Sender /Receiver Interface For Networking

Document #: P2762R2

Date: 2023-10-12

Project: Programming Language C++

Audience: Networking Study Group (SG4)
Library Evolution Working Group

Reply-to: Dietmar Kiihl (Bloomberg)

<dkuhl@bloomberg.net>

Contents
1 Revisions 2
1.1 Changes for R2 e 2
1.2 Changes for R1 e 2
2 Motivation 2
3 Related Work 3
4 Design Choices 3
4.1 Obtaining the Scheduler 3
4.2 Error Reporting 4
4.3 Member vs. Non-Member Operation 6
4.4 I/O Scheduler Interface L 6
4.5 Timer Class or Just a Sender e 7
4.6 Higher Level Tools L e 8
4.7 Sender Adaptors L e 8
4.8 Awaitable Senders L e 9
5 Cancellation Concern 9
6 Discussion 9
6.1 Support A system execution context L e 10
6.2 Resolution e 10
6.3 Naming s 10
6.4 Constraints On Used Scheduler 11
6.5 Required Features 11
6.5.1 Extensible Scheduler Interface L oL 11
6.5.2 TLS Support e 11
6.5.3 Buffer Pools 12
6.5.4 Async Streams 12
6.5.5 Networking Algorithms 12
7 Questions 12
8 Wording for Networking CPOs 13
9 Networking Senders [net.sender] 13
9.1 General [net.sender.general] Lo 13
9.2 Network Sender Operations Synopsis [net.sender.syn] 14

mailto:dkuhl@bloomberg.net

9.3 Network Sender Operations [net.sender.operations] 15

9.3.1 net::async_accept [net.sender.async.accept] L 15
9.3.2 net::async_connect [net.sender.async.connect] L. 17
9.3.3 net::async_read_some [net.sender.async.read.some] 18
9.3.4 net::async_receive [net.sender.async.receive] 19
9.3.5 net::async_receive_from [net.sender.async.receive.from]. 20
9.3.6 net::async_send [net.sender.async.send] Lo L L 22
9.3.7 net::async_send_to [net.sender.async.send.to] oL 24
9.3.8 net::async_wait [net.sender.async.wait] L L Lo 25
9.3.9 net::async_write_some [net.sender.async.write.some] L 27
9.4 Network Algorithms [net.algorithms] 28
9.4.1 General [net.algorithms.general] Lo Lo 28
9.4.2 net::async_resolve_name [net.sender.async.resolve.name] 28
9.4.3 net::async_resolve_address [net.sender.async.resolve.address] 28

This document proposes the addition of senders for asynchronous networking operations to the Networking TS
and, ultimately, to the C++ Standard. As the std::execution proposal isn’t landed, yet, this proposal is
kept at a high level and is primarily intended to discuss what a potential interface for asynchronous networking
operations could look like.

1 Revisions

1.1 Changes for R2

— Added using a socket’s context to the discussion on Obtaining the Scheduler.

— Added discussion of the requirement that the scheduler interface needs to be extensible for non-standard
operations

— Added discussion of awaitable senders to be more friendly to coroutines.

1.2 Changes for R1

— Added a section with questions to aggregate decisions to poll (and once polled, record the respective
outcome).

— Clarified in the motivation why the Networking TS is targeted.

— Added some explanation why getting the scheduler from a receiver isn’t entirely the obvious choice (at the
end of Obtaining the Scheduler).

— Added a section with discussions to capture topics which were brought up and provide suitable answers
and changes.

— Added a section with Network Algorithms [net.algorithms] for resolution.

— Added a section Sender Adaptors to explain why the networking senders should be sender adaptors.

— Enhanced the wording section and added async_wait.

2 Motivation

The std::execution proposal (P2300) proposes sender/receiver as a general framework for structured and
composable concurrency. The currently proposed components define a framework primary targeted at concurrent
execution within a program. If this framework gets adopted, it should be possible to integrate other asynchronous
work like networking. To facilitate such integration, it is necessary to define a suitable set of senders for the
relevant asynchronous network operations.

The proposed changes augment the Networking T'S rather than defining entirely new networking components.
The main dispute over the Networking TS is the model for asynchronous execution. The vocabulary used to
interact with networking facilities like addresses, socket, protocols, etc. doesn’t need to be replaced entirely to
support sender/receiver. The sender /receiver capabilities can be added which is what the current proposal does.

http://wg21.link/n4771
http://wg21.link/p2300
http://wg21.link/n4771
http://wg21.link/p2300
http://wg21.link/n4771
http://wg21.link/n4771

If the current direction of having only one model for asynchronous operations is confirmed it will need to also
remove the executor-based facilities.

3 Related Work

The components defined by P2300 provide a complete framework for managing asynchronous operations and
no other facilities beyond senders for the managing the networking operations are needed. The Networking TS
defines its own framework for asynchronous operations. This paper does not propose the removal of the other
framework; whether the asynchronous framework from the Networking TS should be retained or removed is a
separate discussion.

There is a proposal for Standard Secure Networking (P2586). The current proposal consists of a high level
description and a few possibly usage examples. Based on the usage example, this proposal does not include
any binding to an asynchronous system. At most, it gets to the question on whether a coroutine interface
should be provided to its “poll” facility. So far I haven’t created a binding of the interfaces in this proposal
to the facilities proposed by P2586 but I don’t think there would be any problem doing so. From the current
document, it isn’t clear to me whether an active “poll” can be interrupted to add new work. Whether it would
be a reasonable implementation choice to use P2586 as the base implementation isn’t quite clear, as it seems
beneficial to potentially use a completion interface, e.g., io_uring, directly.

The focus of P2586 is secured networking and I haven’t managed to experiment with a secured version of the
proposed networking senders, yet.

P2586 makes some claims about allocations needed for a design based on P2300; there is actually no need to
do any allocations at alll The current experimental implementation (it is part of my experimental standard
library) doesn’t use any allocations in the networking senders (unless variable sized scatter/gather buffers are
specified in a way incompatible with an array of iovec). When using poll() to wait for activity, currently a
std: :vector<::pollfd> and a std::vector of completions are used. However, it would be easily possible to
specify an interface to a suitable I/O context providing control over the maximum size of these arrays and their
required memory to avoid any allocations

4 Design Choices

The basic interface of the senders for the asynchronous network operations is informed by the Networking TS:
the available operations and their arguments will be similar. Even so there are some design choices. In most
cases, the alternatives aren’t exclusive and multiple variations can be supported to support different uses.

The sample code for the different considerations concentrates on the respective choice being considered. As other
design choices may affect the resulting code, one of the corresponding options is picked. The different design
choices are mostly orthogonal, although some of the choices (notably whether the operations should be member
functions) may limit the possibilities for other considerations.

4.1 Obtaining the Scheduler

The networking operations need a suitable context dealing with the asynchronousity, i.e., something using
poll(2), epoll(2), kqueue(2), io_uring(2), completion ports, etc., to schedule the operation. The context is
abstracted by a scheduler capable of scheduling the respective networking operations. There are a few options
for how the scheduler can be obtained:

1. The operation is used as a sender factory and the scheduler is passed in as an argument. This approach
makes the scheduling explict when creating the asynchronous operation, e.g.:

auto make_accept(auto scheduler, auto& socket) {
return async::accept(scheduler, socket);

}

http://wg21.link/p2300
http://wg21.link/n4771
http://wg21.link/n4771
http://wg21.link/p2586
http://wg21.link/p2586
http://wg21.link/p2586
https://kernel.dk/io_uring.pdf
http://wg21.link/p2586
http://wg21.link/p2586
http://wg21.link/p2300
https://github.com/dietmarkuehl/kuhllib
https://github.com/dietmarkuehl/kuhllib
http://wg21.link/n4771
https://man.archlinux.org/man/io_uring_enter.2.en

2. The operation is used as a sender adapter and the scheduler is obtained using
get_completion_scheduler<set_value_t>(s) from the upstream sender, e.g.:

auto make_accept(auto scheduler, auto& socket) {
return schedule(scheduler)
| async::accept(socket)

3

3. The operation is used as a sender factory and the sheduler is obtained using get_scheduler (get_env(r))
from the downstream sender. This approach allows imbuing a work graph with a scheduler specified from
the usage end, e.g.:

auto make_accept(auto scheduler, auto& socket) {
return on(scheduler, async::accept(socket));

3

4. It was pointed out networking objects like sockets are specific to a context: that is necessary when using
I/O Completion Ports or a TLS library and yields advantages when using, e.g., io_uring(2). Explicitly
using a separate scheduler for the networking operation could lead to mismatches detected only at run-time.
It may, thus, be reasonable to schedule networking entirely based on the objects operation on:

auto make_accept(auto& socket) {
return async::accept(socket);

}

The most useful of these options seems to be the third one, i.e., injecting the used scheduler from the point
where the asynchronous work is actually used. The other two options require knowledge of the scheduler while
building up the asynchronous work.

As a potential variation of the second and third option, a specific customization point name, e.g.,
get_completion_io_scheduler or get_io_scheduler, could be used. Using different names could en-
able the separation of the I/O scheduler from schedulers dedicated to doing work. These queries could fall back
to the respective non-specific queries when not provided.

Unfortunately, getting the scheduler from the usage side has an implication on how the work graph is built: for
some schedulers, the various operations may need to schedule additional asynchronous operations. For example,
a receive operation using TLS may need to set up a way of sending and receiving bytes from a lower level
scheduler. When the scheduler is injected through the receiver the operation and used scheduler are brought
together rather late, i.e., when connect(sender, receiver)ing and when the work graph is already built.

For the examples below, the third option is assumed. However, all three options are viable candidates.

4.2 Error Reporting

For the Networking TS, errors of asynchronous operations are reported using an std: :error_code argument as
part of the completion signature. As there is exactly one completion function used, there isn’t really a different
alternative. Using receivers supports multiple completion functions, thereby allowing multiple choices:

1. The operation could complete using one set_value call using the same fused completion consisting of an
std: :error_code and the other completion arguments as the Networking TS does, e.g.:

auto sender
= async::read(socket, buffer)
| then([] (error_code const& ec, int n) { ... }

)

Within a coroutine, structured binding could be used to decompose the result, e.g.:

https://man.archlinux.org/man/io_uring_enter.2.en
http://wg21.link/n4771
http://wg21.link/n4771

autol[ec, n] = co_await async::read(socket, buffer);

2. As the error path is different in the completing functions, it can be reasonable to call different set_value
functions: one with an std::error_code argument and another one (or even multiple ones) with the
arguments for the success case. This approch wouldn’t work with coroutines as these are restricted to
using just one completion signature. Also, a downstream sender would need an overloaded set_value to
deal with the result:

auto sender
= async: :read(socket, buffer)
| overload(
[1 (int n){ /* success path */ },
[] (error_code const& ec){ /* error path */ }

)

)

3. Similar to the previous alternative but instead of reporting errors using the set_value channel using the
set_error channel, e.g.:

auto sender = async::read(socket, buffer)
| then([](int n) { /* success path */ }
| upon_error([] (error_code const& ec) { /* error path */ }

While this approach works with coroutines, it would end up using exceptions, e.g.:

try {
int n = co_await async::read(socket, buffer);
// success path

} catch (error_code const& ec) {
// error path

3

However, when using coroutines, it would be possible to use a generic algorithm fusing the set_value and
the set_error results back into one set_value result to avoid an exception.

4. There may even be space for a combination of reporting some errors using set_value while reporting
others using set_error, depending on the severity of the error.

5. With senders getting composed in a structured form, it may be reasonable to offer passing a reference to an
std::error_code and populating that when present and otherwise reporting the error on the set_error
channel. That would be similar to the synchronous networking operations of the Networking TS reporting
errors through the passed argument or an exception. This approach would work reasonably well using
coroutines:

error_code ec;
int n = co_await async::read(socket, buffer, ec);
if (lec)
/* success path */;
else
/* error path */

The most basic variations seems to use a combination of set_value for the successful case and set_error for
the failure cases; the other combinations can be build from that. Also, recognizing an error can be used by
algorithms to decide continuing differently upon error, e.g., cancelling other operation for a when_all.

However, some of the error cases may have been partial successes. In that case, using the set_error channel
taking just one argument is somewhat limiting. On the other hand, when substantial work is done and partial

http://wg21.link/n4771

successes become reasonable, it is likely that intermediate results are to be produced and algorithms of a different
shape are used anyway.

When using asynchronous operations within a coroutine, there is only one set_value supported which can, how-
ever, return multiple values using a std: :tuple, that is then likely decomposed using structured binding. That
is when using coroutine defining different set_value channels isn’t an option. For a coroutine, the set_error
channel would be turned into an exception. With variations of the asynchronous operations taking an optional
std: :error_code reference as an argument, the coroutine experience would be similar to the synchronous code.
Likewise, a coroutine-friendly version of the operations can be provided.

It is possible to offer a combination of the different options. The design choice would name the operations (or the
namespace they live in) appropriately. The examples here assume using set_value and set_error for success
and error handling.

4.3 Member vs. Non-Member Operation

The Networking TS uses both member and non-member functions for its operations. Member functions are what
users are used to from other languages, where there often aren’t different option. The problem is compounded
by many IDEs providing simple name completions for member functions. For example:

auto sender = socket.async_read(buffer)
| then([] (auto&&...){ /* use result */ })

>

Similarly, when using coroutines:

autol[ec, n] = co_await socket.async_read(buffer);

On the hand side, CPOs can’t be member functions (well, CPOs are classes with function call member functions
but they don’t really look like member functions and they aren’t a member of some entity operated on). Also,
adding members to classes tends to lead to “kitchen sink” classes acquiring ever more operations over time
(see, e.g., std::basic_string). The potentially fairly large number of variations (see other design choices)
is probably easier managed using non-member function. For example, there may be groups of operations in
different namespaces based on their intended use, e.g., async for the senders directly used to chain operations
and coro for senders used within coroutines.

auto sender = async::read(socket, buffer)
| then([](auto&&...){ /* use result */ }

>

Similarly, when using coroutines:

auto[ec, n] = co_await coro::read(socket, buffer);

As there is generally no entity used with the P2300 algorithms, these aren’t member of classes. For the network
operations there is the socket providing an entity and the operations could be defined as member functions of
these. Using non-member names providing the full variation of options doesn’t exclude using member functions
for the expected likely use cases, probably just delegating to the respective non-member operations. The examples
here don’t use member functions.

4.4 1/0O Scheduler Interface

The networking (or, more general, I/O) operations will require being scheduled on a special context and being
run on a corresponding scheduler. Also, it is likely desirable to support different schedulers, e.g., one using the
most efficient real implementation, one being friendly to integration with other language’s “run loop”, and one
allowing unit testing of networking operations. There are multiple options for how the networking operations
are talking to the scheduler:

http://wg21.link/n4771
http://wg21.link/p2300

1. The networking operations and the scheduler use a secret channel. While that is probably the easiest to
specify, it means that the networking operations can’t accept a somehow adapted scheduler or there needs
to be a protocol for how to extract the underlying scheduler.

2. Expose/abstract the various I/O operations somehow, possibly using virtual functions or, more likely,
CPOs. While this approach is probably more generic, the interface to the operations is likely at a somewhat
lower level than what the senders use and it is possibly platform specific. For example, a read_some
operation used with io_uring(2) needs to provide a pointer to an iovec which needs to stay around
until the operation is consumed from the completion ring buffer. That is a rather different interface than
the generic buffers passed to read_some. It may be possible to define the scheduler interface such that it
defines what the caller has to store until completion but I haven’t tried implementing this approach, yet.

3. The scheduler interface may model multiple contracts (one for each support I/O operation) and each
operation produces an object which gets embededded into the I/O operation’s operation state object.
Each supported underlying I/0 interface could store its data in exactly the form needed.

4. The scheduler interface for I/O operations may be what is being proposed by the Low level file i/o library.
I haven’t tried to implement that.

5. The Networking T'S may be doing something in that area and it may be possible to integrate with that or,
at least, do something similar. T haven’t tried to implement that. It seems the io_context uses a secret
interface.

6. Aside from networking there are plenty of other events which could be waited for: other forms of 1/0,
process termination, signals, etc. Ideally, it should be possible to wait for all of these things using just one
thread. Not all of the operations are going to be standardized (at least, not initially) and it is necessary
to somehow allow applications to expand the support and also wait for additional events.

Most likely, it is preferable to have some form of I/O scheduler abstraction than using a secret interface. However,
it isn’t yet clear how such an interface would actually look like.

4.5 Timer Class or Just a Sender

The Networking TS defines a basic_waitable_timer class template. The type of this class encodes various
timer properties like the underlying clock type and some wait traits. The primary need in the Networking TS
for this class is the need for an entity to trigger cancellations: while operations are cancellable the cancellation
needs to be explicitly wired up where necessary. Uses would look like

waitable_timer timer(/* timer settings */);
auto sender = wait_for(timer, 5s);

or using coroutines

co_await wait_for(timer, 5s);

When using sender/receiver cancellation and its necessary wiring is handled by the senders capable of cancelling
operations by appropriate use of the receiver’s stop token. Correspondingly, there isn’t really a need for a timer
class. Having to create a timer object and keeping it around is sometimes a bit annoying. Thus, it may be
reasonable to allow defining timers simply by creating a suitable sender which is then scheduled on a suitable
scheduler. The I/O schedulers are capabable of executing timers.

auto sender = wait_for(5s);
co_await wait_for(5s);

As with most of the other design choices it may be reasonable to support both alternatives: sometimes it may
be reasonable to just schedule a timed operation without the need for an object and specifying the required
properties when doing so works. In other situations it may be preferable to encapsulate the timer properties
into an object and using this object to schedule multiple timed operations. In that situation it may be possible
to define the timed operations in a way which doesn’t require the timer entity to stay alive until the timed
operation completes: removing the need for the timer entity to remain valid until the timed operation completes
should make their use simpler. The actual timed operation would be maintained by the scheduler.

https://man.archlinux.org/man/io_uring_enter.2.en
http://wg21.link/p1031
http://wg21.link/n4771
http://wg21.link/n4771
http://wg21.link/n4771

4.6 Higher Level Tools

The basic networking or I/O operations are fairly straightforward and there are actually not that many of
them (the io_uring operations are probably a good indication of the overall scope including operations beyond
networking). Concentrating on networking operations the Networking TS doesn’t provide everything io_uring
does. Beyond the basic operations provided by the underlying system, the networking operations can reasonably
be composed into higher level algorithms. For example, an async::read_some operation potentially reading
partial buffers successfully can be composed into an async: :read operations always reading a complete buffer
or failing. The question is, what algorithms should be included in the proposal, if any?

Algorithms like async::read and async::write are somewhat obvious examples. Something like an
async::resolve could be an example of a rather non-trivial algorithm: there is the synchronous
getaddrinfo(3) function, but there doesn’t seem to be an asynchronous alternative. With an asynchronous
framework in place, it seems reasonable to include an asynchronous version of getaddrinfo(3).

Beyond sender algorithms, there may also be some other interesting components:

— It may be useful to have a coroutine task (io_task) injecting a scheduler into asynchronous networking
operations used within a coroutine together with a suitable scope (io_scope) similar to async_scope but
also tied to some I/O scheduler. The corresponding task class probably needs to be templatized on the
relevant scheduler type.

— For full-duplex operation of a socket, i.e., scheduling concurrent reading and writing operation, something
like a ring buffer with sender interfaces to the production and consumption of buffers seems useful.

There are probably various other useful algorithms and components.

4.7 Sender Adaptors

The senders for the networking operations could either be sender factories or sender adapters (see [async.ops]
for a definition). Defining the networking operations as sender adaptors has the advantage that customization
preferences, e.g., an allocator to be used for variable-sized scatter/gather arguments, can easily be specified.
Also, it makes it easier to chain operations. To further facilitate chaining, the networking senders are specified
to be pipeable sender adaptors [exec.adapt.objects].

As it is probably quite common that a networking operation starts a work graph they are defined to also accept
all argument directly as a convenience. For example, the following senders have the same effect when started:

auto sO = execution::just(buffer) | net::async_read_some(socket);
auto sl = net::async_read_some(execution::just(buffer), socket);
auto s2 = net::async_read_some(socket, buffer);

This approach works nicely when the operation takes arguments which can be provided by the upstream sender.
Specifically for there is a a problem because async_accept only takes the acceptor socket as argument which is
expected to be passed directly. Thus, the respective operations would look like this:

auto sO = execution::just() | net::async_accept(acceptor);
auto sl = net::async_accept(execution::just(), acceptor);
auto s2 = net::async_accept(acceptor);

To have both s0 and s2 work as senders, the result of net::async_accept(acceptor) needs to be both a
sender and a sender adaptor closure. However, the specification in [exec.adapt.objects] p2 explicitly prohibits
that. There are some options to deal with the case:

1. async_accept doesn’t create a pipeable sender adaptor and a different approach needs to be used to
depend on the completion of prior work, e.g., s1.

2. The two calls are distinguished by passing a tag argument to one or both of the alternatives, e.g.:

auto sO = execution::just() | net::async_accept(await_sender, acceptor);

https://man.archlinux.org/man/io_uring_enter.2.en
http://wg21.link/n4771
https://man.archlinux.org/man/io_uring_enter.2.en
https://man.archlinux.org/man/getaddrinfo.3.en
https://man.archlinux.org/man/getaddrinfo.3.en
https://github.com/kirkshoop/async_scope/blob/main/asyncscope.md
http://wg21.link/p2300#spec-execution-async.ops
http://wg21.link/p2300#spec-execution.senders.adaptor.objects
http://wg21.link/p2300#spec-execution.senders.adaptor.objects

3. Deal with case special and allow net: :async_accept (acceptor) to be both a sender and a sender adaptor
closure somehow.

4.8 Awaitable Senders

While senders can be turned into awaiters using a promise type’s await_transform, there are some drawbacks
to this approach:

1. When the I/O operation wouldn’t block, e.g., because some data could be immediately read or written,
it could be detected in await_ready () that this is the case. For example, await_ready() could attempt
whether a non-blocking operation succeeds and, if so, signal that the awaiter is ready. When wrapping a
sender, doing the same isn’t quite possible.

2. While the standard library can make sure that all coroutines provided are sender-aware, user-defined
coroutines would need to explicitly support senders, too. If the networking sender (or possibly even
senders in general) were coroutine aware and defined an operator co_await() or implemented the awaiter
interface, they would be readily usable in any coroutine.

It seems reasonable to specify that the networking senders are awaitables. Having them be awaiter directly
would effectively mean that they already include significant state. Making them awaitable would effectively
allow creation of an operation state as the result of a call to operator co_await() which is a bit tailored to
the needs of coroutines. The same may be true for other standard library senders, too.

5 Cancellation Concern

The networking operations are generally inactive after the operation was started but the network operation
hasn’t completed yet. To cancel such an operation, it is necessary to actively trigger some cancellation function,
i.e., a simple test of an atomic bool provided by a stop token generally won’t work. Thus, the various operations
need to register a callback with the receiver’s stop token. In cases where the stop token isn’t no_stop_token,
this registration needs to do some synchronization both for the registration and the deregistration of the callback.
Repeatedly doing that operation while processing data on a socket may be a performance concern.

It may be possible to avoid setting up cancellation for individual operations and rather hook the cancellation
once to a suitable entity like a socket. The corresponding approaches will need some level of support by the
library. For example, it may be necessary to support calls to cancel some operations on a socket.

Even when doing so, it may be necessary to inhibit registration of callbacks with a stop token. For example,
when_all will use receivers using a different stop token than no_stop_token with its various senders. In that
case it may be useful to have a sender adapter which passes through all completion signals received but always
exposes a no_stop_token to its sender.

Some systems already have some cancellation support for common use cases. For exmaple, io_uring(2) sup-
ports timeouts for its operations (using IORING_OP_LINK_TIMEOUT). To easily tap into this pattern, it may
be reasonable to have a corresponding timeout sender taking a time and sender which may be a networking
operation: if either the time expires or the sender completes, the respective other operation would be cancelled.
Where available, the timeout could then just setup the underlying system to provide the corresponding func-
tionality. Otherwise, it would behave like a timer and another sender given to a when_any operation completing
appropriately upon completion of the first operation and cancelling the other via a stop token.

This area still needs some experimentation and, I think, design. The general direction of encapsulating the
cancellation into the asynchronous operations is rather interesting, but it isn’t a priori clear how to avoid
potential costs.

6 Discussion

This section aggregates topics discussed that aren’t covered elsewhere in the document. It isn’t intended to
record the actual discussion we had but rather to cover how to address the respective concerns.

https://man.archlinux.org/man/io_uring_enter.2.en

6.1 Support A system execution context

During the SG4 discussion at Issaquah (2023-02-09), support for a system execution context, e.g., based on
Grand Central Displatch/libdispatch was discussed. It should be straight forward to expose any of the network-
ing operations using such a context assuming the underlying facilities can support the respective operations.
When looking at creating a context using Grand Central Displatch/libdispatch to implement the networking
operations, I could only find operations for asynchronous reading and writing but no connection management
(accept /connect /shutdown).

The work on the respective facilities should be suitably coordinated with the people proposing a system execution
context.

6.2 Resolution

DNS offers name resolution as well as reverse look-up. Name resolution is important as explicit use of IP
addresses should be avoided. Name resolution can be implemented as an algorithm using other networking
operations.

It was suggested to implement name resolution in terms of libcares. This library is operates in terms of readiness
indication of sockets specified via the native handles. Based on the readiness indication it directly uses OS level
network functionality to send or receive messages. In that sense, an implementation using libcares isn’t an
algorithm on top of other networking operations.

An implementation of resolution using other networking operation is probably preferable as the various operations
could be customized in some form. For example, to support testing a context implementation could respond
with predicatable results replicating various scenarios including error scenarios which may be harder to construct
based on a real implementation. However, an implementation using, e.g., libcares should be viable. To support
an implementation using libraries requiring a readiness indication, an async_wait () operation is added.

The scope of the specified resolution interfaces is limited to simple name and address look-up. For example,
DNS support response yielding multiple results. For the initial specification, only look-ups by name and ad-
dress (reverse look-up) are supported and in both cases only at most one result is considered. More advanced
functionality can be added by separate proposals.

Most likely sequence senders using set_next() to yield multiple results before completing should be used.
However, there is currently (2023-09-01) no proposal for sequence senders.

Implementations should probably be encouraged to use secured DNS approaches where possible. Whether doing
so is actually viable still needs to be researched.

6.3 Naming

At the Issaquah SG4 discussion (2023-02-09), it was suggested to drop the async_ prefix from the names of the
networking operations. Instead, the blocking operation should get a prefix like blocking_ or sync_ as these
operations should be rarely used and the “good” name should be reserved for the commonly used alternative.

The current naming scheme follows the names from the Networking TS. Renaming the operations should be
straight forward if that’s the decision.

As usual, there are plenty of options how to name things. When considering naming, here are a few alternatives
to consider:

1. The current approach is to use the operation with/without prefix.

2. Both the asynchronous and the blocking approach could get a prefix to always clearly indicate what is
being used.

3. Instead of using prefixes, the operations could be in different namespace assuming the operations are non-
members. This alternative may be especially reasonable if there is also a special variation for the use with
coroutines.

10

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2079r3.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2079r3.html
https://en.wikipedia.org/wiki/Grand_Central_Dispatch
https://en.wikipedia.org/wiki/Grand_Central_Dispatch
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2079r3.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2079r3.html
https://en.wikipedia.org/wiki/Domain_Name_System
https://c-ares.org/
https://c-ares.org/
https://c-ares.org/
https://en.wikipedia.org/wiki/Domain_Name_System
http://wg21.link/n4771

4. One set of operations could be member functions while the others are non-member functions. As the
customization point approach of sender/receiver lends itself better to non-member functions the non-
member use could be asynchronous and the member use could be synchronous.

5. To further the asynchronous approach the standard library could choose not to provide any synchronous
interface at all! Instead, users wanting to use a the operations synchronously would use sync_wait (sender)
also clearly indicating that the operation would be blocking (although this exact alternative probably yields
a result too annoying to use and a custom function would be in order).

Ideally, the choice of naming isn’t changed every time the proposal is discussed: once a naming scheme is chosen,
it should be kept unless new information emerges which proves the current choice unsuitable.

6.4 Constraints On Used Scheduler

The various socket types are created with a specific context. Executing any of the operations on a scheduler
not refering to the corresponding context is an error. While the underlying system may not associate a specific
context with any socket, the C++ implementation may require additional information for its operation.

In the past the normal approach to similar misuse, e.g., comparing iterators from different containers of the
same type, was to treat it as undefined behavior. In the context of networking operation it seems the misuse
can be detected at reasonable cost and can be turned into an error, instead. Pursuing this direction the actual
error should probably be specified, e.g., in form or a suitable error code and error category combination.

6.5 Required Features

During discussions this proposal various features were mentioned. While this proposal mostly targets adding
sender-versions of the operations in the Networking T'S (and in its current form it is quite complete at doing so)
it seems there are other features also required to make the result an acceptable addition to the C++ standard.

This section provides a brief outline of various features mentioned in preparation to poll how to classify them:

— required: without the feature networking shall not be standardized
— optional: it would be great to have it but it is viable to standardize networking witout
— separate: the feature should be added by a separate proposal

6.5.1 Extensible Scheduler Interface

It was stated that a scheduler interface for networking operations needs to be defined. The Networking T'S doesn’t
do so. Having a defined interface should allow extending the implementation by custom implementations. For
example, a test implementation where network operations and their errors are simulated to test applications
using it is rather useful for unit tests. Likewise, a logging implementation which behaves like a filter and logs
the observed operation at some details would be good. There are probably other uses cases.

The details of such an interface are currently still unclear. Most likely the chosen implementation shouldn’t
actually affect the types of interfaces as otherwise everything using networking operations would need to be
templatized on the scheduler interface. In any case definition of such an interface will require design work.

6.5.2 TLS Support

Secured network communication is rather important. TLS support can be added to the implementation by
binding a library like openssl (this is an example and there are other implementations). Especially, if an
extensible scheduler interface is defined it is viable to implement secured networking using this facility.

If TLS is to be defined there are different choices. Using, for example, openssl it is fairly straight forward to use
a readiness indicator (async_wait) to make the operations non-blocking. However, the resulting implementa-
tion would directly use an OS-level interface like recvmsg/sendmsg to interface the network rather than using
async_receive/async_send. In return the result may be more efficient.

It can be argued that binding a library like openssl isn’t entirely trivial and shouldn’t be left to the user.

11

http://wg21.link/n4771
http://wg21.link/n4771
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/

6.5.3 Buffer Pools

When having many connections awaiting data it can be wasteful if each connection needs to be provide a
read buffer for data to be received. Instead, a buffer pool could be specified, possibly using just one buffer
shared between thousands of connections. System interfaces using completion signals like io_ uring support
special operations such that the buffer is obtained by the kernal from a pool, making it desirable to expose the
functionality. The is currently no design for buffer pools.

Of course, if there are many clients the application is probably facing the Internet and a secured connection is
used. In that case the state needed to maintain a TLS connection is probably already significantly contributing
to the per connection data and sharing the buffer may not make a huge difference.

6.5.4 Async Streams

Defining basic asynchronous networking operations should, in general, allow creation of reasonable networking
aware applications. To actually make the creation easy an interface for asychronous streams may be needed.
How the interface for such streams would look like is a separate question. To me even the exact objective isn’t
even clear. There s currently no design for buffer pools.

6.5.5 Networking Algorithms

It was stated that networking algorithms are needed. Hopefully, the available operations allow reasonably
easy implementation of relevant algorithms. Of course, not every user should be required to write all relevant
algorithms raising the questions: what are the relevant algorithms and which of these should be supported?
Here is a probably incomplete list:

— resolve_name(name): resolve name into an address/endpoint or a sequence of addresses/endpoints.

— resolve_address(address): obtain a name or a list of names for address (reverse resolution).

— async_read/async_write: like async_read_some/ async_write_some but process the entire available
buffer. There is a bit of design for these algorithms to deal with partial results and progress: maybe using
a sequence sender (for which there is no paper, yet) would be reasonable.

— timeout(duration, sender): essentially when_any(resume_after(duration), sender) although prob-
ably with a nicer interface to consume an upstream sender and produce nicer to use results (although
when_any isn’t proposed by the std: :execution proposal). Also, in some situations there are more effec-
tive ways to implementation a time out.

— async_connect (socket, endpoints): like async_connect but use a sequence of endpoints, trying to
connect each one in turn until the connection succeeds.

— async_connect (socket, name): like async_connect (socket, endpoints) but with the sequence of end-
points obtained from name resolution of name rather than a list of readily resolved endpoints.

Which other algorithms are required?

7 Questions

— Should networking support only a sender/receiver model for asynchronous operations, i.e., should the
Networking TS’s executor model be removed?

— How should the asynchronous networking operation be named? See the Naming section for discussion.

— Should misuse, e.g., executing an operation on a scheduler not matching a socket’s context, be an error or
undefined behavior?

— What features are necessary (see above for some details)?

— Extensible scheduler interface
— TLS support

— Bulffer pools

— Async streams

12

https://kernel.dk/io_uring.pdf
http://wg21.link/p2300
http://wg21.link/n4771

— resolve _name

— resolve address

— async_read/async_ write
— timeout

— connect(socket, endpoints)
— connect(socket, name)

8 Wording for Networking CPOs

In 14.2 [io__context.io__context], add a scheduler_type and a get_scheduler () method to the synopsis:

namespace std {
namespace experimental {
namespace net {
inline namespace vl {
class io_context : public execution_context

{
public:
class executor_type;
class scheduler_type;
executor_type get_executor() noexcept;
scheduler_type get_scheduler() noexcept;
};

T s T

In 14.2 [io_context.io_ context] after paragraph 2, add a new paragraph:

count_type is an implementation-defined unsigned integral type of at least 32 bits.
scheduler_type is a type modelling scheduler [exec.sched].

In 14.2.1a [io_ context.io_ context.members] after paragraph 3 add a new paragraph:
executor_type get_executor() noexcept;

Returns: An executor that may be used for submitting function objects to the io_context.
scheduler_type get_scheduler() noexcept;

Returns: A scheduler that may be used for submitting sender objects to the io_context.

Add a new section for the networking operations:

9 Networking Senders [net.sender]

9.1 General [net.sender.general]

Subclause [net.sender| defines sender adaptors [async.ops| for networking operations. When the corresponding
operations are started, they do not block any thread. Instead they complete once the corresponding operation
becomes ready. How the system determines that an operation is ready is implementation specific.

These sender adaptors share some common behavior:

13

http://wg21.link/p2300#spec-execution-async.ops

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

— The specification for sender adaptors [exec.adapt.general] applies to the sender adaptors in [net.sender].

The sender adaptor in [net.sender] are pipeable sender adaptors [exec.adapt.objects].

When a sender s is connected [exec.connect] to a receiver r and the resulting operation state is
execution::started [exec.opstate.start], a callback for cancellation is registered with the stop token
obtained using get_stop_token(get_env(r)). When this callback is invoked the corresponding operation
is cancelled and one of the completion signatures is invoked in a timely manner. The operation can
complete using set_stopped [exec.set.stopped] but it may still complete with one of the other completion
signals instead if the operation became ready otherwise.

Starting an operation state [exec.opstate.start] may complete the operation immediately from the starting
thread if it is ready to be completed. Otherwise, the operation is initiated using the scheduler and gets
completed once it becomes ready.

Any object referenced in the sender call needs to stay valid while the sender or an operation state obtained
from the sender by connecting it to a receiver is used. A sender for a network operation stops being used
when it gets connected to a a receiver or when it gets destroyed. An operation state stops being used when
it is destroyed or when a completion signal is invoked after the operation state was execution: :started
[exec.opstate.start].

The customization points for the sender adaptors also provide an overload taking the arguments which
would come from the adapted sender directly. The behavior is as if execution: : just [exec.just] with the
arguments is used as sender argument.

When a sender created by one of the operations taking a socket reference sock (however it is named) as argu-
ment is connected to a receiver r, it is an error if a scheduler obtained from get_scheduler (get_env(r))
does not refer to the context used to create sock. [Note: In the past the specification for inconsistent use
typically made the behavior undefined. With the recent push towards removing undefined behavior it seems
prudent to avoid undefined behavior for reasonably detectable error. The misuse should be detectable. It
may be necessary to specify the actually error, though. — end note]

[Example: the following senders have the same effect when connected and started:

auto sO = execution::just(buffer) | net::async_read_some(s);
auto sl = net::async_read_some(execution::just(buffer), s);
auto s2 = net::async_read_some(s, buffer);

—~FEnd Ezample].

9.2 Network Sender Operations Synopsis [net.sender.syn]

namespace std::experimental::net::inline vl {

namespace sender-adaptors // exposition only {

struct async_accept_t; // [net.sender.async.accept]
struct async_connect_t; // [net.sender.async.connect]
struct async_read_some_t; // [net.sender.async.read.some]
struct async_read_t; // [net.sender.async.read]

struct async_receive_from_t; // [net.sender.async.receive.from]
struct async_receive_t; // [net.sender.async.receive]
struct async_resolve_address_t; // [net.sender.async.resolve.address]
struct async_resolve_name_t; // [net.sender.async.resolve.name]
struct async_resume_after_t; // [net.sender.async.resume.after]
struct async_resume_at_t; // [net.sender.async.resume.at]
struct async_send_t; // [net.sender.async.send]

struct async_send_to_t; // [net.sender.async.send.to]
struct async_wait_t; // [net.sender.async.wait]

struct async_write_some_t; // [net.sender.async.write.some]

14

http://wg21.link/p2300#spec-execution.senders.adapt.general
http://wg21.link/p2300#spec-execution.senders.adaptor.objects
http://wg21.link/p2300#spec-execution.senders.connect
http://wg21.link/p2300#spec-execution.opstate.start
http://wg21.link/p2300#spec-execution.receivers.set_stopped
http://wg21.link/p2300#spec-execution.senders.connect
http://wg21.link/p2300#spec-execution.opstate.start
http://wg21.link/p2300l#spec-execution.senders.just

struct async_write_t;
struct timeout_t;
struct when_any_t;

// [net.sender.async.write]
// [net.sender.async.timeout]
// [net.sender.async.when.any]

using
using
using
using
using
using
using
using
using
using
using
using
using
using
using
using
using

inline
inline
inline
inline
inline

sender-adaptors:
sender-adaptors:
sender-adaptors:
sender-adaptors:
sender-adaptors:
sender-adaptors:
sender-adaptors:
sender-adaptors:
sender-adaptors:
sender-adaptors:
sender-adaptors:
sender-adaptors:
sender-adaptors:
sender-adaptors:
sender-adaptors:
sender-adaptors:
sender-adaptors:

constexpr
constexpr
constexpr
constexpr

async_accept_t
async_connect_t
async_read_some_t
async_read_t

:async_accept_t;
:async_connect_t;
:async_read_some_t;
:async_read_t;
:async_receive_from_t;
:async_receive_t;
:async_resolve_address_t;
:async_resolve_name_t;
:async_resume_after_t;
:async_resume_at_t;
:async_send_t;
:async_send_to_t;
rasync_wait_t;
:async_write_some_t;
:async_write_t;
:timeout_t;
:when_any_t;

async_accept{};
async_connect{}

async_read{};

’

async_read_some{};

constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr
constexpr

inline
inline
inline
inline
inline
inline
inline
inline
inline
inline
inline
inline

async_receive_from_t
async_receive_t
async_resolve_address_t
async_resolve_name_t
async_resume_after_t
async_resume_at_t
async_send_t
async_send_to_t
async_wait_t
async_write_some_t
async_write_t
timeout_t

when_any_t

async_receive_from{};
async_receive{};
async_resolve_address{};
async_resolve_name{};
async_resume_after{};
async_resume_at{};
async_send{};
async_send_to{};
async_wait{};
async_write_some{};
async_write{};
timeout{};
when_any{};

9.3 Network Sender Operations [net.sender.operations]

[Note: The shape of the exact operations isn’t quite clear yet, as there are various design option (see above).
Below the relevant operations are listed together with their arguments and their likely completion_signatures.
The current list of operations may be incomplete. The “as if” code isn’t necessarily ready to compile and may
omit necessary casts and use private operations in some cases. — end note]

9.3.1 net::async_accept [net.sender.async.accept]

namespace std::experimental::net::inline vl {
namespace sender-adaptors // exposition only {

15

(4.1)
(4.2)
(4.3)
(4.4)

ot

struct async_accept_t {
struct accept-sender; // exposition only

template <class AcceptableProtocol>
accept-sender operator () (basic_socket_acceptor<AcceptableProtocol>& acceptor) const;

template <execution::sender_of<execution::set_value_t()> Sender,
class AcceptableProtocol>
accept-sender operator () (Sender&& sender,
basic_socket_acceptor<AcceptableProtocol>& acceptor) const;
s
X
}

async_accept_t is the type of customization point objects for creating senders for accepting new socket connec-
tions.

template <class AcceptableProtocol>
accept-sender
async_accept_t: :operator() (basic_socket_acceptor<AcceptableProtocol>& acceptor) const

Returns: (*this) (execution::just(), acceptor);

template <execution::sender_of<execution::set_value_t()> Sender,
class AcceptableProtocol>
accept-sender
async_accept_t: :operator() (Sender&& sender,
basic_socket_acceptor<AcceptableProtocol>& acceptor) const;

The operator creates an accept-sender. After the returned accept-sender is connect (Ded it uses the set_value
completion of sender to trigger the start of its own operation. If sender completes with a set_error or
set_stopped completion, the completion is forwarded to the connected receiver.

Let s be the accept-sender returned from async_accept_t () (sender, acceptor). Let Acceptor be the type
basic_socket_acceptor<AcceptableProtocol> and env be an environment object. The completion signatures
returned from execution::get_completion_signatures(s, env) contain the following elements:

— execution: :set_value_t (typename Acceptor::socket_type, typename Acceptor::endpoint_type)

— execution::set_error_t(error_code)

— execution: :set_stopped_t ()

— Any additional execution: :set_error_t signature from execution: :get_completion_signatures(sender,

When s is connected to a receiver r and the resulting operation state is started, it initiates an asynchronous
operation to extract a socket from the queue of pending connections for acceptor when there is at least one
pending connection, as if by POSIX:

typename Acceptor::endpoint_type ep;

socklen_t addrlen(ep.capacity());
auto h = accept(acceptor.native_handle(), ep.data(), &addrlen);
if (h < 0) {

execution: :set_error(std::move(r), error_code(errno, system_category()));
}
else {

ep.resize(addrlen);

execution: :set_value(std::move(r), typename Acceptor::socket_type(h), ep);
}

[Note: The Networking TS passes the endpoint optionally as a reference argument, resulting in two interfaces:

16

env)

http://wg21.link/n4771

one where the endpoint isn’t obtained and one where it is. The interface for async_accept could reference
the endpoint as well, instead of providing it with set_value. An alternative design allowing omission of the
endpoint is to have async_accept not providing an endpoint with set_value and async_accept_from with
the completion signature above. _—End Note__]

9.3.2 net::async_connect [net.sender.async.connect]

namespace std::experimental::net::inline vi1 {
namespace sender-adaptors // exposition only {
struct async_connect_t {
struct connect-sender; // exzposition only
struct connect-sender-adaptor-closure; // exposition only

template <class Protocol>
connect-sender operator () (basic_stream_socket<Protocol>& socket,
const typename basic_stream_socket<Protocol>::endpoint_type& ep) const;

template <class Protocol>
connect-sender-adaptor-closure
operator () (basic_stream_socket<Protocol>& socket) const;

template <class Protocol,
execution: :sender_of<typename basic_stream_socket<Protocol>::endpoint_type> Sender>
connect-sender operator() (Sender&& sender,
basic_stream_socket<Protocol>& socket) const;
s
b
b

async_connect_t is the type of customization point objects for creating senders connecting a stream socket to
a peer.

template <class Protocol>
connect-sender
async_connect_t: :operator() (basic_stream_socket<Protocol>& socket,
typename basic_stream_socket<Protocol>::endpoint_type ep) const;

Returns: (*this) (execution::just(ep), socket);

template <class Protocol>
connect-sender-adaptor-closure
async_connect_t: :operator() (basic_stream_socket<Protocol>& socket) const;

Returns: an object closure such that sender | closure yields an object equivalent to (*this) (sender, socket).

template <execution::sender Sender, class Protocol>

connect-sender

async_connect_t: :operator() (Sender&& sender,
basic_stream_socket<Protocol>& socket) const;

The operator creates a connect-sender. After the returned connect-sender is connect ()ed it uses the set_value
completion of sender to trigger the start of its own operation. It uses the endpoint_type argument to set_value
as the address to connect to. If sender completes with a set_error or set_stopped completion, the completion
is forwarded to the connected receiver.

Let s be the connect-sender returned from async_connect_t () (sender, socket) and env be an environment
object. The completion signatures returned from execution::get_completion_signatures(s, env) contain

17

(5.1)
(5.2)
(5.3)
(5.4)

1

the following elements:

execution: :set_value_t()

execution: :set_error_t(error_code)

execution: :set_stopped_t()

Any additional execution: :set_error_t signature from execution: :get_completion_signatures(sender,

When s is connected to a receiver r and the resulting operation state is started by a call to set_value with
argument ep, it initiates an asynchronous operation to connect to a peer, as if by POSIX:

if (connect(socket.native_handle(), ep.data(), ep.size()) < 0) {
execution: :set_error(std::move(r), error_code(errno, system_category()));

}
else {

execution: :set_value(std: :move(r));
}

9.3.3 net::async_read_some [net.sender.async.read.some]

namespace std::experimental::net::inline vl {
namespace sender—adaptors // exposition only {
struct async_read_some_t {
struct read-some-sender; // exzposition only
struct read-some-sender-adaptor-closure; // ezposition only

template <class Protocol, class MutableBufferSequence>
read-some-sender operator() (basic_stream_socket<Protocol>& socket,
const MutableBufferSequence& buffers) const;

template <class Protocol>
read-some-sender—adaptor-closure
operator () (basic_stream_socket<Protocol>& socket) const;

template <execution::sender Sender, class Protocol>
read-some-sender operator() (Sender&& sender,
basic_stream_socket<Protocol>& socket) const;
};
X
by

async_read_some_t is the type of customization point objects for creating senders reading a sequence of buffers
from a stream socket.

template <class Protocol, class MutableBufferSequence>
read-some-sender
async_read_some_t: :operator () (basic_stream_socket<Protocol>& socket,

const MutableBufferSequence& buffers) const;

Returns: (*this) (execution::just(buffers), socket);

template <class Protocol>
read-some-sender-adaptor-closure
async_read_some_t: :operator () (basic_stream_socket<Protocol>& socket) const;

Returns: an object closure such that sender | closure yields an object equivalent to (¥this) (sender, socket).

template <execution::sender Sender, class Protocol>
read-some-sender

18

env)

async_read_some_t: :operator () (Sender&& sender,
basic_stream_socket<Protocol>& socket) const;

4 Returns: async_receive(sender, socket);

5 [Note: The customization point may provide additional overloads, e.g., for files. As a result this name may be
useful for algorithms applicable to other streams then just sockets in the future. _ — end note_|

9.3.4 net::async_receive [net.sender.async.receive]

namespace std::experimental::net::inline vl {
namespace sender—adaptors // exposition only {
struct async_receive_t {
struct receive-sender; // ezposition only
struct recetve-sender-adaptor-closure; // exzposition only

template <class Protocol, class MutableBufferSequence>
recetve-sender operator()(basic_socket<Protocol>& socket,
const MutableBufferSequence& buffers) const;
template <class Protocol, class MutableBufferSequence>
recetve-sender operator () (basic_socket<Protocol>& socket,
sender_base: :message_flags flags,
const MutableBufferSequence& buffers) const;

template <class Protocol>
recetve-sender—adaptor-closure
operator () (basic_socket<Protocol>& socket) const;

template <class Protocol, execution::sender Sender>
receive-sender operator () (Sender&& sender,
basic_socket<Protocol>& socket) const;
};
b
¥

1 async_receive_t is the type of customization point objects for creating senders receiving messages on a con-
nected socket.

template <class Protocol, class MutableBufferSequence>
recetve-sender
async_receive_t::operator() (basic_socket<Protocol>& socket,
const MutableBufferSequence& buffers) const;

2 Returns: (*this) (execution::just(buffers), socket);

template <class Protocol, class MutableBufferSequence>
recetve-sender
async_receive_t::operator() (basic_socket<Protocol>& socket,
sender_base: :message_flags flags,
const MutableBufferSequence& buffers) const;

3 Returns: (*this) (execution::just(flags, buffers), socket);

template <class Protocol>
recetve-sender—-adaptor-closure
async_receive_t: :perator() (basic_socket<Protocol>& socket) const;

19

(5.1)
(5.2)
(5.3)
(5.4)

Returns: an object closure such that sender | closure yields an object equivalent to (*this) (sender, socket)

template <class Protocol, execution::sender Sender>

recetve-sender

async_receive_t: :operator() (Sender&& sender,
basic_socket<Protocol>& socket) const;

The operator creates a receive-sender. After the returned receive-sender is connect (Ded it uses the set_value
completion of sender to trigger the start of its own operation. It uses the flags and buffers arguments to
set_value to specify how to receive data. If the sender_base::message_flags parameter is not present it
uses a flags variable initialized to socket_base: :message_flags(). If sender completes with a set_error or
set_stopped completion, the completion is forwarded to the connected receiver.

Let s be the receive-sender returned from async_receive_t () (sender, socket) and env be an environment
object. The completion signatures returned from execution::get_completion_signatures(s, env) contain
the following elements:

— execution::set_value_t()
— execution::set_error_t(error_code)
— execution: :set_stopped_t ()

— Any additional execution: :set_error_t signature from execution: :get_completion_signatures(sender, env)

When s is connected to a receiver r and the resulting operation state is started by a call to set_value with
argument buffers or arguments flags and buffers, it initiates an asynchronous operation to receive data. The
operation constructs and array iov of POSIX struct iovec of size length corresponding to buffers and reads
data as if by POSIX:

msghdr message;

message .msg_name = nullptr;
message.msg_namelen = 0;
message.msg_iov = iov;
message.msg_iovlen = length;
message.msg_control = nullptr;
message.msg_controllen = 0;
message.msg_flags = 0;

auto n = recvmsg(socket.native_handle(), &message, static_cast<int>(flags));

if (n < 0) {
execution: :set_error(std: :move(r), error_code(errno, system_category()));
}
else {
execution: :set_value(std: :move(r), n);
}

9.3.5 net::async_receive_from [net.sender.async.receive.from]

namespace std::experimental::net::inline vl {
namespace sender-adaptors // exposition only {
struct async_receive_from_t {
struct receive-from-sender; // exzposition only
struct recetve-from-sender-adaptor-closure; // exposition only

template <class Protocol, class MutableBufferSequence>
receive-from-sender operator () (basic_datagram_socket<Protocol>& socket,
const MutableBufferSequence& buffers,

typename basic_datagram_socket<Protocol>::endpoint_type& ep)

template <class Protocol, class MutableBufferSequence>

20

const;

receive-from-sender operator () (basic_datagram_socket<Protocol>& socket,
sender_base: :message_flags flags,
const MutableBufferSequence& buffers,
typename basic_datagram_socket<Protocol>::endpoint_type& ep) const;

template <class Protocol>
receive-from-sender—adaptor-closure
operator () (basic_datagram_socket<Protocol>& socket) const;

template <class Protocol, execution::sender Sender>
receive-from-sender operator () (Sender&& sender,
basic_datagram_socket<Protocol>& socket) const;
Ipg
}
}

1 async_receive_from_t is the type of customization point objects for creating senders receiving messages on a
socket from a specified endpoint.

template <class Protocol, class MutableBufferSequence>
recetve-from-sender
async_receive_from_t: :operator() (basic_datagram_socket<Protocol>& socket,
const MutableBufferSequence& buffers,
typename basic_datagram_socket<Protocol>::endpoint_type& ep) const;

2 Returns: (*this) (execution::just(buffers, ep), socket);

template <class Protocol, class MutableBufferSequence>
receive-from-sender
async_receive_from_t: :operator() (basic_datagram_socket<Protocol>& socket,
sender_base: :message_flags flags,
const MutableBufferSequence& buffers,
typename basic_datagram_socket<Protocol>::endpoint_type& ep) const;

3 Returns: (*this) (execution::just(flags, buffers, ep), socket);

template <class Protocol>
recetve-from-sender-adaptor-closure
async_receive_from_t: :operator() (basic_datagram_socket<Protocol>& socket) const;

4 Returns: an object closure such that sender | closure yields an object equivalent to (xthis) (sender, socket).

template <class Protocol, execution::sender Sender>

receive-from-sender

async_receive_from_t: :operator() (Sender&& sender,
basic_datagram_socket<Protocol>& socket) const;

5 The operator creates a receive-from-sender. After the returned receive-from-sender is connect (ed it uses the
set_value completion of sender to trigger the start of its own operation. It uses the flags, buffers, and
ep arguments to set_value to specify how to receive data. If the sender_base: :message_flags parameter is
not present it uses a flags variable initialized to socket_base: :message_flags(). If sender completes with
a set_error or set_stopped completion, the completion is forwarded to the connected receiver.

6 Let s be the receive-from-sender returned from async_receive_from_t () (sender, socket) and env be an envi-
ronment object. The completion signatures returned from execution::get_completion_signatures(s, env)
contain the following elements:

(5.1) — execution::set_value_t()

21

(5.2)
(5.3)
(5.4)

— execution::set_error_t(error_code)
— execution: :set_stopped_t ()
— Any additional execution: :set_error_t signature from execution: :get_completion_signatures(sender,

When s is connected to a receiver r and the resulting operation state is started by a call to set_value with
argument buffers and ep or arguments flags, buffers, and ep, it initiates an asynchronous operation to
receive data. The operation constructs and array iov of POSIX struct iovec of size length corresponding to
buffers and receives data as if by POSIX:

typename Socket::endpoint_type addr;

socklen_t addrlen{ep.capacity()};
msghdr message;

message.msg_name = addr.data();
message.msg_namelen = &addrlen;

message.msg_iov = iov;

message.msg_iovlen = length;

message.msg_control = nullptr;
message.msg_controllen = 0;

message.msg_flags = g

auto n = recvmsg(socket.native_handle(), &message, static_cast<int>(flags));

if (n < 0) {
execution: :set_error(std::move(r), error_code(errno, system_category()));
}
else {
addr.resize(addrlen);
execution: :set_value(std: :move(r), n, addr);
}

9.3.6 net::async_send [net.sender.async.send]

namespace std::experimental::net::inline vl {
namespace sender-adaptors // exposition only {
struct async_send_t {
struct send-sender; // exzposition only
struct send-sender-adaptor-closure; // exposition only

template <class Protocol, class ConstantBufferSequence>
send-sender operator() (basic_socket<Protocol>& socket,
const ConstantBufferSequence& buffers) const;
template <class Protocol, class ConstantBufferSequence>
send-sender operator () (basic_socket<Protocol>& socket,
sender_base: :message_flags flags,
const ConstantBufferSequence& buffers) const;

template <class Protocol>
send-sender—adaptor-closure
operator () (basic_socket<Protocol>& socket) const;

template <class Protocol, execution::sender Sender>

send-sender operator () (Sender&& sender,
basic_socket<Protocol>& socket) const;

22

env)

(5.1)
(5.2)
(5.3)
(5.4)

async_send_t is the type of customization point objects for creating senders sending messages on a connected
socket.

template <class Protocol, class ConstantBufferSequence>
send-sender
async_send_t: :operator () (basic_socket<Protocol>& socket,
const ConstantBufferSequence& buffers) const;

Returns: (*this) (execution::just(buffers), socket);

template <class Protocol, class ConstantBufferSequence>
send-sender
async_send_t: :operator () (basic_socket<Protocol>& socket,
sender_base: :message_flags flags,
const ConstantBufferSequence& buffers) const;

Returns: (*this) (execution::just(flags, buffers), socket);

template <class Protocol>
send-sender-adaptor-closure
async_send_t: :perator () (basic_socket<Protocol>& socket) const;

Returns: an object closure such that sender | closure yields an object equivalent to (¥this) (sender, socket)

template <class Protocol, execution::sender Sender>

send-sender

async_send_t: :operator () (Sender&& sender,
basic_socket<Protocol>& socket) const;

The operator creates a send-sender. After the returned send-sender is connect()ed it uses the set_value
completion of sender to trigger the start of its own operation. It uses the flags and buffers arguments to
set_value to specify how to send data. If the sender_base: :message_flags parameter is not present it uses
a flags variable initialized to socket_base: :message_flags(). If sender completes with a set_error or
set_stopped completion, the completion is forwarded to the connected receiver.

Let s be the send-sender returned from async_send_t () (sender, socket) and env be an environment ob-
ject. The completion signatures returned from execution: :get_completion_signatures(s, env) contain the
following elements:

— execution::set_value_t()

— execution::set_error_t(error_code)

— execution: :set_stopped_t ()

— Any additional execution: :set_error_t signature from execution: :get_completion_signatures(sender, env)

When s is connected to a receiver r and the resulting operation state is started by a call to set_value with
argument buffers or arguments flags and buffers, it initiates an asynchronous operation to send data. The
operation constructs and array iov of POSIX struct iovec of size length corresponding to buffers and sends
data as if by POSIX:

msghdr message;

message.msg_name = nullptr;
message.msg_namelen = 0;
message.msg_iov = iov;
message.msg_iovlen = length;
message.msg_control = nullptr;
message.msg_controllen = 0;
message.msg_flags = 0;

auto n = sendmsg(socket.native_handle(), &message, static_cast<int>(flags));

23

if (mn < 0) {
execution: :set_error(std: :move(r), error_code(errno, system_category()));

}
else {

execution: :set_value(std::move(r), n);
}

9.3.7 net::async_send_to [net.sender.async.send.to]

namespace std::experimental::net::inline vi1 {
namespace sender-adaptors // exposition only {
struct async_send_to_t {
struct send-to-sender; // exposition only
struct send-to-sender-adaptor-closure; // exposition only

template <class Protocol, class MutableBufferSequence>
send-to-sender operator () (basic_datagram_socket<Protocol>& socket,
const MutableBufferSequence& buffers,
typename basic_datagram_socket<Protocol>::endpoint_type& ep) const;
template <class Protocol, class MutableBufferSequence>
send-to-sender operator() (basic_datagram_socket<Protocol>& socket,
sender_base: :message_flags flags,
const MutableBufferSequence& buffers,
typename basic_datagram_socket<Protocol>::endpoint_type& ep) const;

template <class Protocol>
send-to-sender—-adaptor-closure
operator () (basic_datagram_socket<Protocol>& socket) const;

template <class Protocol, execution::sender Sender>
send-to-sender operator() (Sender&& sender,
basic_datagram_socket<Protocol>& socket) const;
};
}
}

1 async_send_to_t is the type of customization point objects for creating senders sending messages on a socket
to a specified endpoint.

template <class Protocol, class MutableBufferSequence>
send-to-sender
async_send_to_t: :operator() (basic_datagram_socket<Protocol>& socket,
const MutableBufferSequence& buffers,
typename basic_datagram_socket<Protocol>::endpoint_type& ep) const;

2 Returns: (*this) (execution::just(buffers, ep), socket);

template <class Protocol, class MutableBufferSequence>
send-to-sender
async_send_to_t: :operator() (basic_datagram_socket<Protocol>& socket,
sender_base: :message_flags flags,
const MutableBufferSequence& buffers,
typename basic_datagram_socket<Protocol>::endpoint_type& ep) const;

3 Returns: (*this) (execution::just(flags, buffers, ep), socket);

24

(5.1)
(5.2)
(5.3)
(5.4)

template <class Protocol>
send-to-sender—-adaptor-closure
async_send_to_t: :operator() (basic_datagram_socket<Protocol>& socket) const;

Returns: an object closure such that sender | closure yields an object equivalent to (*this) (sender, socket)

template <class Protocol, execution::sender Sender>
send-to-sender
async_send_to_t: :operator() (Sender&& sender,

basic_datagram_socket<Protocol>& socket) const;

The operator creates a send-to-sender. After the returned send-to-sender is connect ()ed it uses the set_value
completion of sender to trigger the start of its own operation. It uses the flags, buffers, and ep arguments
to set_value to specify how to send data. If the sender_base::message_flags parameter is not present it
uses a flags variable initialized to socket_base: :message_flags(). If sender completes with a set_error or
set_stopped completion, the completion is forwarded to the connected receiver.

Let s be the send-to-sender returned from async_send_to_t () (sender, socket) and env be an environment
object. The completion signatures returned from execution::get_completion_signatures(s, env) contain
the following elements:

execution: :set_value_t()

execution: :set_error_t(error_code)

execution: :set_stopped_t ()

Any additional execution: :set_error_t signature from execution: :get_completion_signatures(sender, env)

When s is connected to a receiver r and the resulting operation state is started by a call to set_value with
argument buffers and ep or arguments flags, buffers, and ep, it initiates an asynchronous operation to send

data.

The operation constructs and array iov of POSIX struct iovec of size length corresponding to buffers

and receives data as if by POSIX:

msghdr message;

message .msg_name = ep.data();
message.msg_namelen = ep.size();
message.msg_iov = iov;
message.msg_iovlen = length;
message.msg_control = nullptr;
message.msg_controllen = 0;
message.msg_flags = 0;
auto n = sendmsg(socket.native_handle(), &message, static_cast<int>(flags));
if (n < 0) {
execution: :set_error(std: :move(r), error_code(errno, system_category()));
}
else {
execution: :set_value(std::move(r), n);
3

9.3.8 net::async_wait [net.sender.async.wait]

namespace std::experimental::net::inline vi1 {

namespace sender-adaptors // exposition only {

struct async_wait_t {

struct wait-sender; // exzposition only
struct wait-sender-adaptor-closure; // exposition only

25

(5.1)
(5.2)
(5.3)
(5.4)

template <class Protocol>
wait-sender operator () (basic_socket<Protocol>& socket,
socket_base::wait_type events) const;

template <class Protocol>
wait-sender-adaptor-closure operator () (basic_socket<Protocol>& socket) const;

template <execution::sender_of<execution::set_value_t(socket_base::wait_type)> Sender,
class Protocol>
wait-sender operator() (Sender&& sender,
basic_socket<Protocol>& socket) const;
};
}
}

async_wait_t is the type of customization point objects for creating senders awaiting readiness of sockets for a
specific set of operations. [Note: This operation could be seen as the basis operation for readiness-based contexts
as all the operations can be implemented in terms of this operation and conceptually blocking calls which are
known not to block due to the readiness indicator. — end note]

template <class Protocol>

watt-sender

async_wait_t::operator() (basic_socket<Protocol>& socket,
socket_base::wait_type events) const

Returns: (*this) (execution::just(events), socket);

template <class Protocol>
wait-sender—-adaptor-closure
async_wait_t::operator() (basic_socket<Protocol>& socket) const;

Returns: an object closure such that sender | closure yields an object equivalent to (xthis) (sender, socket).

template <execution::sender_of<execution::set_value_t(socket_base::wait_type)> Sender,
class Protocol>
wait-sender
async_wait_t::operator() (Sender&& sender,
basic_socket<Protocol>& socket) const;

The operator creates a wait-sender. After the returned wait-sender is connect(Ded it uses the set_value
completion of sender to trigger the start of its own operation. It uses the socket_base: :wait_type argument
to set_value as a bitmask to await readiness of the respective conditions. If sender completes with a set_error
or set_stopped completion, the completion is forwarded to the connected receiver.

Let s be the wait-sender returned from async_wait_t () (sender, socket) and env be an environment ob-
ject. The completion signatures returned from execution: :get_completion_signatures(s, env) contain the
following elements:

— execution::set_value_t(socket_base::wait_type)

— execution::set_error_t(error_code)

— execution: :set_stopped_t()

— Any additional execution: :set_error_t signature from execution: :get_completion_signatures(sender,

When s is connected to a receiver r and the resulting operation state is started by a call to set_value with
argument events, it initiates an asynchronous operation to await readiness of 1/O operations on s, as if by
POSIX:

26

env)

pollfds fds[1];

fds.fd = s.native_handle();

fds.events = (events & s.wait_read? POLLIN: 0) | (events & s.wait_write? POLLOUT: 0);

if (1 == poll(fds, 1, 0)) {

execution: :set_value(std::move(r),

(fds[0] .revents & POLLIN? s.wait_read(): socket_base::wait_type()) |
(fds[0] .revents & POLLOUT? s.wait_write(): socket_base::wait_type()) |
(£fds[0] .revents & POLLERR? s.wait_error(): socket_base::wait_type()));

}
else {

execution: :set_error(std: :move(r), error_code(errno, system_category()));
}

9.3.9 net::async_write_some [net.sender.async.write.some]

namespace std::experimental::net::inline v1 {
namespace sender—adaptors // exposition only {
struct async_write_some_t {
struct write-some-sender; // ezposition only
struct write-some-sender-adaptor-closure; // ezposition only

template <class Protocol, class ConstBufferSequence>
write-some-sender operator () (basic_stream_socket<Protocol>& socket,
const ConstBufferSequence& buffers) const;

template <class Protocol>
write-some-sender-adaptor-closure
operator () (basic_stream_socket<Protocol>& socket) const;

template <execution::sender Sender, class Protocol>
write-some-sender operator () (Sender&& sender,
basic_stream_socket<Protocol>& socket) const;
Ipg
}
}

1 async_write_some_t is the type of customization point objects for creating senders writing a sequence of buffers
to a stream socket.

template <class Protocol, class ConstBufferSequence>

write-some-sender

async_write_some_t::operator() (basic_stream_socket<Protocol>& socket,
const ConstBufferSequence& buffers) const;

2 Returns: (*this) (execution::just(buffers), socket);

template <class Protocol>
write-some-sender-adaptor-closure
async_write_some_t: :operator () (basic_stream_socket<Protocol>& socket) const;

3 Returns: an object closure such that sender | closure yields an object equivalent to (xthis) (sender, socket).

template <execution::sender Sender, class Protocol>

write-some-sender

async_write_some_t_operator () (Sender&& sender,
basic_stream_socket<Protocol>& socket) const;

27

(3.1)
(3.2)
(3.3)

(3.1)
(3.2)
(3-3)

Returns: async_send(sender, socket);

[Note: The customization point may provide additional overloads, e.g., for files. As a result this name may be
useful for algorithms applicable to other streams then just sockets in the future. _ — end note_]

9.4 Network Algorithms [net.algorithms]
9.4.1 General [net.algorithms.general]

The section [net.algorithms] specifies algorithms relevant for networking programming. Whether the correspond-
ing operations are, indeed, implemented as algorithms using lower level networking operations or something
different is left unspecified altough implementations are encouraged to do so.

9.4.2 net::async_resolve_name [net.sender.async.resolve.name]
async_resolve_name is a customization point for resolving a name to an address.

async_resolve_name is parameterized on an InternetProtocol and takes a sequence of characters specifying a
name to be looked-up as argument. Upon success it returns a net: :ip: :basic_endpoint<InternetProtocol>
with a result from the look-up.

The completion signatures returned from from execution::get_completion_signatures(s, env) contain
three elements where s is a sender object returned from net: :async_resolve_name<InternetProtocol>:

— execution: :set_value(net::ip::basic_endpoint<InternetProtocol>)
— execution: :set_error_t(error_code)
— execution: :set_stopped_t ()

The default implementation uses DNS (as specified by a sequence of RFCs) to resolve the name into an addresses.
How the operation is done exactly is implementation specific.

[Editing note: There should probably a version of the operation yielding a sequence of results. Most likely the
proper approach to do is to use sequence senders which are, however, not yet in a any proposal being discussed.
— end note]

9.4.3 net::async_resolve_address [net.sender.async.resolve.address]
async_resolve_address is a customization point for resolving an address to a name.

async_resolve_name takes an net::ip::basic_endpoint<InternetProtocol> as argument. Upon success it
returns a string_view with a name for the endpoint. [Note: The referenced sequence of characters is only valid
until set_value returns — end note]

Let s be a sender object returned from async_reolve_name. The completion signatures returned from
execution::get_completion_signatures(s, env) contain three elements:

— execution: :set_value(string_view)
— execution::set_error_t(error_code)
— execution: :set_stopped_t ()

The default implementation uses DNS (as specified by a sequence of RFCs) to resolve the address into a name.
How the operation is done exactly is implementation specific.

[Editing Note: There should probably a version of the operation yielding a sequence of results. Most likely the
proper approach to do is to use sequence senders which are, however, not yet in a any proposal being discussed.
— end note]

28

	Revisions
	Changes for R2
	Changes for R1

	Motivation
	Related Work
	Design Choices
	Obtaining the Scheduler
	Error Reporting
	Member vs. Non-Member Operation
	I/O Scheduler Interface
	Timer Class or Just a Sender
	Higher Level Tools
	Sender Adaptors
	Awaitable Senders

	Cancellation Concern
	Discussion
	Support A system execution context
	Resolution
	Naming
	Constraints On Used Scheduler
	Required Features
	Extensible Scheduler Interface
	TLS Support
	Buffer Pools
	Async Streams
	Networking Algorithms

	Questions
	Wording for Networking CPOs
	Networking Senders [net.sender]
	General [net.sender.general]
	Network Sender Operations Synopsis [net.sender.syn]
	Network Sender Operations [net.sender.operations]
	net::async_accept [net.sender.async.accept]
	net::async_connect [net.sender.async.connect]
	net::async_read_some [net.sender.async.read.some]
	net::async_receive [net.sender.async.receive]
	net::async_receive_from [net.sender.async.receive.from]
	net::async_send [net.sender.async.send]
	net::async_send_to [net.sender.async.send.to]
	net::async_wait [net.sender.async.wait]
	net::async_write_some [net.sender.async.write.some]

	Network Algorithms [net.algorithms]
	General [net.algorithms.general]
	net::async_resolve_name [net.sender.async.resolve.name]
	net::async_resolve_address [net.sender.async.resolve.address]

