++26 IS L 1
1.2 Feature-Test Macro e e e e e e e e e 2
1.3 Tony Tables o e 2
1.4 History o e e 2
1.5 Source-Code ACCESS v o v i e e e e e 4
1.6 Acknowledgments e e 5

2 Safe reclamation 6
2.1 General 6
2.2 Read-copy update (RCU) 7

Contents ii

©ISO/IEC P2545R1

1 Introduction

We propose RCU for inclusion into C++26. This paper contains proposed rationale to support RCU into
C++26 as well as the interface and wording for RCU, a technique for safe deferred reclamation. We further
propose that the wording in Section 2.2 be adopted as a new “Safe reclamation” chapter of the IS, and we
anticipate that hazard pointers would be covered by another section of this same chapter.

The purpose of adding RCU to the IS is to provide a small number of known-good implementations of RCU
in standard libraries. RCU is easy to get wrong, and one purpose standard libraries is to provide good
implementations of things that are easy to get wrong.

1.1 Proposed Entry to C++426 IS

A near-superset of this proposal is implemented in the Folly RCU library. This library has used in production
for several years, so we have good implementation experience for the proposed variant of RCU.

This proposal is identical to that in Concurrency TS 2. We expect that the proposal in Concurrency TS 2
will change over time, for example, adding some of the features that are present in the Folly RCU library or
in the Linux kernel. Such features might include:

1. Multiple RCU domains. For example, SRCU provides these in the Linux kernel. However, RCU was in
the Linux for four years before this was needed, so it is not in this proposal for C+426.

2. Special-purpose RCU implementations. For example, the Linux kernel has specialized implementations
for preemptible environments, single-CPU systems, as well as three additional implementations required
by the Linux kernel’s tracing and extended Berkeley Packet Filter (eBPF) use cases. However, none of
these seem applicable to userspace applications, so none of them are in this proposal for C++426.

3. Polling grace-period-wait APIs. These allow non-blocking algorithms to interface with RCU grace
periods, for example, in the Linux kernel, they allow NMI handlers to do RCU updates. (NMI handlers
could do RCU readers from the get-go.) However, RCU was in the Linux kernel for more than a decade
before such APIs were needed, so they are not in this proposal for C++26.

4. Async-friendly APIs for RCU’s blocking APIs. These might leverage the aforementioned polling APIs.
However, more work is required to determine exactly what support is required, so they are not in this
proposal for C+-+26.

5. A free function similar to rcu_retire that uses an rcu_obj_base if available, but which invokes
rcu_retire if not. (Suggested by Tomasz Kaminski.) However, this facility has not yet been spotted
in the wild, so it is not in this proposal for C++26.

6. A memory allocator might be supplied for the use of rcu_retire. Please note that if different allocators
can be supplied to different calls to rcu_retire, then there must be a way to tag the allocated memory
with the corresponding deleter. However, this facility has not yet been spotted in the wild, so it is not
in this proposal for C++26.

7. Numerous efficiency-oriented APIs. For but one example, the Linux kernel has an alternative rcu_-
access_pointer () that can be used in place of rcu_dereference() (Linux-kernelese for “consume
load”) when the resulting pointer will not be dereferenced (for example, when it is only going to be
compared to NULL). But it is not clear which (if any) of these would be accepted into the Linux kernel
today, given the properties of modern computer hardware. Therefore, these are not in this proposal for
C++26.

The snapshot library described in P0O561R5 (“RAII Interface for Deferred Reclamation”) provides an easy-to-
use deferred-reclamation facility applying only to a single object which is intended to be based upon either
RCU or Hazard Pointers. It cannot replace either RCU or Hazard Pointers.

The Hazard Pointers library described in D2530R0 (“Why Hazard Pointers Should Be in C++26"). As a very
rough rule of thumb, Hazard Pointers can be considered to be a scalable replacement for reference counters
and RCU can be considered to be a scalable replacement for reader-writer locking. A high-level comparison
of reference counting, Hazard Pointers, and RCU is displayed in Table 1.

Note that we are making this working paper available before Concurrency TS2 been published, which some
might feel is unconventional. On the other hand, Paul was asked to begin this effort in 2014, it is now 2022,

§1.1 1

©ISO/IEC P2545R1

Property Reference Counting Hazard Pointers RCU

Readers Slow and unscalable Fast and scalable Fast and scalable
Unreclaimed Objects Bounded Bounded Unbounded
Traversal Retries? If object deleted If object deleted Never
Reclamation latency? | Fast Slow Slow

Table 1: High-Level Comparison of Deferred-Reclamation Techniques

With Reader-Writer Locking With RCU in the intrusive style
struct Data /* members */ ; struct Data : std::rcu_obj_base<Data> /* members */ ;
Datax data_; std::atomic<Datax*x> data_;

std: :shared_mutex m_;

template <typename Func> template <typename Func>

Result reader_op(Func fn) { Result reader_op(Func fn) {

std: :shared_lock<std: :shared_mutex> 1(m_); std::scoped_lock 1(std::rcu_default_domain());
Data* p = data_; Data* p = data_;

// fn should not block too long or call update() // fn should not block too long or call
// rcu_synchronize(), rcu_barrier(), or

// rcu_retire(), directly or indirectly

return fn(p); return fn(p);

} }

// May be called concurrently with reader_op // May be called concurrently with reader_op
void update(Data* newdata) { void update(Data* newdata) {

Data* olddata; Data* olddata = data_.exchange(newdata);

{

std: :unique_lock<std::shared_mutex> wlock(m_);
olddata = std::exchange(data_, newdata);

}

delete olddata; // reclaim *olddata immediately olddata->retire(); // reclaim *olddata when safe

} }
Table 2: Tony Table for Reader-Writer Locking and Intrusive RCU

and C++ implementations have been used in production for some time, perhaps most notably the Folly RCU
library.

1.2 Feature-Test Macro

We propose a new feature-test macro __cpp_lib_rcu be added to Section 17.3.2 of the IS.

1.3 Tony Tables

Although RCU can be applied to a great many use cases, its most common use case is as a replacement for
reader-writer locking. The reader-writer usage patterns most susceptible to conversion to RCU are those
where a value is computed while read-holding that lock, then used after releasing that same lock.

Table 2 compares reader-writer locking and intrusive RCU, that is, when the RCU-protected data items
inherit from std::rcu_obj_base<T> and use the ->retire() member function.

Table 3 compares reader-writer locking and non-intrusive RCU, that is, when the RCU-protected data items
do not inherit from std: :rcu_obj_base<T> and instead use the std::rcu_retire() free function.

Table 4 compares reader-writer locking and synchronous RCU, that is, when the RCU updater does an
explicit wait for readers. When using this style, RCU-protected data items need not inherit from std: :rcu_-
obj_base<T>.

1.4 History

This paper updates P2545R0 based on discusssions in SG1 and LEWG.

P2545R0 was derived from N4895, which was in turn based on P1122R4.

P1122R4 is a successor to the RCU portion of P0566R5, in response to LEWG’s Rapperswil 2018 request
that the two techniques be split into separate papers.

§1.4 2

©ISO/IEC P2545R1

With Reader-Writer Locking With RCU in the non-intrusive style
struct Data /* members */ ; struct Data /* members */ ;
Datax data_; std::atomic<Data*> data_;

std: :shared_mutex m_;

template <typename Func> template <typename Func>
Result reader_op(Func fn) { Result reader_op(Func fn) {

std: :shared_lock<std::shared_mutex> 1(m_); std::scoped_lock 1(std::rcu_default_domain());
Data* p = data_; Data* p = data_;

// fn should not block too long or call update() // fn should not block too long or call
// rcu_synchronize(), rcu_barrier(), or

// rcu_retire(), directly or indirectly

return fn(p); return fn(p);

} }

// May be called concurrently with reader_op // May be called concurrently with reader_op
void update(Data* newdata) { void update(Data* newdata) {

Data* olddata; Data* olddata = data_.exchange(newdata);

{

std::unique_lock<std::shared_mutex> wlock(m_);

olddata = std::exchange(data_, newdata);

}
delete olddata; // reclaim *olddata immediately std::rcu_retire(olddata); // reclaim *olddata when safe
} }
Table 3: Tony Table for Reader-Writer Locking and Non-Intrusive RCU
With Reader-Writer Locking With RCU in the synchronous style
struct Data /* members */ ; struct Data /* members */ ;
Data* data_; std::atomic<Data*> data_;

std: :shared_mutex m_;

template <typename Func> template <typename Func>
Result reader_op(Func fn) { Result reader_op(Func fn) {

std: :shared_lock<std::shared_mutex> 1(m_); std: :scoped_lock 1(std::rcu_default_domain());
Data* p = data_; Data* p = data_;

// fn should not block too long or call update() // fn should not block too long or call
// rcu_synchronize(), rcu_barrier(), or

// rcu_retire(), directly or indirectly

return fn(p); return fn(p);

} }

// May be called concurrently with reader_op // May be called concurrently with reader_op
void update(Data* newdata) { void update(Data* newdata) {

Data* olddata; Data* olddata = data_.exchange(newdata);

{

std::unique_lock<std::shared_mutex> wlock(m_);
olddata = std::exchange(data_, newdata);
} std::rcu_synchronize(); // wait until it’s safe
delete olddata; // reclaim *olddata immediately delete olddata; // then reclaim *olddata
} }

Table 4: Tony Table for Reader-Writer Locking and Synchronous RCU

§1.4 3

©ISO/IEC P2545R1

This is proposed wording for Read-Copy-Update [P0461], which is a technique for safe deferred resource
reclamation for optimistic concurrency, useful for lock-free data structures. Both RCU and hazard pointers
have been progressing steadily through SG1 based on years of implementation by the authors, and are in
wide use in MongoDB (for Hazard Pointers), Facebook, and Linux OS (RCU).

We originally decided to do both papers’ wording together to illustrate their close relationship, and similar
design structure, while hopefully making it easier for the reader to review together for this first presentation.
As noted above, they have been split on the committee’s request.

This wording is based P0566r5, which in turn was based on that of on n4618 draft [N4618].

1.5 Source-Code Access
This section presents C++ reference implementations, other C++ implementations, additional implementa-
tions and use cases, and performance implications.

Counting the two reference implementation, this section points out eleven implementations of RCU-like
mechanisms in C++.

1.5.1 Reference C++ Implementations

The Folly library is open source, and its RCU implementation may be accessed here:
— https://github.com/facebook/folly /blob /main/folly /synchronization/Rcu.h
— https://github.com/facebook /folly /blob /main /folly /synchronization /Rcu-inl.h
— https://github.com/facebook/folly /blob /main/folly /synchronization/Rcu.cpp

There is an additional reference implementation of this proposal. Unlike the Folly library’s version, this
reference implementation is not production quality. However, it is quite a bit simpler, having delegated the
difficult parts to the C-language userspace RCU library:

— https://github.com/paulmckrcu/RCUCPPbindings/tree/master/Test /paulmck

— https://liburcu.org

1.5.2 Other C++ Implementations

Maxim Khizhinsky added a C++ implementation of RCU to his libeds around 2017. URL: https://github.
com/khizmax/libcds/tree/master/cds/urcu

Avi Kivity added a C++ implementation of RCU to the OSv kernel in 2010. URL: https://github.com/
cloudius-systems/osv/blob/master/include/osv/rcu.hh

Google uses an internally developed C++4 RCU implementation alluded to by Andrew Hunter’s and Geoffrey
Romer’s P0561 C++ working paper. This implementation makes use of restartable sequences in addition to
facilities defined in the standard. URL: https://www.open-std.org/jtcl/sc22/wg21/docs/papers/2020/
p0561r5.html

Isaac Gelado and Michael Garland describe use of a CUDA/C++ RCU in GPU programming in their 2019
PPoPP paper entitled “Throughput-Oriented GPU Memory Allocation”. URL: https://dl.acm.org/doi/
10.1145/3293883.3295727

Marton et al. present a sample C++ implementation in their paper entitled “High-level C4++ Implementation
of the Read-Copy-Update Pattern”, which appeared in the 2017 IEEE 14" International Scientific Conference
on Informatics. URL: https://martong.github.io/high-level-cpp-rcu_informatics_2017.pdf The
corresponding journal paper appeared in the September 2018 Acta Electrotechnica et Informatica.

In 2016, Pedro Ramalhete and Andreia Correia produced a C++ prototype implementation of RCU in the
ConcurrencyFreaks GitHub repository. URL: https://github.com/pramalhe/ConcurrencyFreaks/tree/
master/CPP/papers/gracesharingurcu This appeared in the August 2017 issue of ACM SIGPLAN Notices.
URL: https://dl.acm.org/doi/abs/10.1145/3155284.3019021

Peter Goodman produced a prototype C+-+ implementation of RCU in his GitHub repository in 2012. URL:
https://github.com/pgoodman/rcu

StackExchange user Jamal posted a C++ RCU-like linked-list algorithm in 2017. URL: https://codereview.
stackexchange.com/questions/151936/rcu-in-cll-using-stdshared-ptr-and-a-little-more.

Gamsa et al. describe an RCU-like implementation within the Tornado and K42 research operating systems,
both of which were coded in C++. Sections 5.2 and 5.3 of their 1999 OSDI paper entitled “Tornado:

§1.5.2 4

https://github.com/khizmax/libcds/tree/master/cds/urcu
https://github.com/khizmax/libcds/tree/master/cds/urcu
https://github.com/cloudius-systems/osv/blob/master/include/osv/rcu.hh
https://github.com/cloudius-systems/osv/blob/master/include/osv/rcu.hh
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0561r5.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0561r5.html
https://dl.acm.org/doi/10.1145/3293883.3295727
https://dl.acm.org/doi/10.1145/3293883.3295727
https://martong.github.io/high-level-cpp-rcu_informatics_2017.pdf
https://github.com/pramalhe/ConcurrencyFreaks/tree/master/CPP/papers/gracesharingurcu
https://github.com/pramalhe/ConcurrencyFreaks/tree/master/CPP/papers/gracesharingurcu
https://dl.acm.org/doi/abs/10.1145/3155284.3019021
https://github.com/pgoodman/rcu
https://codereview.stackexchange.com/questions/151936/rcu-in-c11-using-stdshared-ptr-and-a-little-more
https://codereview.stackexchange.com/questions/151936/rcu-in-c11-using-stdshared-ptr-and-a-little-more

©ISO/IEC P2545R1

Maximizing Locality and Concurrency in a Shared Memory Multiprocessor Operating System” gives an
overview of their RCU-like mechanism for providing what they call “existence guarantees”. URL: https:
//www.usenix.org/legacy/events/osdi99/full_papers/gamsa/gamsa.pdf

There are implementations of RCU-like mechanisms in proprietary applications, but these cannot be divulged
to the committee without the permission of their respective copyright holders. However, in the words of
Fedor Pikus:

In fact, you may already be using the RCU approach in your program without realizing it!
Wouldn'’t that be cool? But careful now: you may be already using the RCU approach in your
program in a subtly wrong way. I'm talking about the kind of way that makes your program pass
every test you can throw at it and then crash in front of your most important customer (but only
when they run their most critical job, not when you try to reproduce the problem).

URL: https://cppcon2017.sched.com/event/BgtF/read-copy-update-then-what-rcu-for-non-kernel-programmers

With these words, Fedor has pinpointed a major motivation for adding RCU to the C+4 standard: To
provide a smaller number of known-good RCU implementations to C++ users.

1.5.3 Other Use Cases

The C-language userspace RCU library appeared around 2009. The QEMU project created its own version of
this library in 2015. URL: https://liburcu.org

A list of additional RCU implementations in a variety of languages may be found in Sections 9.5.5, 9.5.5.2,
and 9.6.3.3 of “Is Parallel Programming Hard, And, If So, What Can You Do About It?”. URL: https:
//kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook-e2.pdf

RCU is used heavily in the Linux kernel:
1. http://www.rdrop.com/~paulmck/RCU/linuxusage.html
2. http://www.rdrop.com/~paulmck/techreports/survey.2012.09.17a.pdf
3. http://www.rdrop.com/~paulmck/techreports/RCUUsage.2013.02.24a.pdf
4. https://dl.acm.org/doi/10.1145/3421473.3421481

1.5.4 Performance Implications

RCU provides the best results in read-mostly situations involving linked data structures, and is most often
used as a replacement for reader-writer locking. Experience in the Linux kernel indicates that well over
half of the situations to which reader-writer locking is applied can be handled by RCU. RCU has provided
orders-of-magnitude performance and scalability improvements in many situations, a few of which are listed
below:

—_

. https://lun.net/Kernel/Index/#Read-copy-update

2. http://www2.rdrop.com/~paulmck/RCU/hart_ipdps06.pdf

3. https://1lkml.org/1kml/2004/8/20/137

4. https://www.linuxjournal.com/article/7124

5. https://www.linuxjournal.com/article/6993

6. http://www2.rdrop.com/~paulmck/RCU/rcu.FREENIX.2003.06.14.pdf
7. http://www2.rdrop.com/~paulmck/RCU/rcu.2002.07.08.pdf

8. http://www2.rdrop.com/~paulmck/RCU/rclock_OLS.2001.05.01c.pdf
9

. https://docs.google.com/document/d/1X01Thx80K0ZgLMqVoXiR4ZrGURHrXK6NyLRbeXe3Xac/edit?
usp=sharing

Additional information may be found in Section 9.5.4 of the aforementioned “Is Parallel Programming Hard,
And, If So, What Can You Do About 1t7”.
1.6 Acknowledgments

We owe special thanks to Jens Maurer, Arthur O’'Dwyer, and Geoffrey Romer for their many contributions to
this effort.

§1.6 5

https://www.usenix.org/legacy/events/osdi99/full_papers/gamsa/gamsa.pdf
https://www.usenix.org/legacy/events/osdi99/full_papers/gamsa/gamsa.pdf
https://cppcon2017.sched.com/event/BgtF/read-copy-update-then-what-rcu-for-non-kernel-programmers
https://liburcu.org
https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook-e2.pdf
https://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook-e2.pdf
http://www.rdrop.com/~paulmck/RCU/linuxusage.html
http://www.rdrop.com/~paulmck/techreports/survey.2012.09.17a.pdf
http://www.rdrop.com/~paulmck/techreports/RCUUsage.2013.02.24a.pdf
https://dl.acm.org/doi/10.1145/3421473.3421481
https://lwn.net/Kernel/Index/#Read-copy-update
http://www2.rdrop.com/~paulmck/RCU/hart_ipdps06.pdf
https://lkml.org/lkml/2004/8/20/137
https://www.linuxjournal.com/article/7124
https://www.linuxjournal.com/article/6993
http://www2.rdrop.com/~paulmck/RCU/rcu.FREENIX.2003.06.14.pdf
http://www2.rdrop.com/~paulmck/RCU/rcu.2002.07.08.pdf
http://www2.rdrop.com/~paulmck/RCU/rclock_OLS.2001.05.01c.pdf
https://docs.google.com/document/d/1X0lThx8OK0ZgLMqVoXiR4ZrGURHrXK6NyLRbeXe3Xac/edit?usp=sharing
https://docs.google.com/document/d/1X0lThx8OK0ZgLMqVoXiR4ZrGURHrXK6NyLRbeXe3Xac/edit?usp=sharing

©ISO/IEC P2545R1

2 Safe reclamation [saferecl]

2.1 General [saferecl.general]

This clause adds safe-reclamation techniques, which are most frequently used to straightforwardly resolve
access-deletion races.

§2.1 6

(3.1)

(3.2)

©ISO/IEC P2545R1

2.2 Read-copy update (RCU) [saferecl.rcu]

2.2.1 General [saferecl.rcu.general]

RCU is a synchronization mechanism that can be used for linked data structures that are frequently read, but
seldom updated. RCU does not provide mutual exclusion, but instead allows the user to schedule specified
actions such as deletion at some later time.

A class type T is rcu-protectable if it has exactly one public base class of type rcu_obj_base<T,D> for some D
and no base classes of type rcu_obj_base<X,Y> for any other combination X, Y. An object is rcu-protectable
if it is of rcu-protectable type.

An invocation of unlock U on an rcu_domain dom corresponds to an invocation of lock L on dom if L is
sequenced before U and either

— mno other invocation of lock on dom is sequenced after L and before U or

— every invocation of unlock U’ on dom such that L is sequenced before U’ and U’ is sequenced before U
corresponds to an invocation of lock L’ on dom such that L is sequenced before L’ and L’ is sequenced
before U’.

[Note 1: This pairs nested locks and unlocks on a given domain in each thread. — end note]

A region of RCU protection on a domain dom starts with a lock L on dom and ends with its corresponding
unlock U.

Given a region of RCU protection R on a domain dom and given an evaluation E that scheduled another
evaluation F' in dom, if E does not strongly happen before the start of R, the end of R strongly happens
before evaluating F'.

The evaluation of a scheduled evaluation is potentially concurrent with any other such evaluation. Each
scheduled evaluation is evaluated at most once.

2.2.2 Header <rcu> synopsis [saferecl.rcu.syn]

namespace std {
// 2.2.3, class template rcu_obj_base
template<class T, class D = default_delete<T>>
class rcu_obj_base;

// 2.2.4, class rcu_domain
class rcu_domain;

// 2.2.5, rcu_default_domain
rcu_domain& rcu_default_domain() noexcept;

// 2.2.6, rcu_synchronize
void rcu_synchronize(rcu_domain& dom = rcu_default_domain()) noexcept;

// 2.2.7, rcu_barrier
void rcu_barrier(rcu_domain& dom = rcu_default_domain()) noexcept;

// 2.2.8, rcu_retire
template<class T, class D = default_delete<T>>
void rcu_retire(T* p, D d = D(), rcu_domain& dom = rcu_default_domain());

}
2.2.3 Class rcu_obj_base [saferecl.rcu.base]

Objects of type T to be protected by RCU inherit from a specialization of rcu_obj_base<T,D>.

template<class T, class D = default_delete<T>>
class rcu_obj_base {

public:
void retire(D d = D(), rcu_domain& dom = rcu_default_domain()) noexcept;
protected:
rcu_obj_base() = default;
private:
D deleter; // exposition only
}

§22.3 7

©ISO/IEC P2545R1

A client-supplied template argument D shall be a function object type C++20 §20.14 for which, given a value
d of type D and a value ptr of type T*, the expression d(ptr) is valid and has the effect of disposing of the
pointer as appropriate for that deleter.

The behavior of a program that adds specializations for rcu_obj_base is undefined.
D shall meet the requirements for Cpp17DefaultConstructible and Cpp17MoveAssignable.
T may be an incomplete type.

If D is trivially copyable, all specializations of rcu_obj_base<T,D> are trivially copyable.

void retire(D d = D(), rcu_domain& dom = rcu_default_domain()) noexcept;
Mandates: T is an rcu-protectable type.

Preconditions: *this is a base class subobject of an object x of type T. The member function rcu_-
obj_base<T,D>: :retire was not invoked on x before. The assignment to deleter does not throw an
exception. The expression deleter (addressof (x)) has well-defined behavior and does not throw an
exception.

Effects: Evaluates deleter = std::move(d) and schedules the evaluation of the expression delet-
er (addressof (x)) in the domain dom.

Remarks: It is implementation-defined whether or not scheduled evaluations in dom can be invoked by
the retire function.

[Note 1: If such evaluations acquire resources held across any invocation of retire on dom, deadlock can occur.
— end note]

2.2.4 Class rcu_domain [saferecl.rcu.domain)]

This class meets the requirements of Cpp17BasicLockable C++20 §32.2.5.2 and provides regions of RCU
protection.

[Ezample 1:
std: :scoped_lock<rcu_domain> rlock(rcu_default_domain());
— end ezample]

class rcu_domain {

public:
rcu_domain(const rcu_domain&) = delete;
rcu_domain& operator=(const rcu_domain&) = delete;

void lock() noexcept;
void unlock() noexcept;

};
The functions lock and unlock establish (possibly nested) regions of RCU protection.

2.2.4.1 rcu_domain::lock [saferecl.rcu.domain.lock]

void lock() noexcept;
Effects: Opens a region of RCU protection.

Remarks: Calls to the function lock do not introduce a data race (C++20 §6.9.2.1) involving *this.
2.2.4.2 rcu_domain::unlock [saferecl.rcu.domain.unlock]

void unlock() noexcept;

Preconditions: A call to the function lock that opened an unclosed region of RCU protection is
sequenced before the call to unlock.

Effects: Closes the unclosed region of RCU protection that was most recently opened.

Remarks: 1t is implementation-defined whether or not scheduled evaluations in *this can be invoked
by the unlock function.

[Note 1: If such evaluations acquire resources held across any invocation of unlock on *this, deadlock can
occur. — end note|

Calls to the function unlock do not introduce a data race involving *this.

§2.2.4.2 8

©ISO/IEC P2545R1

[Note 2: Evaluation of scheduled evaluations can still cause a data race. — end note]

2.2.5 rcu_default_domain [saferecl.rcu.default.domain]

rcu_domain& rcu_default_domain() noexcept;

Returns: A reference to the default object of type rcu_domain. A reference to the same object is
returned every time this function is called.

2.2.6 rcu_synchronize [saferecl.rcu.synchronize]

void rcu_synchronize(rcu_domain& dom = rcu_default_domain()) noexcept;

Effects: If the call to rcu_synchronize does not strongly happen before the lock opening an RCU
protection region R on dom, blocks until the unlock closing R happens.

Synchronization: The unlock closing R strongly happens before the return from rcu_synchronize.

2.2.7 rcu_barrier [saferecl.rcu.barrier]

void rcu_barrier(rcu_domain& dom = rcu_default_domain()) noexcept;

Effects: May evaluate any scheduled evaluations in dom. For any evaluation that happens before the
call to rcu_barrier and that schedules an evaluation F in dom, blocks until £ has been evaluated.

Synchronization: The evaluation of any such E strongly happens before the return from rcu_barrier.

2.2.8 Template rcu_retire [saferecl.rcu.retire]
template<class T, class D = default_delete<T>>
void rcu_retire(T* p, D d = D(), rcu_domain& dom = rcu_default_domain());

Mandates: is_move_constructible_v<D> is true.

Preconditions: D meets the Cpp17MoveConstructible and Cppl7Destructible requirements. The ex-
pression di(p), where d1 is defined below, is well-formed and its evaluation does not exit via an
exception.

Effects: May allocate memory. It is unspecified whether the memory allocation is performed by invoking
operator new. Initializes an object d1 of type D from std::move(d). Schedules the evaluation of
d1(p) in the domain dom.

[Note 1: If rcu_retire exits via an exception, no evaluation is scheduled. — end note]

Throws: Any exception that would be caught by a handler of type bad_alloc. Any exception thrown
by the initialization of d1.

Remarks: It is implementation-defined whether or not scheduled evaluations in dom can be invoked by
the rcu_retire function.

[Note 2: If such evaluations acquire resources held across any invocation of rcu_retire on dom, deadlock can
occur. — end note|

§2.2.8 9

	1 Introduction
	1.1 Proposed Entry to C++26 IS
	1.2 Feature-Test Macro
	1.3 Tony Tables
	1.4 History
	1.5 Source-Code Access
	1.5.1 Reference C++ Implementations
	1.5.2 Other C++ Implementations
	1.5.3 Other Use Cases
	1.5.4 Performance Implications

	1.6 Acknowledgments

	2 Safe reclamation
	2.1 General
	2.2 Read-copy update (RCU)
	2.2.1 General
	2.2.2 Header <rcu> synopsis
	2.2.3 Class rcu_obj_base
	2.2.4 Class rcu_domain
	2.2.4.1 rcu_domain::lock
	2.2.4.2 rcu_domain::unlock

	2.2.5 rcu_default_domain
	2.2.6 rcu_synchronize
	2.2.7 rcu_barrier
	2.2.8 Template rcu_retire

