Sender /Receiver Interface For Networking

Document #: P2762R0

Date: 2023-01-13

Project: Programming Language C++

Audience: Networking Study Group (SG4)
Library Evolution Working Group

Reply-to: Dietmar Kiihl (Bloomberg)

<dkuhl@bloomberg.net>

Contents

1 Motivation 1

2 Related Work 2

3 Design Choices 2
3.1 Obtaining the Scheduler e 2
3.2 Error Reporting L 3
3.3 Member vs. Non-Member Operation 5
3.4 I/O Scheduler Interface L 5
3.5 Timer Class or Just a Sender e 6
3.6 Higher Level Tools e 6

4 Cancellation Concern 7

5 Wording for Networking CPOs 7

6 Networking Senders [net.sender] 8
6.1 General [net.sender.general] L L 8
6.2 Network Operations e 8

6.2.1 net::async_accept [net.sender.async.accept] Lo oL 9
6.2.2 net::async_connect [net.sender.async.connect] L. 9

6.2.3 net::async_read_some [net.sender.async.read.some] 9
6.2.4 net::async_receive [net.sender.async.receive] 10
6.2.5 net::async_receive_from [net.sender.async.receive.from]. 10
6.2.6 net::async_send [net.sender.async.send] Lo Lo 11
6.2.7 net::async_send_to [net.sender.async.send.to]o 12
6.2.8 net::async_write_some [net.sender.async.write.some] L. 13

This document proposes the addition of senders for asynchronous networking operations to the Networking TS
and, ultimately, to the C++ Standard. As the std::execution proposal isn’t landed, yet, this proposal is
kept at a high level and primarily intended to discuss what a potential interface for asynchronous networking
operations could look like.

1 Motivation

The std::execution proposal (P2300) proposes sender/receiver as a general framework for structured and
composable concurrency. The currently proposed components define a framework primary targeted at concurrent
execution within a program. If this framework gets adopted, it should be possible to integrate other asynchronous

mailto:dkuhl@bloomberg.net
http://wg21.link/n4771
http://wg21.link/p2300
http://wg21.link/p2300

work like networking. To facilitate such integration, it is necessary to define a suitable set of senders for the
relevant asynchronous network operations.

2 Related Work

The components defined by P2300 provide a complete framework for managing asynchronous operations and
no other facilities beyond senders for the managing the networking operations are needed. The Networking TS
defines its own framework for asynchronous operations. This paper does not propose the removal of the other
framework; whether the asynchronous framework from the Networking TS should be retained or removed is a
separate discussion.

There is a proposal for Standard Secure Networking (P2586). The current proposal consists of a high level
description and a few possibly usage examples. Based on the usage example, this proposal does not include
any binding to an asynchronous system. At most, it gets to the question on whether a coroutine interface
should be provided to its “poll” facility. So far I haven’t created a binding of the interfaces in this proposal
to the facilities proposed by P2586 but I don’t think there would be any problem doing so. From the current
document, it isn’t clear to me whether an active “poll” can be interrupted to add new work. Whether it would
be a reasonable implementation choice to use P2586 as the base implementation isn’t quite clear, as it seems
beneficial to potentially use a completion interface, e.g., io_uring, directly.

The focus of P2586 is secured networking and I haven’t managed to experiment with a secured version of the
proposed networking senders, yet.

P2586 makes some claims about allocations needed for a design based on P2300; there is actually no need to
do any allocations at alll The current experimental implementation (it is part of my experimental standard
library) doesn’t use any allocations in the networking senders (unless variable sized scatter/gather buffers are
specified in a way incompatible with an array of iovec). When using poll() to wait for activity, currently a
std: :vector<::pollfd> and a std::vector of completions are used. However, it would be easily possible to
specify an interface to a suitable I/O context providing control over the maximum size of these arrays and their
required memory to avoid any allocations

3 Design Choices

The basic interface of the senders for the asynchronous network operations is informed by the Networking TS:
the available operations and their arguments will be similar. Even so there are some design choices. In most
cases, the alternatives aren’t exclusive and multiple variations can be supported to support different uses.

The sample code for the different considerations concentrates on the respective choice being considered. As other
design choices may affect the resulting code, one of the corresponding options is picked. The different design
choices are mostly orthogonal, although some of the choices (notably whether the operations should be member
functions) may limit the possibilities for other considerations.

3.1 Obtaining the Scheduler

The networking operations need a suitable context dealing with the asynchronousity, i.e., something using
poll(2), epoll(2), kqueue(2), io_uring(2), completion ports, etc., to schedule the operation. The context is
abstracted by a scheduler capable of scheduling the respective networking operations. There are a few options
for how the scheduler can be obtained:

1. The operation is used as a sender factory and the scheduler is passed in as an argument. This approach
makes the scheduling explict when creating the asynchronous operation, e.g.:

auto make_accept(auto scheduler, auto& socket) {
return async::accept(scheduler, socket);

}

http://wg21.link/p2300
http://wg21.link/n4771
http://wg21.link/n4771
http://wg21.link/p2586
http://wg21.link/p2586
http://wg21.link/p2586
https://kernel.dk/io_uring.pdf
http://wg21.link/p2586
http://wg21.link/p2586
http://wg21.link/p2300
https://github.com/dietmarkuehl/kuhllib
https://github.com/dietmarkuehl/kuhllib
http://wg21.link/n4771
https://man.archlinux.org/man/io_uring_enter.2.en

2. The operation is used as a sender adatper and the scheduler is obtained using
get_completion_scheduler<set_value_t>(s) from the upstream sender, e.g.:

auto make_accept(auto scheduler, auto& socket) {
return schedule(scheduler)
| async::accept(socket)

3

3. The operation is used as a sender factory and the sheduler is obtained using get_scheduler (get_env(r))
from the downstream sender. This approach allows imbuing a work graph with a scheduler from the usage
end, e.g.:

auto make_accept(auto scheduler, auto& socket) {
return on(scheduler, async::accept(socket));

3

The most useful of these options seems to be the third one, i.e., injecting the used scheduler from the point
where the asynchronous work is actually used. The other two options require knowledge of the scheduler while
building up the asynchronous work.

As a potential variation of the second and third option, a specific customization point name, e.g.,
get_completion_io_scheduler or get_io_scheduler, could be used. Using different names could en-
able the separation of the I/O scheduler from schedulers dedicated to doing work. These queries could fall back
to the respective non-specific queries when not provided.

For the examples below, the third option is assumed. However, all three options are viable condidates.

3.2 Error Reporting

For the Networking TS, errors of asynchronous operations are reported using an std: :error_code argument as
part of the completion signature. As there is exactly one completion function used, there isn’t really a different
alternative. Using receivers supports multiple completion functions, thereby allowing multiple choices:

1. The operation could complete using one set_value call using the same fused completion consisting of an
std: :error_code and the other completion arguments as the Networking TS does, e.g.:

auto sender
= async: :read(socket, buffer)
| then([] (error_code const& ec, int n) { ... }

)

Within a coroutine, structured binding could be used to decompose the result, e.g.:

auto[ec, n] = co_await async::read(socket, buffer);

2. As the error path is different in the completing functions, it can be reasonable to call different set_value
functions: one with an std::error_code argument and another one (or even multiple ones) with the
arguments for the success case. This approch wouldn’t work with coroutines as these are restricted to
using just one completion signature. Also, a downstream sender would need an overloaded set_value to
deal with the result:

auto sender
= async: :read(socket, buffer)
| overload(
[1(int n){ /* success path */ },
[] (error_code const& ec){ /* error path */ }

)

http://wg21.link/n4771
http://wg21.link/n4771

3. Similar to the previous alternative but instead of reporting errors using the set_value channel using the
set_error channel, e.g.:

auto sender = async::read(socket, buffer)
| then([](int n) { /* success path */ }
| upon_error([] (error_code const& ec) { /* error path */ }

While this approach works with coroutines, it would end up using exceptions, e.g.:

try {
int n = co_await async::read(socket, buffer);
// success path

} catch (error_code const& ec) {
// error path

}

However, when using coroutines, it would be possible to use a generic algorithm fusing the set_value and
the set_error results back into one set_value result to avoid an exception.

4. There may even be space for a combination of reporting some errors using set_value while reporting
others using set_error, depending on the severity of the error.

5. With senders getting composed in a structured form, it may be reasonable to offer passing a reference to an
std: :error_code and populating that when present and otherwise reporting the error on the set_error
channel. That would be similar to the synchronous networking operations of the Networking TS reporting
errors through the passed argument or an exception. This approach would work reasonably well using
coroutines:

error_code ec;
int n = co_await async::read(socket, buffer, ec);
if (lec)
/* success path */;
else
/* error path */

The most basic variations seems to use a combination of set_value for the successful case and set_error for
the failure cases; the other combinations can be build from that. Also, recognizing an error can be used by
algorithms to decide continuing differently upon error, e.g., cancelling other operation for a when_all.

However, some of the error cases may have been partial successes. In that case, using the set_error channel
taking just one argument is somewhat limiting. On the other hand, when substantial work is done and partial
successes become reasonable, it is likely that intermediate results are to be produced and algorithms of a different
shape are used anyway.

When using asynchronous operations within a coroutine, there is only one set_value supported which can, how-
ever, return multiple values using a std: :tuple, that is then likely decomposed using structured binding. That
is when using coroutine defining different set_value channels isn’t an option. For a coroutine, the set_error
channel would be turned into an exception. With variations of the asynchronous operations taking an optional
std: :error_code reference as an argument, the coroutine experience would be similar to the synchronous code.
Likewise, a coroutine-friendly version of the operations can be provided.

It is possible to offer a combination of the different options. The design choice would name the operations (or the
namespace they live in) appropriately. The examples here assume using set_value and set_error for success
and error handling.

http://wg21.link/n4771

3.3 Member vs. Non-Member Operation

The Networking TS uses both member and non-member functions for its operations. Member functions are what
users are used to from other languages, where there often aren’t different option. The problem is compounded
by many IDEs providing simple name completions for member functions. For example:

auto sender = socket.async_read(buffer)
| then([] (auto&&...){ /* use result */ }

)

Similarly, when using coroutines:

auto[ec, n] = co_await socket.async_read(buffer);

On the hand side, CPOs can’t be member functions (well, CPOs are classes with function call member functions
but they don’t really look like member functions and they aren’t a member of some entity operated on). Also,
adding members to classes tends to lead to “kitchen sink” classes acquiring ever more operations over time
(see, e.g., std::basic_string). The potentially fairly large number of variations (see other design choices)
is probably easier managed using non-member function. For example, there may be groups of operations in
different namespaces based on their intended use, e.g., async for the senders directly used to chain operations
and coro for senders used within coroutines.

auto sender = async::read(socket, buffer)
| then([] (auto&&...){ /* use result */ }

>

Similarly, when using coroutines:

auto[ec, n] = co_await coro::read(socket, buffer);

As there is generally no entity used with the P2300 algorithms, these aren’t member of classes. For the network
operations there is the socket providing an entity and the operations could be defined as member functions of
these. Using non-member names providing the full variation of options doesn’t exclude using member functions
for the expected likely use cases, probably just delegating to the respective non-member operations. The examples
here don’t use member functions.

3.4 1I/0 Scheduler Interface

The networking (or, more general, I/O) operations will require being scheduled on a special context and require
being run on a corresponding scheduler. Also, it is likely desirable to support different schedulers, e.g., one using
the most efficient real implementation, one being friendly to integration with other language’s “run loop”, and
one allowing unit testing of networking operations. There are multiple options for how the networking operations
are talking to the scheduler:

1. The networking operations and the scheduler use a secret channel. While that is probably the easiest to
specify, it means that the networking operations can’t accept a somehow adapted scheduler or there needs
to be a protocol for how to extract the underlying scheduler.

2. Expose/abstract the various I/O operations somehow, possibly using virtual functions or, more likely,
CPOs. While this approach is probably more generic, the interface to the operations is likely at a somewhat
lower level than what the senders use and it is possibly platform specific. For example, a read_some
operation used with io_uring(2) needs to provide a pointer to an iovec which needs to stay around
until the operation is consumed from the completion ring buffer. That is a rather different interface than
the generic buffers passed to read_some. It may be possible to define the scheduler interface such that it
defines what the caller has to store until completion but I haven’t tried implementing this approach, yet.

3. The scheduler interface may model multiple contracts (one for each support I/O operation) and each
operation produces an object which gets embededded into the I/O operation’s operation state object.
Each supported underlying I/0 interface could store its data in exactly the form needed.

http://wg21.link/n4771
http://wg21.link/p2300
https://man.archlinux.org/man/io_uring_enter.2.en

4. The scheduler interface for I/O operations may be what is being proposed by the Low level file i/o library.
I haven’t tried to implement that.

5. The Networking TS may be doing something in that area and it may be possible to integrate with that or,
at least, do something similar. I haven’t tried to implement that. It seems the io_context uses a secret
interface.

Most likely, it is preferable to have some form of I/O scheduler abstraction than using a secret interface. However,
it isn’t yet clear how such an interface would actually look like.

3.5 Timer Class or Just a Sender

The Networking TS defines a basic_waitable_timer class template. The type of this class encodes various
timer properties like the underlying clock type and some wait traits. The primary need in the Networking TS
for this class is the need for an entity to trigger cancellations: while operations are cancellable the cancellation
needs to be explicitly wired up where necessary. Uses would look like

waitable_timer timer(/* timer settings */);
auto sender = wait_for(timer, 5s);

or using coroutines

co_await wait_for(timer, 5s);

When using sender/receiver cancellation and its necessary wiring is handled by the senders capable of cancelling
operations by appropriate use of the receiver’s stop token. Correspondingly, there isn’t really a need for a timer
class. Having to create a timer object and keeping it around is sometimes a bit annoying. Thus, it may be
reasonable to allow defining timers simply by creating a suitable sender which is then scheduled on a suitable
scheduler. The I/O schedulers are capabable of executing timers.

auto sender = wait_for(5s);
co_await wait_for(5s);

As with most of the other design choices it may be reasonable to support both alternatives: sometimes it may
be reasonable to just schedule a timed operation without the need for an object and specifying the required
properties when doing so works. In other situations it may be preferable to encapsulate the timer properties
into an object and using this object to schedule multiple timed operations. In that situation it may be possible
to define the timed operations in a way which doesn’t require the timer entity to stay alive until the timed
operation completes: removing the need for the timer entity to remain valid until the timed operation completes
should make their use simpler. The actual timed operation would be maintained by the scheduler.

3.6 Higher Level Tools

The basic networking or I/O operations are fairly straightforward and there are actually not that many of
them (the io_uring operations are probably a good indication of the overall scope including operations beyond
networking). Concentrating on networking operations the Networking TS doesn’t provide everything io_uring
does. Beyond the basic operations provided by the underlying system, the networking operations can reasonably
be composed into higher level algorithms. For example, an async::read_some operation potentially reading
partial buffers successfully can be composed into an async: :read operations always reading a complete buffer
or failing. The question is, what algorithms should be included in the proposal, if any?

Algorithms like async::read and async::write are somewhat obvious examples. Something like an
async::resolve could be an example of a rather non-trivial algorithm: there is the synchronous
getaddrinfo(3) function, but there doesn’t seem to be an asynchronous alternative. With an asynchronous
framework in place, it seems reasonable to include an asynchronous version of getaddrinfo(3).

Beyond sender algorithms, there may also be some other interesting components:

http://wg21.link/p1031
http://wg21.link/n4771
http://wg21.link/n4771
http://wg21.link/n4771
https://man.archlinux.org/man/io_uring_enter.2.en
http://wg21.link/n4771
https://man.archlinux.org/man/io_uring_enter.2.en
https://man.archlinux.org/man/getaddrinfo.3.en
https://man.archlinux.org/man/getaddrinfo.3.en

— It may be useful to have a coroutine task (io_task) injecting a scheduler into asynchronous networking
operations used within a coroutine together with a suitable scope (io_scope) similar to async_scope but
also tied to some I/O scheduler. The corresponding task class probably needs to be templatized on the
relevant scheduler type.

— For full-duplex operation of a socket, i.e., scheduling concurrent reading and writing operation, something
like a ring buffer with sender interfaces to the production and consumption of buffers seems useful.

There are probably various other useful algorithms and components.

4 Cancellation Concern

The networking operations are generally inactive after the operation was started but the network operation
hasn’t completed yet. To cancel such an operation, it is necessary to actively trigger some cancellation function,
i.e., a simple test of an atomic bool provided by a stop token generally won’t work. Thus, the various operations
need to register a callback with the receiver’s stop token. In cases where the stop token isn’t no_stop_token,
this registration needs to do some synchronization both for the registration and the deregistration of the callback.
Repeatedly doing that operation while processing data on a socket may be a performance concern.

It may be possible to avoid setting up cancellation for individual operations and rather hook the cancellation
once to a suitable entity like a socket. The corresponding approaches will need some level of support by the
library. For example, it may be necessary to support calls to cancel some operations on a socket.

Even when doing so, it may be necessary to inhibit registration of callbacks with a stop token. For example,
when_all will use receivers using a different stop token than no_stop_token with its various senders. In that
case it may be useful to have a sender adapter which passes through all completion signals received but always
exposes a no_stop_token to its sender.

Some systems already have some cancellation support for common use cases. For exmaple, io_uring(2) sup-
ports timeouts for its operations (using IORING_OP_LINK_TIMEQUT). To easily tap into this pattern, it may
be reasonable to have a corresponding timeout sender taking a time and sender which may be a networking
operation: if either the time expires or the sender completes, the respective other operation would be cancelled.
Where available, the timeout could then just setup the underlying system to provide the corresponding func-
tionality. Otherwise, it would behave like a timer and another sender given to a when_any operation completing
appropriately upon completion of the first operation and cancelling the other via a stop token.

This area still needs some experimentation and, I think, design. The general direction of encapsulating the
cancellation into the asynchronous operations is rather interesting, but it isn’t a priori clear how to avoid
potential costs.

5 Wording for Networking CPOs

In 14.2 [io_ context.io_ context], add a scheduler_type and a get_scheduler () method to the synopsis:

namespace std {
namespace experimental {
namespace net {
inline namespace vl {
class io_context : public execution_context

{
public:

class executor_type;
[class scheduler_type;]{add}

executor_type get_executor() noexcept;
[scheduler_type get_scheduler() noexcept;]{add}

https://github.com/kirkshoop/async_scope/blob/main/asyncscope.md
https://man.archlinux.org/man/io_uring_enter.2.en

(2.1)

(2.2)

(2.3)

S

In 14.2 [io__context.io__context] after paragraph 2, add a new paragraph:

count_type is an implementation-defined unsigned integral type of at least 32 bits.

scheduler_type is a type modelling scheduler [exec.sched].

In 14.2.1a [io__context.io__context.members| after paragraph 3 add a new paragraph:

executor_type get_executor() noexcept;

Returns: An executor that may be used for submitting function objects to the io_context.

scheduler_type get_scheduler() noexcept;

Returns: A scheduler that may be used for scheduling sender objects on the io_context.

Add a new section for the networking operations:

6 Networking Senders [net.sender]

6.1 General [net.sender.general]

Subclause [net.sender] defines sender factories for newtorking operations. When the corresponding operations
are started, they do no block any thread. Instead they complete once the corresponding operation becomes
ready. How the system determines that an operation is ready is implementation specific.

These sender factories share some common behavior:

— When a sender s is connected [exec.connect] to a receiver r and the resulting operation state is

execution: :started [exec.op_state.start], a callback for cancellation is registered with the stop token
obtained using get_stop_token(get_env(r)). When this callback is invoked the corresponding operation
is cancelled and one of the completion signatures is invoked in a timely manner. The operation can
complete using set_stopped [exec.set_stopped] but it may still complete with one of the other completion
signals instead if the operation became ready otherwise.

Starting an operation state [exec.op.state.start] may complete the operation immediately from the starting
thread if it is ready to be completed. Otherwise, the operation is initiated using the scheduler and gets
completed once it becomes ready.

Any object referenced in the sender call needs to stay valid while the sender or an operation state obtained
from the sender by connecting it to a receiver is used. A sender for a network operation stops being used
when it gets connected to a a receiver or when it gets destroyed. An operation state stops being used when
it is destroyed or when a completion signal is invoked after the operation state was execution: :started
[exec.op__state.start].

6.2 Network Operations

The shape of the exact operations isn’t quite clear yet, as there are various design option (see above). Below
the relevant operations are listed together with their arguments and their likely completion_signatures. The
current list of operations may be incomplete. The “as if” code isn’t necessarily ready to compile and may omit
necessary casts and use private operations in some cases.

(3.1)
(3.2)
(3.3)

(3.1)
(3.2)
(3.3)

6.2.1 net::async_accept [net.sender.async.accept]
async_accept is a customization point object for accepting new connections.

async_accept (acceptor) takes a reference to an acceptor socket acceptor as parameter and returns a sender
s. Let Acceptor be the type remove_cvref_t<decltype(acceptor)> and env be an environment object.

The completion signatures returned from execution::get_completion_signatures(s, env) contain three
elements:

— execution::set_value_t(typename Acceptor::socket_type, typename Acceptor::endpoint_type)
— execution::set_error_t(error_code)
— execution: :set_stopped_t ()

When s is connected to a receiver r and the resulting operation state is started, it initiates an asynchronous
operation to extract a socket from the queue of pending connections for acceptor, as if by POSIX:

typename Acceptor::endpoint_type ep;

socklen_t addrlen(ep.capacity());
auto h = accept(acceptor.native_handle(), ep.data(), &addrlen);
if (h < 0) {

execution: :set_error(std: :move(r), error_code(errno, system_category()));
}
else {

ep.resize(addrlen);

execution: :set_value(std::move(r), typename Acceptor::socket_type(h), ep);
}

The Networking TS passes the endpoint optionally as a reference argument, resulting in two interfaces: one
where the endpoint isn’t obtained and one where it is. The interface for async_accept could reference the
endpoint as well, instead of providing it with set_value. An alternative design allowing omission of the
endpoint is to have async_accept not providing an endpoint with set_value and async_accept_from with
the completion signature above.

6.2.2 net::async_connect [net.sender.async.connect]
async_connect is a customization point object for connecting to a server socket.

async_connect (socket, endpoint) takes a reference socket and an ep as parameters and returns a sender s.
Let Socket be the type remove_cvref_t<decltype(socket)> and env be an environment object.

The completion signatures returned from execution::get_completion_signatures(s, env) contain three
elements:

— execution::set_value_t()
— execution::set_error_t(error_code)
— execution: :set_stopped_t ()

When s is connected to a receiver r and the resulting operation state is started, it initiates an asynchronous
operation to connect socket to a server socket, as if by POSIX:

if (connect(acceptor.native_handle(), ep.data(), ep.size()) < 0) {
execution: :set_error(std: :move(r), error_code(errno, system_category()));

}
else {

execution: :set_value(std: :move(r));
}

6.2.3 net::async_read_some [net.sender.async.read.some]

async_read_some is a customization point object for reading data from a socket into a buffer sequence.

http://wg21.link/n4771

(3.1)
(3.2)
(3.3)

(4.1)
(4.2)
(4.3)

async_read_some(socket, buffers) takes a reference socket and a buffer sequence buffers as parameters
and returns a sender s. Let env be an environment object.

The completion signatures returned from execution::get_completion_signatures(s, env) contain three
elements:

— execution::set_value_t(size_t)
— execution::set_error_t(error_code)
— execution: :set_stopped_t ()

The default behavior is equivalent to net::async_receive(socket, buffers). [Note: Custom implementa-
tions may want to use non-socket operations for the implementation, e.g., to support the same interface to files.
—End Note]

6.2.4 net::async_receive [net.sender.async.receive]
async_receive is a customization point object for reading data from a socket into a buffer sequence.

async_receive(socket, buffers) takes a reference socket and a buffer sequence buffers as parameters and
returns async_receive(socket, message_flags{}, buffers).

async_receive(socket, flags, buffers) takes a reference socket, flags of type message_flags, and a
buffer sequence buffers as parameters and returns a sender s. Let env be an environment object.

The completion signatures returned from execution::get_completion_signatures(s, env) contain three
elements:

— execution::set_value_t(size_t)
— execution::set_error_t(error_code)
— execution: :set_stopped_t ()

When s is connected to a receiver r and the resulting operation state is started, it initiates an asynchronous
operation to read data from socket into the buffer sequence buffers. The operation constructs and array iov
of POSIX struct iovec of size length corresponding to buffers and reads data as if by POSIX:

msghdr message;

message .msg_name = nullptr;
message.msg_namelen = g
message.msg_iov = iov;
message.msg_iovlen = length;
message.msg_control = nullptr;
message.msg_controllen = 0;
message.msg_flags = g

auto n = recvmsg(socket.native_handle(), &message, static_cast<int>(flags);

if (n < 0) {
execution: :set_error(std::move(r), error_code(errno, system_category()));
}
else {
execution: :set_value(std: :move(r), n);
}

6.2.5 net::async_receive_from [net.sender.async.receive.from]

async_receive_from is a customization point object for reading data from a socket into a buffer sequence and
also getting the source of the data.

async_receive_from(socket, buffers) takes a reference socket and a buffer sequence buffers as parameters
and returns async_receive_from(socket, message_flags{}, buffers).

10

(4.1)
(4.2)
(4.3)

(4.1)
(4.2)
(4.3)

async_receive_from(socket, flags, buffers) takes a reference socket, flags of type message_flags, and
a buffer sequence buffers as parameters and returns a sender s. Let Socket be the type remove_cvref_t<decltype(socket)>
and env be an environment object.

The completion signatures returned from execution::get_completion_signatures(s, env) contain three
elements:

— execution: :set_value_t(size_t, typename Socket::endpoint_type)
— execution::set_error_t(error_code)
— execution::set_stopped_t ()

When s is connected to a receiver r and the resulting operation state is started, it initiates an asynchronous
operation to read data from socket into the buffer sequence buffers. The operation constructs and array iov
of POSIX struct iovec of size length corresponding to buffers and reads data as if by POSIX:

typename Socket::endpoint_type addr;

socklen_t addrlen{ep.capacity()};
msghdr message;

message.msg_name = addr.data();
message.msg_namelen = &addrlen;

message.msg_iov = iov;

message.msg_iovlen = length;

message.msg_control = nullptr;
message.msg_controllen = 0;

message.msg_flags = g

auto n = recvmsg(socket.native_handle(), &message, static_cast<int>(flags);

if (n < 0) {
execution: :set_error(std::move(r), error_code(errno, system_category()));
}
else {
addr.resize(addrlen);
execution: :set_value(std::move(r), n, addr);
}

6.2.6 net::async_send [net.sender.async.send]
async_send is a customization point object for writing data from a buffer sequence into a socket.

async_send(socket, buffers) takes a reference socket and a buffer sequence buffers as parameters and
returns async_send(socket, message_flags{}, buffers).

async_send(socket, flags, buffers) takes a reference socket, flags of type message_flags, and a buffer
sequence buffers as parameters and returns a sender s. Let env be an environment object.

The completion signatures returned from execution::get_completion_signatures(s, env) contain three
elements:

— execution::set_value_t(size_t)
— execution::set_error_t(error_code)
— execution: :set_stopped_t ()

When s is connected to a receiver r and the resulting operation state is started, it initiates an asynchronous
operation to write data from the buffer sequence buffers to socket. The operation constructs and array iov
of POSIX struct iovec of size length corresponding to buffers and writes data as if by POSIX:

msghdr message;
message.msg_name nullptr;
message.msg_namelen = 0;

11

(4.1)
(4.2)
(4.3)

message.msg_iov = iov;

message.msg_iovlen = length;
message.msg_control = nullptr;
message.msg_controllen = 0;
message.msg_flags = 0;

auto n = sendmsg(socket.native_handle(), &message, static_cast<int>(flags);

if (n < 0) {
execution: :set_error(std: :move(r), error_code(errno, system_category()));
}
else {
execution: :set_value(std::move(r), n);
}

6.2.7 net::async_send_to [net.sender.async.send.to]

async_send_to is a customization point object for writing data from a buffer sequence into a socket to a specific
address.

async_send_to(socket, buffers, ep) takes a reference socket, a buffer sequence buffers, and an endpoint
ep as parameters and returns async_send_to(socket, message_flags{}, buffers, ep).

async_send_to(socket, flags, buffers, ep) takes a reference socket, flags of type message_flags, a
buffer sequence buffers, and an endpoint ep as parameters and returns a sender s. Let env be an environment
object.

The completion signatures returned from execution::get_completion_signatures(s, env) contain three
elements:

— execution::set_value_t(size_t)
— execution::set_error_t(error_code)
— execution::set_stopped_t ()

When s is connected to a receiver r and the resulting operation state is started, it initiates an asynchronous
operation to write data from the buffer sequence buffers to socket using the endpoint ep as the name. The
operation constructs and array iov of POSIX struct iovec of size length corresponding to buffers and writes
data as if by POSIX:

msghdr message;

message.msg_name = ep.data();
message .msg_namelen = ep.size();
message.msg_iov = iov;
message.msg_iovlen = length;
message.msg_control = nullptr;
message.msg_controllen = 0;
message.msg_flags = 0;

auto n = sendmsg(socket.native_handle(), &message, static_cast<int>(flags);

if (n < 0) {
execution: :set_error(std: :move(r), error_code(errno, system_category()));
}
else {
execution: :set_value(std: :move(r), n);
}

12

6.2.8 net::async_write_some [net.sender.async.write.some]
1 async_write_some is a customization point object for writing data from a buffer sequence into a socket.

2 async_write_some(socket, buffers) takes a reference socket and a buffer sequence buffers as parameters
and returns a sender s. Let env be an environment object.

3 The completion signatures returned from execution::get_completion_signatures(s, env) contain three
elements:

(3.1) — execution::set_value_t(d%ze_t) - execution::set_error_t(erré¥3dkode) - execution: :set_stopped_t ()

4 The default behavior is equivalent to net::async_send(socket, buffers). [Note: Custom implementations
may want to use non-socket operations for the implementation, e.g., to support the same interface to files. —End
Note]

13

	Motivation
	Related Work
	Design Choices
	Obtaining the Scheduler
	Error Reporting
	Member vs. Non-Member Operation
	I/O Scheduler Interface
	Timer Class or Just a Sender
	Higher Level Tools

	Cancellation Concern
	Wording for Networking CPOs
	Networking Senders [net.sender]
	General [net.sender.general]
	Network Operations
	net::async_accept [net.sender.async.accept]
	net::async_connect [net.sender.async.connect]
	net::async_read_some [net.sender.async.read.some]
	net::async_receive [net.sender.async.receive]
	net::async_receive_from [net.sender.async.receive.from]
	net::async_send [net.sender.async.send]
	net::async_send_to [net.sender.async.send.to]
	net::async_write_some [net.sender.async.write.some]

