Document Number: P2772R0O

Date: 2023-01-17

Reply-to: Matthias Kretz <m kretz@gsi.de>
Audience: LEWG-I, LEWG

Target: C+26

std::1ntegral_constant LITERALS DO NOT
SUFFICE — constexpr_t?

ABSTRACT

Laine [P2725R0] proposes user-defined literals for simpler use of std::integral_constant,
simplifying basically a notion of passing constexpr function arguments. | fully support the idea,
but | believe it does not cover the complete problem & design space. In this paper | show the use
cases and solutions that | believe need to be considered at the same time.

CONTENTS
1 INTRODUCTION 1
2 WAIT, WHAT? integral_constant<double>? 2
3 A COMPILE-TIME NUMERIC TYPE 2
4 CONTEXT & UNBAKED EXPLORATIONS 3
A BIBLIOGRAPHY 5

pP2772R0 1 INTRODUCTION

1 INTRODUCTION

| am convinced we need simpler and shorter syntax for passing constant expressions to functions.
Especially if the function cannot easily resort to an NTTP (operator overload or member function
that often would require the template keyword when called).

My solution idea started from Listing 1, which uses the variable template Const for constructing

template <auto N>
inline constexpr std::integral_constant<decltype(N), N> Const = {};

template <typename T>
struct my_complex
{

T re, im;

I8

template <typename T>
struct X
{
void f(auto c) {
// ¢ can be used in constant expressions here
}
I

inline constexpr short foo = 2;

template <typename T>
void g(X<T> x) {
x.f(Const<1>);
.f(Const<2uz>);
.f(Const<3.0>);
.f(Const<4.f>);
.f(Const<foo>); // P2725R0 doesn't solve this
.f(Const<my_complex(1.f, 1.f)>); // nor this

X X X X X

Listing 1: integral_constant from variable template

objects of type integral_constant. When passed as deduced function parameter, the value can
be used in constant expressions in the function body. In Listing 1 the alternative is an NTTP to the
function f, making all calls in g look like x.template f<1>().

The first four calls to f in Listing 1 are possible with P2725R0, but the last two are not. P2725R0
can only turn integer literals into integral_constants. The problem space is larger than what
P2725R0 solves. Nevertheless, integer literals are a common case and therefore the solution of
P2725R0 seems what we want, just incomplete. | think a viable outcome could be to add both

O B N O U W N e

P2772R0 2 WAIT, WHAT? integral_constant<double>?

“lic* and ‘std:cnst<1>‘ at the same time.! | believe there is no good rationale for adding only
integral_constant literals. Simple tasks such as, how do | write an integral_constant for
INT_MAX, std::numeric_limits<int>::max(), or any other constexpr variable? Should std
::integral_constant<decltype(foo), foo>{} really be our only answer?

2 WAIT, WHAT? INTEGRAL_CONSTANT<DOUBLE>?

Oh, not to forget. | instantiated integral_constant<double> (and float and my_complex)in
Listing 1. integral_constant is misnamed nowadays. Should it be constrained to integers (for
no good reason other than the name)? Or should we consider a new type so that our type names
can still be used to carry intent?

A type for passing any possible NTTP could e.g. be named constexpr_t:
template <auto Value>
struct constexpr_t {

using value_type = decltype(Value);

using type = constexpr_t;

static inline constexpr value_type value = Value;

constexpr operator value_type() const noexcept { return Value; }
static constexpr value_type operator()() noexcept { return Value; }

3 A COMPILE-TIME NUMERIC TYPE

Laine [P2725R0] proposes the addition of unary minus to integral_constant. That's a breaking
change, as shown by Listing 2.

void f(std::same_as<int> auto);

void g(auto x) {
f(-x); //valid now, ill-formed with P2725R0:

}

void h() {
g(std::integral_constant<int, 1>());

}

Listing 2: Adding unary minus to integral_constant is a breaking change

In addition, the return type of unary minus is controversial. -short (1) is of type int. Whether
you dislike integral promotions it or not, that would be inconsistent with integral_constant ::
operator-() returning integral_constant<short, ...>.

1 I'd like to write std :: const<1>, but arrgh. ‘std::constant<1>"is a bit too long for my taste.

P2772R0O 4 CONTEXT & UNBAKED EXPLORATIONS

While the proposed return type seems to be an improvement, what about a user-defined struc-
tural type that returns a different type on unary minus? bounded :: integer [1] is an example of
such a type (though not structural). Example:

bounded: :integer<1, 10> a;

auto b = -a; // b is bounded::integer< -10, -1>
Forsuchacaseweneed integral_constant ::operator-toreturndecltype(-std::declval<T>()).

Finally, adding only unary minus is inconsistent. We should then also add unary plus and unary
tilde (bit flip).

And why stop with unary operators? Binary operators are also missing.

If we want an integral_constant type that implements unary minus, | believe we need to
have a new type. E.g. std:: numeric_constant<auto value> that requires the NTTP to have
the properties of a numeric type. Such a type would then overload all operators accordingly, similar
to boost::hana::integral_constant. See https://godbolt.org/z/vdzzdKdKz.

4 CONTEXT & UNBAKED EXPLORATIONS

My original angle was the exploration of possible APIs for simple integration of std:: simd into
the ranges and container world.

1. std::simd::size shouldn’t be a function, but an integral_constant. (You can still
call it like a function.) std ::array :: size should also be changed to be an integral -
constant (same for spans of static extent).

Changing array :: size should be a non-breaking change. The user code that could get bro-
kenis not allowed AFAIU. (“Moreover, the behavior of a C++ program is unspecified (possibly
ill-formed) [...] if it attempts to form a pointer-to-member designating [...] a standard library
non-static member function[...]" https://eel.is/c++draft/constraints#namespace.
std-6)

2. I've been playing with (needs my GCC branch for non-member operator[]):

constexpr std::span<...>
operator[](std::ranges::contiguous_range auto§§&,
index_like auto first, index_like auto size)

|.e. similar to submdrange’s strided_index_range, | was looking at index ranges. If you
pass an integral_constant size, you get a span of static extent which can CTAD into a
std:: simd. Result:

std::vector<float> x = ...;

std::simd v = x[0, 8ic];
std::simd w = x[0@, std::simd<float>::sizel;

https://godbolt.org/z/vdzzdKdKz
https://eel.is/c++draft/constraints#namespace.std-6
https://eel.is/c++draft/constraints#namespace.std-6

P2772R0O 4 CONTEXT & UNBAKED EXPLORATIONS

Literals as proposed by Laine [P2725R0] make this code much simpler to read and write!

For the second point, my prototype code is at:
https://github.com/mattkretz/index-range-subscripting/blob/main/subscript.
h#L71

Given:

std::vector<float> data;
const auto§ cdata = data;

| can write:

1. datal1u, Const<4>] returning a span<float, &>

2. cdata[1u, Const<4>] returning a span<const float, 4>

3. data[1, Const<4>] returning a span<float, dynamic_extent>

4. data[1lu, Const<-4>] returning a span<float, dynamic_extent>

5. datal[-1, Const<-4>] returning a span<float, dynamic_extent>

6. data[Const<-1>, Const<-4>] ERROR: index range results in negative size
/. data[Const<-4>, Const<-1>] returning a span<fleat, 4>

8. data[Const<-1>, Const<4>] ERROR: index range exceeds bounds

9. (data | transform(...))[1, 5] returning a subrange< ... >

And, can | have more crazy...? After | can write
std::simd v = data[1u, std::simd<float>::size];
| want to write

data[lu, v.size] = v;

This requires a new span :: operator=. Or a non-member operator= so that | can implement
it as a hidden friend in simd?

The more | think of it, the more | like the direction. Originally, | wanted to only allow non-member
operator[] and non-member operator ?: overloads. But by now I'm ready to propose that we
should simply make all operators the same, i.e. allow non-member overloads for [], (), =, and —
in addition to allowing member and non-member operator?: (even if | see little use for member
operator ?: — but consistency wins over my imagination).

https://github.com/mattkretz/index-range-subscripting/blob/main/subscript.h#L71
https://github.com/mattkretz/index-range-subscripting/blob/main/subscript.h#L71

P2772R0

A

[P2725R0]

(1]

A BIBLIOGRAPHY

BIBLIOGRAPHY

Zach Laine. P2725R0: std :: integral_constant Literals. ISO/IEC C+ Standards
Committee Paper. 2022. urL: https://wg21.1ink/p2725r0.

David Stone. davidstone / bounded._integer — Bitbucket. urL: https://bitbucket.
org/davidstone/bounded_integer (visited on 02/26/2018).

https://wg21.link/p2725r0
https://bitbucket.org/davidstone/bounded_integer
https://bitbucket.org/davidstone/bounded_integer

	1 Introduction
	2 wait, what? integral_constant<double>?
	3 A compile-time numeric type
	4 Context & unbaked explorations
	A Bibliography

