
Remove basic_string::reserve() From C++26
Document #: P2870R0
Date: 2023-05-15
Project: Programming Language C++
Audience: Library Evolution Incubator
Revises: N/A
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 1

2 Revision history 1
2.1 R0: Varna 2023 . 1

3 Introduction 1

4 Analysis 2
4.1 C++23 Review {#analysis.C++23} . 2
4.2 Deprecation Experience . 2

5 C++26 Recommendation 2

6 Wording 2

7 Acknowledgements 3

8 References 3

1 Abstract
The basic_string::reserve() function overload taking no arguments was deprecated for C++20 as a poor
substitute for basic_string::shrink_to_fit. This paper proposes removing that overload from the C++
Standard Library.

2 Revision history
2.1 R0: Varna 2023
Initial draft of the paper.

3 Introduction
At the start of the C++23 cycle, [P2139R2] tried to review each deprecated feature of C++ to see which we
would benefit from actively removing and which might now be better undeprecated. Consolidating all this
analysis into one place was intended to ease the (L)EWG review process but in return gave the author so much
feedback that the next revision of the paper was not completed.

1

mailto:ameredith1@bloomberg.net

For the C++26 cycle, a much shorter paper, [P2863R0], will track the overall analysis, but for features that
the author wants to actively progress, a distinct paper will decouple progress from the larger paper so that the
delays on a single feature do not hold up progress on all.

This paper takes up the deprecated basic_string::reserve() function overload, D.25 [depr.string.capacity].

4 Analysis
The basic_string::reserve() function taking no arguments was deprecated for C++20 by the paper
[P0966R1]. This deprecation was a consequence of cleaning up the behavior of the reserve function to no
longer optionally reallocate on a request to shrink. The original C++98 specification for basic_string supplied
a default argument of 0 for reserve, turning a call to reserve() into a non-binding shrink_to_fit request.
Note that shrink_to_fit was added in C++11 to better support this use case. With the removal of the
potentially reallocating behavior, reserve() is now a redundant function overload that is guaranteed to do
nothing. Hence it was deprecated in C++20, with a view to removing it entirely in a later standard to eliminate
one more legacy source of confusion from the standard.

4.1 C++23 Review {#analysis.C++23}
At the LEWG telecon on 2020/07/13, there was general agreement that this member is a holdover from another
time, whose replacement has been in place for some time. There was consensus to remove this member from
C++23, assuming the subsequent research does not reveal major concerns before the main LEWG review that
is to follow.

4.2 Deprecation Experience
The following program was tested on Godbolt compiler explorer to determine whether current library implemen-
tations report depration warnings in their C++20 build mode, and if so, from which release:
#include <string>

int main() {
std::string s;
s.reserve(); // Should be deprated

}

— libc++ 12.0
— libstdc++ 11.1
— Microsoft No warning

5 C++26 Recommendation
While there is no pressing need to remove this member, the sentiment was for removal in the previous standard,
so three years later we make the same (weak) recommendation to remove from C++26.

6 Wording
All wording is relative to [N4944], the latest working draft at the time of writing.

D.25 [depr.string.capacity] Deprecated basic_string capacity
1 The following member is declared in addition to those members specified in 23.4.3.5 [string.capacity]:

namespace std {
template<class charT, class traits = char_traits<charT>,

class Allocator = allocator<charT>>

2

https://wg21.link/depr.string.capacity
https://wg21.link/depr.string.capacity
https://wg21.link/string.capacity

class basic_string {
public:

void reserve();
};

}

void reserve();

2 Effects: After this call, capacity() has an unspecified value greater than or equal to size().

[Note 1: This is a non-binding shrink to fit request. —end note]

7 Acknowledgements
Thanks to Michael Parks for the pandoc-based framework used to transform this document’s source from Mark-
down.

8 References
[N4944] Thomas Köppe. 2023-03-22. Working Draft, Standard for Programming Language C++.

https://wg21.link/n4944

[P0966R1] Mark Zeren, Andrew Luo. 2018-02-08. string::reserve Should Not Shrink.
https://wg21.link/p0966r1

[P2139R2] Alisdair Meredith. 2020-07-15. Reviewing Deprecated Facilities of C++20 for C++23.
https://wg21.link/p2139r2

3

https://wg21.link/n4944
https://wg21.link/p0966r1
https://wg21.link/p2139r2

	Abstract
	Revision history
	R0: Varna 2023

	Introduction
	Analysis
	C++23 Review {#analysis.C++23}
	Deprecation Experience

	C++26 Recommendation
	Wording
	Acknowledgements
	References

