
 Bloomberg

 P2911R0 - Python Bindings
 with Value-Based Reflection
 Authors: , Adam Lach Jagrut Dave
 Last Updated: Jun 11, 2023
 Status: In progress

 Abstract

 Python/C++ bindings are heavily used in numerical calculation packages such as NumPy. The

 goal of this paper is to discuss the benefits and challenges of using value-based reflection

 (P2320 / P1240R2) to simplify creating C++ Python bindings. A previous attempt at simplifying

 Python bindings using reflection focused on Boost.Python and macro-based reflection, and can

 be found in the appendix. This paper uses contemporary value-based reflection, which has a path

 forward towards being accepted into the C++ standard, and is aimed at pybind11, a popular

 open-source Python library for binding existing C++ code to Python.

 Introduction

 Python bindings can be created by the means of the Python/C API . It is, however, rarely used 1

 directly in practice. Instead, wrapper libraries like Boost.Python or pybind11 are frequently used . 2

 For that reason, and for the sake of simplicity, this paper will focus on using C++ reflection to

 simplify creating Python bindings on top of pybind11.

 Use Case

 We have used a very simple implementation of an order crossing engine in C++, with a carefully

 tailored implementation to cover many common bindings applications like:

 ● Enumerations

 ● Data members

 ● Function members

 ● Constructors

 2 There are other ways to create Python bindings like Cython or SWIG, which are not considered in this
 paper since they are not good candidates to be used with C++ reflection

 1 See https://docs.python.org/3/c-api/index.html

mailto:alach3@bloomberg.net
mailto:jdave12@bloomberg.net
https://docs.python.org/3/c-api/index.html

 C/C++

 C/C++

 ● Inheritance

 ● Function overloads

 ● Nested type aliases

 ● Operators

 In this document, we will present and discuss a subset of the above applications, which, in our

 opinion, are the most important and informative.

 Enumerations

 Enumerations are a very frequently used example of how reflection facilities can improve C++

 code bases. To not break with this tradition, we demonstrate how this simple application of

 reflection can benefit writing Python bindings.

 Considering a simple nested enumeration:

 struct Execution {

 enum class Type {
 new_,
 fill,
 partial,
 cancelled,
 rejected

 };

 };

 The typical bindings code would look like:

 py::enum_<Execution::Type>(binding scope , "Type")
 .value("new_" , Execution::Type::new_)
 .value("fill" , Execution::Type::fill)
 .value("partial" , Execution::Type::partial)
 .value("cancelled" , Execution::Type::cancelled)
 .value("rejected" , Execution::Type::rejected);

 From the above, it can be observed that;

 ● There is plenty of repetition

 C/C++

 C/C++

 ● If Execution::Type is modified the bindings code has to be updated manually

 ● If an enumeration value is added to Execution::Type no compiler error / warning will

 be emitted hence bindings code can easily diverge from the bound code

 ● The names of individual enumerations have to be repeated as strings, which is prone to

 typos that cannot be detected by the compiler

 With reflection, we can automate the task:

 bind_enum<Execution::Type>(binding scope);

 Where bind_enum can be implemented as : 3

 template < typename T>
 std::string basename() {

 auto name = std::string{name_of(^T)}; // ^T reflects type T

 if (size_t pos = name.rfind(':');
 pos != std::string::npos) {
 return name.substr(name.rfind(':') + 1);

 }
 return name;

 }

 template < typename EnumT, typename Scope>
 void bind_enum(Scope& s) {

 auto enum_ = py::enum_<EnumT>(s, basename<EnumT>().c_str());

 // members_of() produces an iterable list
 // of all the members of an enumeration.
 // `template for` iterates over a range at compile time.

 template for (constexpr auto e : members_of(^EnumT)) {
 enum_.value(name_of(e), [:e:]); // [:e:] un-reflects e

 }
 }

 3 https://cppx.godbolt.org/z/T445M639n

https://cppx.godbolt.org/z/T445M639n

 C/C++

 C/C++

 C/C++

 Note that the reflection-based implementation does not suffer from any of the shortcomings

 mentioned earlier.

 Data members

 Binding public data members is seemingly a straightforward task.

 Considering a simple aggregate type:

 struct Order {
 int side = 1 ;
 size_t quantity = 0 ;

 };

 The typical bindings code would look like:

 py::class_<Order>(binding scope , "Order")
 .def_readwrite("side" , &Order::side)
 .def_readwrite("quantity" , &Order::quantity);

 From the above, it can be observed that:

 ● The names of data members have to be repeated as strings, which is prone to typos that

 cannot be detected by the compiler

 ● Since side and quantity members are mutable public data members then it is reasonable

 to provide both read and write access from Python

 With reflection, we can automate the task:

 bind_mem_var<Order>(binding scope);

 Where bind_mem_var can be implemented as: 4

 4 https://cppx.godbolt.org/z/3efezYqEE

https://cppx.godbolt.org/z/3efezYqEE

 C/C++

 C/C++

 template < typename ClassT, typename Scope>
 void bind_mem_var(Scope& s) {

 template for (constexpr auto e : data_member_range(^ClassT)){
 constexpr auto name = name_of(e);
 if constexpr (is_public(e) && !is_static_data_member(e)){

 if (has_const_type(e)) {
 s.def_readonly(name, &[:e:]);

 } else {
 s.def_readwrite(name, &[:e:]);

 }
 }

 }
 }

 Note that the reflection-based implementation does not suffer from any of the shortcomings

 mentioned earlier. There is an important caveat though, which is the choice of the default

 behavior. Frequently, Python bindings expose a more limited API than that offered by the

 underlying C++ code. In that case it would be beneficial to allow some way of customizing the

 behavior of bind_mem_var for selected data members. We discuss bindings customization in

 more detail in the conclusions sections.

 Member functions

 Bindings for member functions can be exposed in a similar way to data members due to existing

 quasi reflection capabilities of C++. Specifically it is possible to reflect on the return type and

 argument types of a function member using existing C++ features.

 Considering a partial implementation of an order crossing engine:

 struct CrossingEngine {
 std::vector<Order> const& getAsks() const { return asks; }
 std::vector<Order> const& getBids() const { return bids; }

 private :
 std::vector<Order> asks;

 C/C++

 C/C++

 std::vector<Order> bids;
 };

 As expected, a naive bindings code could look like:

 py::class_<CrossingEngine>(binding scope , "CrossingEngine")
 .def("getAsks" , &CrossingEngine::getAsks)
 .def("getBids" , &CrossingEngine::getBids);

 This bindings implementation might not be ideal however, since by default pybind11 will copy

 std::vector<Order> into a python list object every time getAsks or getBids is invoked 5

 from Python.

 We can customize our implementation to avoid copying the return values as follows:

 PYBIND11_MAKE_OPAQUE(std::vector<Order>);
 py::class_<CrossingEngine>(binding scope , "CrossingEngine")

 .def("getAsks" , &CrossingEngine::getAsks,
 return_value_policy::reference)

 .def("getBids" , &CrossingEngine::getBids,
 return_value_policy::reference);

 Note the need for PYBIND11_MAKE_OPAQUE and return_value_policy::reference
 policy.

 While this implementation solves the problem of unwanted data copies it introduces yet another

 problem which is more subtle. It stems from the difference in object lifetime management in C++

 and Python. In case of the latter it is assumed that an object will be kept alive until at least one

 handle to that object exists. With our implementation of CrossingEngine , however, the

 references returned by getAsks and getBids will only be valid as long as the

 CrossingEngine object is alive. This has to be taken into account when creating bindings.

 For example, it is perfectly reasonable to expect the following Python code to work correctly:

 5 This default approach is quite sensible as it avoids lifetime issues between Python and C++ and makes
 the resulting Python APIs more pythonic.

 Python

 C/C++

 C/C++

 C/C++

 def execute_and_get_remaining_asks(orders):
 engine = CrossingEngine()
 for order in orders: engine.cross(order)
 return engine.getAsks()

 remaining_asks = execute_and_get_remaining_asks(orders)
 print (remaining_asks)

 It might happen that engine will be garbage collected before print(remaining_asks) is 6

 called. As a consequence the C++ object representing CrossingEngine instance will be

 destroyed and remaining_asks will be a dangling reference. In order to address this

 shortcoming it is possible to use return_value_policy::reference_internal instead of

 plain return_value_policy::reference .

 PYBIND11_MAKE_OPAQUE(std::vector<Order>);
 py::class_<CrossingEngine>(binding scope , "CrossingEngine")

 .def("getAsks" , &CrossingEngine::getAsks,
 return_value_policy::reference_internal)

 .def("getBids" , &CrossingEngine::getBids,
 return_value_policy::reference_internal);

 It is straightforward to automate the bindings for the naive bindings case:

 bind_mem_fn<CrossingEngine>(binding scope);

 Where bind_mem_fn can be implemented as: 7

 template < typename ClassT, typename Scope>
 void bind_mem_fn(Scope& s) {

 7 https://cppx.godbolt.org/z/aMzdfnKdr

 6 But it doesn’t have to, which is even worse.

https://cppx.godbolt.org/z/aMzdfnKdr

 C/C++

 template for (constexpr auto e : member_fn_range(^ClassT)) {
 if constexpr (is_public(e) &&

 !is_special_member_function(e)) {
 constexpr auto name = name_of(e);
 if constexpr (is_nonstatic_member_function(e)) {

 s.def(name, py::overload_cast<
 ...[:type_of(param_range(e)):]...

 >(&[:e:]));
 } else {

 s.def_static(name, &[:e:]);
 }

 }
 }

 }

 Note that the py::overload_cast<...> is just a static_cast<..> in disguise used to

 disambiguate different overloads of the same function.

 It is not possible, however, to solve the problem of unwanted copies and object lifetime

 management without providing some degree of user customization. We discuss the problem of

 bindings customization in more detail in the conclusions sections.

 Constructors

 Constructors are slightly different from member functions since it is not possible to take their

 address. As a consequence it is not possible to use existing C++ features to inspect the types of

 their parameters. To circumvent this limitation pybind11 provides a special

 pybind11::init<...> utility.

 Considering a partial implementation of an Execution class:

 struct Execution {

 enum class Type { new_, fill, ... }

 C/C++

 C/C++

 C/C++

 Execution(Order order, Type type);
 Execution(Order order, Type type,

 double price, size_t quantity = 0);

 };

 The typical bindings code would look like (bar the enum which we handled before):

 py::class_<Execution>(binding scope , "Execution")
 .def(py::init<Order, Execution::Type>(),

 py::arg("order"), py::arg("type"))
 .def(py::init<Order, Execution::Type, double , size_t>(),

 py::arg("order"), py::arg("type"),
 py::arg("price"), py::arg("quantity") = 0);

 While the usage of init should not be problematic to decipher, we simply pass all the argument

 types to the type list of the helper, the usage of py::arg allows the bindings module user to use

 a Python feature - keyword arguments.

 With reflection, we can automate the task:

 bind_ctors<CrossingEngine>(binding scope);

 Where bind_ctors could be implemented as:

 template < typename ClassT, typename Scope>
 void bind_ctors(Scope& s) {

 template for (constexpr auto e : member_fn_range(^ClassT)) {
 if constexpr (is_public(e) && is_constructor(e) &&

 !is_copy_constructor(e) &&
 !is_move_constructor(e)) {

 constexpr auto params = param_range(e);

 C/C++

 s.def(py::init<...[:type_of(params):]...>(),
 py::arg(name_of(^...[:params:]))...);

 }
 }

 }

 Note that the implementation of bind_ctors cannot be validated with the lock3 implementation of

 p2320 since it lacks pack splicing capabilities. Also note that the syntax for expanding reflections

 range into a list parameter names seems a bit clunky; we will discuss this in more detail in the

 Challenges section.

 At first glance, the above implementation is straightforward and simple. However, the usage of

 parameter names for keyword arguments is problematic. This is due to the fact that parameter

 names are not part of a function signature and can change between declaration and definition.

 Considering the following code:

 struct X {
 X(int name);

 };

 X:X(int different_name) { (void)different_name; };

 It is not immediately clear which parameter name should be provided while reflecting on

 parameters of X::X when both the declaration and definition are visible. The only publicly

 available implementation of p2320 always returns the names of parameters of the declaration . 8

 This problem becomes even more evident when free functions are considered since they can

 have multiple declarations with completely different parameter names. We discuss this problem

 in a bit more detail in the Conclusions section.

 Overloaded Operators

 Binding operators is a special problem. That is because they could be free functions and are

 subject to both ADL and visibility checks.

 8 This is true even if the reflection is done inside the definition of X::X

 [To be continued…]

 Conclusions

 Advantages

 We have determined that:

 1. As expected, it is possible to achieve significant (~95%) boilerplate code reduction;

 2. The usage of reflection has the potential to reduce the likelihood of error in many cases

 (e.g., enum bindings); and

 3. Most of the bindings can be reasonably automated with carefully selected default

 behaviors (i.e., we have leveraged the defaults specified by pybind11).

 Challenges

 We have determined that:

 1. bindings customization facilities cover the differences in language features between

 Python and C++;

 2. some reflection features, like parameter name reflection, can be dangerous;

 3. in some corner cases, reflection-based automation can hide problems and give a false

 sense of security; and

 4. expanding reflections range into a list of its elements’ names

 In the next sections we will discuss the various challenges in more detail.

 Customization

 There are at least two general categories where bindings customization would be needed:

 ● overriding and/or improving binding defaults

 ● bridging the gap between languages

 The first point can be visualized using a simple example of public data members bindings which

 should specify the allowed access type (read-only vs. read-write). While the default approach is

 easy to establish - if, and only if, the data member is non-const should the data member be

 writeable from Python. That is, however, not necessarily appropriate under all circumstances. In

 C/C++

 practice, it is not an infrequent situation where Python code should either not be allowed to

 modify a public data member or should not have access to it altogether.

 The second point is more about the specific features that both languages do and do not support.
 Some notable examples might be keyword arguments and garbage collection in Python and
 function overloading and polymorphism in C++. While pybind11 does a reasonably good job at
 providing facilities for bridging that gap, they typically require additional work. Some of that work
 can be automated, e.g., function overloading, but some might require manual intervention, e.g.,
 specifying reference management policy.

 It should be clear at this point that some user customization is necessary for any reflection-based
 Python bindings implementation. We can think of approaching that problem in two ways:

 ● Library specific hooks
 ● Custom attributes

 Library Specific Hooks can be implemented in a multitude of ways. In our opinion, one of the
 simplest would be creating a constexpr list of modification for reflected entities, like in the
 example below:

 constexpr auto customizations = {
 {^CrossingEngine::getAsks,
 return_value_policy::reference_internal},
 {^Order::side,
 value_access_policy::readonly},

 };

 bind_class<CrossingEngine>(scope, customizations);
 bind_class<Order>(scope, customizations);

 On the positive side, with this approach it is possible to create and customize bindings of a code

 base that the bindings implementer has no control over. On the negative side, the customizations

 are disjointed from the C++ code that is being bound; therefore, there is a high risk of the two

 diverging and, as a consequence, introducing errors.

 The other option is attaching custom attributes to the actual code that is being bound:

 C/C++

 C/C++

 struct CrossingEngine {
 [[refl_bind::return_policy("reference_internal")]]
 std::vector<Order> const& getAsks() const { return asks; }

 [[refl_bind::return_policy("reference_internal")]]
 std::vector<Order> const& getBids() const { return bids; }

 ...
 };

 On the positive side, with this approach customizations would naturally evolve alongside the

 code. On the negative side, adding user-defined attributes requires control of the source code

 that is the subject of bindings and, what is probably more important, adding the support for

 user-defined attributes to the C++ language, lifting the requirement of ignorability of attributes , 9

 and adding support for reflecting on attributes.

 We believe that both approaches to customizations are valuable in their own right, with

 user-defined attributes being less error prone, and, therefore, preferable wherever applicable.

 Parameter Names

 Python’s keyword arguments allow specifying function parameter names and their values at the

 point where a function is called. This feature improves readability and so is used quite heavily.

 Therefore, it is desirable to make keyword arguments automatically available with C++/Python

 bindings. The natural way of doing so is to reflect on parameter names. However, this is

 dangerous. C++ parameter names are not part of the function signature and can change between

 function declaration and definition – and even across different declarations of the same function.

 The code below illustrates this problem: 10

 # include <experimental/meta>
 # include <iostream>

 using namespace std::experimental::meta;

 // declaration 1

 10 https://cppx.godbolt.org/z/coq6KhvdK

 9 https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2552r0.pdf

https://cppx.godbolt.org/z/coq6KhvdK
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2552r0.pdf

 C/C++

 void func(int x, int y);

 void print_func_params1() {
 std::cout << "func param names are: " ;
 template for (constexpr auto e : param_range(^func)) {

 std::cout << name_of(e) << ", " ;
 }
 std::cout << "\n" ;

 }

 // declaration 2
 void func(int a, int b);

 void print_func_params2() {
 std::cout << "func param names are: " ;
 template for (constexpr auto e : param_range(^func)) {

 std::cout << name_of(e) << ", " ;
 }
 std::cout << "\n" ;

 }

 int main() {
 print_func_params1(); // prints: func param names are: x, y,
 print_func_params2(); // prints: func param names are: a, b,

 }

 It is easy to see how using parameter names reflection makes the code fragile, as implementers

 do not expect that changing forward declaration parameter names will impact the output of the

 program in any way.

 Range Name Expansion

 We have encountered a situation where it would be useful to expand a function parameter range

 into a range of names, such as in the example below:

 struct X {
 void fun(int y, float z) {};

 };

 template < typename ... V>
 void print(V... v) {

 (std::cout << ... << v) << '\n' ;
 }

 int main() {
 constexpr auto param_range = param_range(^X::fun);
 print(/* expand param_range to a list of parameter names */);

 }

 We can see multiple possible ways in which this could be achieved:

 1. meta::name_of(param_range)...

 It is unclear whether that syntax would work as we see no examples of reflections range

 pack expansion without using the splicing operator in p1240r2.

 2. meta::name_of(...[:param_range:])...

 The meta::name_of(meta::info) takes a meta::info object, so this is unlikely to

 work; in fact we can confirm that meta::name_of([:*param_range.begin():]) 11

 does not compile.

 3. ...[:meta::name_of(param_range):]...

 Similarly applying meta::name_of(meta::info) inside a splicing expression can be

 confirmed to not compile. 12

 4. meta::name_of(^...[:param_range:])...

 This will probably work since meta::name_of(^[:*param_range.begin():])
 compiles fine , though the need to utilize ^ operator twice seems a bit clunky 13

 ...meta::name_of(^[:meta::param_range(^X::fun):])...

 13 https://cppx.godbolt.org/z/9qnbn9x5G

 12 https://cppx.godbolt.org/z/a8ee54Ehe

 11 https://cppx.godbolt.org/z/rKb5WjGj9

https://cppx.godbolt.org/z/9qnbn9x5G
https://cppx.godbolt.org/z/a8ee54Ehe
https://cppx.godbolt.org/z/rKb5WjGj9

 ABI Compatibility

 While the discussion of ABI compatibility is not strictly related to the usage of reflection for

 creating Python bindings, it has been an important consideration in C++/Python bindings

 discussion. ABI compatibility issues could occur in two cases:

 1. Bindings were created with a Python library version that is incompatible with the Python

 interpreter that is loading them.

 2. A type that is passed between two Python/C++ binding libraries has different binary

 representations between the two.

 Point 1 is an obvious problem and we will not be discussing it here. For point 2, the problem can

 typically occur when bindings are shared. To visualize this, consider three C++ libraries: A, B, and

 C, with the caveat that both A and B depend on C. It can be easily observed that if A creates an

 object of a type X belonging to C, which is subsequently passed to B, both A and B have to use

 the same binary representation of X. To solve this problem at scale, we can see two approaches -

 using an integration build or fat bindings.

 Integration Build

 With this approach, all libraries and their bindings are built from source together and are

 deployed together. This way, the possibility of having multiple libraries with the same

 dependency, but different ABI representations, is eliminated

 Pros

 ● Allows bindings to be re-used across libraries

 ● Each library is comprised of only the necessary binary code 14

 ● Handles singletons without additional work

 Cons

 ● Additional deployment time guarantees are necessary

 ● Can’t be safely used out of the box with the Python Package Index (PyPI)

 Fat Bindings

 With this approach, every binding library statically links its dependencies, hides symbols, and

 exposes every C++ type as a distinct type in Python, hence avoiding any possible collisions.

 14 Only the code that is the subject of bindings and the bindings code itself. External dependencies and
 their bindings can be dynamically loaded by Python at runtime.

 Pros

 ● No library re-use and hence no ABI problems 15

 ● Safe to use with the Python Package Index (PyPI)

 Cons

 ● Not possible to share singletons among libraries without additional logic 16

 ● Library sizes are larger as each library is comprised of its own binary code as well as the

 code of all its dependencies

 ● Bindings cannot be re-used out of the box

 Appendix

 1. C++ Reflection for Python Binding -

 https://accu.org/journals/overload/27/152/standish_2682/

 2. Pybind11 - https://pybind11.readthedocs.io/en/stable/

 3. Programming for every language, everywhere all at once - CoreCpp ‘22 talk -

 https://www.youtube.com/watch?v=43Tmqn-sFsk

 4. Reflection on attributes: https://wg21.link/p1887

 16 Since each extension links in all their dependencies and hides symbols, each module has its own version
 of a singleton. We do not know of any generic solution to this problem.

 15 Notably pybind11 has an added feature that tries to recognize “compatible” types by additional means,
 which might still cause ABI compatibility problems.

https://accu.org/journals/overload/27/152/standish_2682/
https://pybind11.readthedocs.io/en/stable/
https://www.youtube.com/watch?v=43Tmqn-sFsk
https://wg21.link/p1887

