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 Abstract 

 Python/C++ bindings are heavily used in numerical calculation packages such as NumPy. The 

 goal of this paper is to discuss the benefits and challenges of using value-based reflection 

 (P2320 / P1240R2) to simplify creating C++ Python bindings. A previous attempt at simplifying 

 Python bindings using reflection focused on Boost.Python and macro-based reflection, and can 

 be found in the appendix. This paper uses contemporary value-based reflection, which has a path 

 forward towards being accepted into the C++ standard, and is aimed at pybind11, a popular 

 open-source Python library for binding existing C++ code to Python. 

 Introduction 

 Python bindings can be created by the means of the Python/C API  . It is, however, rarely used 1

 directly in practice. Instead, wrapper libraries like Boost.Python or pybind11 are frequently used  . 2

 For that reason, and for the sake of simplicity, this paper will focus on using C++ reflection to 

 simplify creating Python bindings on top of pybind11. 

 Use Case 

 We have used a very simple implementation of an order crossing engine in C++, with a carefully 

 tailored implementation to cover many common bindings applications like: 

 ●  Enumerations 

 ●  Data members 

 ●  Function members 

 ●  Constructors 

 2  There are other ways to create Python bindings like Cython or SWIG, which are not considered in this 
 paper since they are not good candidates to be used with C++ reflection 

 1  See  https://docs.python.org/3/c-api/index.html 
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 ●  Inheritance 

 ●  Function overloads 

 ●  Nested type aliases 

 ●  Operators 

 In this document, we will present and discuss a subset of the above applications, which, in our 

 opinion, are the most important and informative. 

 Enumerations 

 Enumerations are a very frequently used example of how reflection facilities can improve C++ 

 code bases. To not break with this tradition, we demonstrate how this simple application of 

 reflection can benefit writing Python bindings. 

 Considering a simple nested enumeration: 

 struct  Execution  { 

 enum  class  Type  { 
 new_, 
 fill, 
 partial, 
 cancelled, 
 rejected 

 }; 

 }; 

 The typical bindings code would look like: 

 py::enum_<Execution::Type>(  binding  scope  ,  "Type"  ) 
 .value(  "new_"  ,  Execution::Type::new_) 
 .value(  "fill"  ,  Execution::Type::fill) 
 .value(  "partial"  ,  Execution::Type::partial) 
 .value(  "cancelled"  ,  Execution::Type::cancelled) 
 .value(  "rejected"  ,  Execution::Type::rejected); 

 From the above, it can be observed that; 

 ●  There is plenty of repetition 
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 ●  If  Execution::Type  is modified the bindings code has to be updated manually 

 ●  If an enumeration value is added to  Execution::Type  no compiler error / warning will 

 be emitted hence bindings code can easily diverge from the bound code 

 ●  The names of individual enumerations have to be repeated as strings, which is prone to 

 typos that cannot be detected by the compiler 

 With reflection, we can automate the task: 

 bind_enum<Execution::Type>(  binding  scope  ); 

 Where  bind_enum  can be implemented as  : 3

 template  <  typename  T> 
 std::string  basename()  { 

 auto  name  =  std::string{name_of(^T)};  // ^T reflects  type T 

 if  (size_t  pos  =  name.rfind(  ':'  ); 
 pos  !=  std::string::npos)  { 
 return  name.substr(name.rfind(  ':'  )  +  1  ); 

 } 
 return  name; 

 } 

 template  <  typename  EnumT,  typename  Scope> 
 void  bind_enum(Scope&  s)  { 

 auto  enum_  =  py::enum_<EnumT>(s,  basename<EnumT>().c_str()); 

 // members_of() produces an iterable list 
 // of all the members of an enumeration. 
 // `template for` iterates over a range at compile  time. 

 template  for  (  constexpr  auto  e  :  members_of(^EnumT))  { 
 enum_.value(name_of(e),  [:e:]);  // [:e:] un-reflects  e 

 } 
 } 

 3  https://cppx.godbolt.org/z/T445M639n 
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 Note that the reflection-based implementation does not suffer from any of the shortcomings 

 mentioned earlier. 

 Data members 

 Binding public data members is seemingly a straightforward task. 

 Considering a simple aggregate type: 

 struct  Order  { 
 int  side  =  1  ; 
 size_t  quantity  =  0  ; 

 }; 

 The typical bindings code would look like: 

 py::class_<Order>(  binding  scope  ,  "Order"  ) 
 .def_readwrite(  "side"  ,  &Order::side) 
 .def_readwrite(  "quantity"  ,  &Order::quantity); 

 From the above, it can be observed that: 

 ●  The names of data members have to be repeated as strings, which is prone to typos that 

 cannot be detected by the compiler 

 ●  Since side and quantity members are mutable public data members then it is reasonable 

 to provide both read and write access from Python 

 With reflection, we can automate the task: 

 bind_mem_var<Order>(  binding  scope  ); 

 Where  bind_mem_var  can be implemented  as: 4

 4  https://cppx.godbolt.org/z/3efezYqEE 
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 template  <  typename  ClassT,  typename  Scope> 
 void  bind_mem_var(Scope&  s)  { 

 template  for  (  constexpr  auto  e  :  data_member_range(^ClassT)){ 
 constexpr  auto  name  =  name_of(e); 
 if  constexpr  (is_public(e)  &&  !is_static_data_member(e)){ 

 if  (has_const_type(e))  { 
 s.def_readonly(name,  &[:e:]); 

 }  else  { 
 s.def_readwrite(name,  &[:e:]); 

 } 
 } 

 } 
 } 

 Note that the reflection-based implementation does not suffer from any of the shortcomings 

 mentioned earlier. There is an important caveat though, which is the choice of the default 

 behavior. Frequently, Python bindings expose a more limited API than that offered by the 

 underlying C++ code. In that case it would be beneficial to allow some way of customizing the 

 behavior of  bind_mem_var  for selected data members.  We discuss bindings customization in 

 more detail in the conclusions sections. 

 Member functions 

 Bindings for member functions can be exposed in a similar way to data members due to existing 

 quasi reflection capabilities of C++. Specifically it is possible to reflect on the return type and 

 argument types of a function member using existing C++ features. 

 Considering a partial implementation of an order crossing engine: 

 struct  CrossingEngine  { 
 std::vector<Order>  const&  getAsks()  const  {  return  asks;  } 
 std::vector<Order>  const&  getBids()  const  {  return  bids;  } 

 private  : 
 std::vector<Order>  asks; 
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 std::vector<Order>  bids; 
 }; 

 As expected, a naive bindings code could look like: 

 py::class_<CrossingEngine>(  binding  scope  ,  "CrossingEngine"  ) 
 .def(  "getAsks"  ,  &CrossingEngine::getAsks) 
 .def(  "getBids"  ,  &CrossingEngine::getBids); 

 This bindings implementation might not be ideal however, since by default pybind11 will copy 

 std::vector<Order>  into a python list object  every  time  getAsks  or  getBids  is invoked 5

 from Python. 

 We can customize our implementation to avoid copying the return values as follows: 

 PYBIND11_MAKE_OPAQUE(std::vector<Order>); 
 py::class_<CrossingEngine>(  binding  scope  ,  "CrossingEngine"  ) 

 .def(  "getAsks"  ,  &CrossingEngine::getAsks, 
 return_value_policy::reference) 

 .def(  "getBids"  ,  &CrossingEngine::getBids, 
 return_value_policy::reference); 

 Note the need for  PYBIND11_MAKE_OPAQUE  and  return_value_policy::reference 
 policy. 

 While this implementation solves the problem of unwanted data copies it introduces yet another 

 problem which is more subtle. It stems from the difference in object lifetime management in C++ 

 and Python. In case of the latter it is assumed that an object will be kept alive until at least one 

 handle to that object exists. With our implementation of  CrossingEngine  , however, the 

 references returned by  getAsks  and  getBids  will only  be valid as long as the 

 CrossingEngine  object is alive. This has to be taken  into account when creating bindings. 

 For example, it is perfectly reasonable to expect the following Python code to work correctly: 

 5  This default approach is quite sensible as it avoids lifetime issues between Python and C++ and makes 
 the resulting Python APIs more pythonic. 



 Python 

 C/C++ 

 C/C++ 

 C/C++ 

 def  execute_and_get_remaining_asks(orders): 
 engine  =  CrossingEngine() 
 for  order  in  orders:  engine.cross(order) 
 return  engine.getAsks() 

 remaining_asks  =  execute_and_get_remaining_asks(orders) 
 print  (remaining_asks) 

 It might happen  that  engine  will be garbage collected  before  print(remaining_asks)  is 6

 called. As a consequence the C++ object representing  CrossingEngine  instance will be 

 destroyed and  remaining_asks  will be a dangling reference.  In order to address this 

 shortcoming it is possible to use  return_value_policy::reference_internal  instead of 

 plain  return_value_policy::reference  . 

 PYBIND11_MAKE_OPAQUE(std::vector<Order>); 
 py::class_<CrossingEngine>(  binding  scope  ,  "CrossingEngine"  ) 

 .def(  "getAsks"  ,  &CrossingEngine::getAsks, 
 return_value_policy::reference_internal) 

 .def(  "getBids"  ,  &CrossingEngine::getBids, 
 return_value_policy::reference_internal); 

 It is straightforward to automate the bindings for the naive bindings case: 

 bind_mem_fn<CrossingEngine>(  binding  scope  ); 

 Where  bind_mem_fn  can be implemented  as: 7

 template  <  typename  ClassT,  typename  Scope> 
 void  bind_mem_fn(Scope&  s)  { 

 7  https://cppx.godbolt.org/z/aMzdfnKdr 

 6  But it doesn’t have to, which is even worse. 
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 template  for  (  constexpr  auto  e  :  member_fn_range(^ClassT))  { 
 if  constexpr  (is_public(e)  && 

 !is_special_member_function(e))  { 
 constexpr  auto  name  =  name_of(e); 
 if  constexpr  (is_nonstatic_member_function(e))  { 

 s.def(name,  py::overload_cast< 
 ...[:type_of(param_range(e)):]... 

 >(&[:e:])); 
 }  else  { 

 s.def_static(name,  &[:e:]); 
 } 

 } 
 } 

 } 

 Note that the  py::overload_cast<...>  is just a  static_cast<..>  in disguise used to 

 disambiguate different overloads of the same function. 

 It is not possible, however, to solve the problem of unwanted copies and object lifetime 

 management without providing some degree of user customization. We discuss the problem of 

 bindings customization in more detail in the conclusions sections. 

 Constructors 

 Constructors are slightly different from member functions since it is not possible to take their 

 address. As a consequence it is not possible to use existing C++ features to inspect the types of 

 their parameters. To circumvent this limitation pybind11 provides a special 

 pybind11::init<...>  utility. 

 Considering a partial implementation of an Execution class: 

 struct  Execution  { 

 enum  class  Type  {  new_,  fill,  ...  } 
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 Execution(Order  order,  Type  type); 
 Execution(Order  order,  Type  type, 

 double  price,  size_t  quantity  =  0  ); 

 }; 

 The typical bindings code would look like (bar the enum which we handled before): 

 py::class_<Execution>(  binding  scope  ,  "Execution"  ) 
 .def(py::init<Order,  Execution::Type>(), 

 py::arg(  "order"  ),  py::arg(  "type"  )) 
 .def(py::init<Order,  Execution::Type,  double  ,  size_t>(), 

 py::arg(  "order"  ),  py::arg(  "type"  ), 
 py::arg(  "price"  ),  py::arg(  "quantity"  )  =  0  ); 

 While the usage of  init  should not be problematic  to decipher, we simply pass all the argument 

 types to the type list of the helper, the usage of  py::arg  allows the bindings module user to use 

 a Python feature - keyword arguments. 

 With reflection, we can automate the task: 

 bind_ctors<CrossingEngine>(  binding  scope  ); 

 Where  bind_ctors  could be implemented as: 

 template  <  typename  ClassT,  typename  Scope> 
 void  bind_ctors(Scope&  s)  { 

 template  for  (  constexpr  auto  e  :  member_fn_range(^ClassT))  { 
 if  constexpr  (is_public(e)  &&  is_constructor(e)  && 

 !is_copy_constructor(e)  && 
 !is_move_constructor(e))  { 

 constexpr  auto  params  =  param_range(e); 
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 s.def(py::init<...[:type_of(params):]...>(), 
 py::arg(name_of(^...[:params:]))...); 

 } 
 } 

 } 

 Note that the implementation of bind_ctors cannot be validated with the lock3 implementation of 

 p2320 since it lacks pack splicing capabilities. Also note that the syntax for expanding reflections 

 range into a list parameter names seems a bit clunky; we will discuss this in more detail in the 

 Challenges section. 

 At first glance, the above implementation is straightforward and simple. However, the usage of 

 parameter names for keyword arguments is problematic. This is due to the fact that parameter 

 names are not part of a function signature and can change between declaration and definition. 

 Considering the following code: 

 struct  X  { 
 X(  int  name); 

 }; 

 X:X(  int  different_name)  {  (  void  )different_name;  }; 

 It is not immediately clear which parameter name should be provided while reflecting on 

 parameters of  X::X  when both the declaration and definition  are visible. The only publicly 

 available implementation of p2320 always returns the names of parameters of the declaration  . 8

 This problem becomes even more evident when free functions are considered since they can 

 have multiple declarations with completely different parameter names. We discuss this problem 

 in a bit more detail in the Conclusions section. 

 Overloaded Operators 

 Binding operators is a special problem. That is because they could be free functions and are 

 subject to both ADL and visibility checks. 

 8  This is true even if the reflection is done inside the definition of  X::X 
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 Conclusions 

 Advantages 

 We have determined that: 

 1.  As expected, it is possible to achieve significant (~95%) boilerplate code reduction; 

 2.  The usage of reflection has the potential to reduce the likelihood of error in many cases 

 (e.g., enum bindings); and 

 3.  Most of the bindings can be reasonably automated with carefully selected default 

 behaviors (i.e., we have leveraged the defaults specified by pybind11). 

 Challenges 

 We have determined that: 

 1.  bindings customization facilities cover the differences in language features between 

 Python and C++; 

 2.  some reflection features, like parameter name reflection, can be dangerous; 

 3.  in some corner cases, reflection-based automation can hide problems and give a false 

 sense of security; and 

 4.  expanding reflections range into a list of its elements’ names 

 In the next sections we will discuss the various challenges in more detail. 

 Customization 

 There are at least two general categories where bindings customization would be needed: 

 ●  overriding and/or improving binding defaults 

 ●  bridging the gap between languages 

 The first point can be visualized using a simple example of public data members bindings which 

 should specify the allowed access type (read-only vs. read-write). While the default approach is 

 easy to establish - if, and only if, the data member is non-const should the data member be 

 writeable from Python. That is, however, not necessarily appropriate under all circumstances. In 
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 practice, it is not an infrequent situation where Python code should either not be allowed to 

 modify a public data member or should not have access to it altogether. 

 The second point is more about the specific features that both languages do and do not support. 
 Some notable examples might be keyword arguments and garbage collection in Python and 
 function overloading and polymorphism in C++. While pybind11 does a reasonably good job at 
 providing facilities for bridging that gap, they typically require additional work. Some of that work 
 can be automated, e.g., function overloading, but some might require manual intervention, e.g., 
 specifying reference management policy. 

 It should be clear at this point that some user customization is necessary for any reflection-based 
 Python bindings implementation. We can think of approaching that problem in two ways: 

 ●  Library specific hooks 
 ●  Custom attributes 

 Library Specific Hooks can be implemented in a multitude of ways. In our opinion, one of the 
 simplest would be creating a constexpr list of modification for reflected entities, like in the 
 example below: 

 constexpr  auto  customizations  =  { 
 {^CrossingEngine::getAsks, 
 return_value_policy::reference_internal}, 
 {^Order::side, 
 value_access_policy::readonly}, 

 }; 

 bind_class<CrossingEngine>(scope,  customizations); 
 bind_class<Order>(scope,  customizations); 

 On the positive side, with this approach it is possible to create and customize bindings of a code 

 base that the bindings implementer has no control over. On the negative side, the customizations 

 are disjointed from the C++ code that is being bound; therefore, there is a high risk of the two 

 diverging and, as a consequence, introducing errors. 

 The other option is attaching custom attributes to the actual code that is being bound: 
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 struct  CrossingEngine  { 
 [[refl_bind::return_policy(  "reference_internal"  )]] 
 std::vector<Order>  const&  getAsks()  const  {  return  asks;  } 

 [[refl_bind::return_policy(  "reference_internal"  )]] 
 std::vector<Order>  const&  getBids()  const  {  return  bids;  } 

 ... 
 }; 

 On the positive side, with this approach customizations would naturally evolve alongside the 

 code. On the negative side, adding user-defined attributes requires control of the source code 

 that is the subject of bindings and, what is probably more important, adding the support for 

 user-defined attributes to the C++ language, lifting the requirement of ignorability of attributes  , 9

 and adding support for reflecting on attributes. 

 We believe that both approaches to customizations are valuable in their own right, with 

 user-defined attributes being less error prone, and, therefore, preferable wherever applicable. 

 Parameter Names 

 Python’s keyword arguments allow specifying function parameter names and their values at the 

 point where a function is called. This feature improves readability and so is used quite heavily. 

 Therefore, it is desirable to make keyword arguments automatically available with C++/Python 

 bindings. The natural way of doing so is to reflect on parameter names. However, this is 

 dangerous. C++ parameter names are not part of the function signature and can change between 

 function declaration and definition – and even across different declarations of the same function. 

 The code below  illustrates this problem: 10

 #  include  <experimental/meta> 
 #  include  <iostream> 

 using  namespace  std::experimental::meta; 

 // declaration 1 

 10  https://cppx.godbolt.org/z/coq6KhvdK 

 9  https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2552r0.pdf 
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 void  func(  int  x,  int  y); 

 void  print_func_params1()  { 
 std::cout  <<  "func param names are: "  ; 
 template  for  (  constexpr  auto  e  :  param_range(^func))  { 

 std::cout  <<  name_of(e)  <<  ", "  ; 
 } 
 std::cout  <<  "\n"  ; 

 } 

 // declaration 2 
 void  func(  int  a,  int  b); 

 void  print_func_params2()  { 
 std::cout  <<  "func param names are: "  ; 
 template  for  (  constexpr  auto  e  :  param_range(^func))  { 

 std::cout  <<  name_of(e)  <<  ", "  ; 
 } 
 std::cout  <<  "\n"  ; 

 } 

 int  main()  { 
 print_func_params1();  // prints: func param names  are: x, y, 
 print_func_params2();  // prints: func param names  are: a, b, 

 } 

 It is easy to see how using parameter names reflection makes the code fragile, as implementers 

 do not expect that changing forward declaration parameter names will impact the output of the 

 program in any way. 

 Range Name Expansion 

 We have encountered a situation where it would be useful to expand a function parameter range 

 into a range of names, such as in the example below: 

 struct  X  { 
 void  fun(  int  y,  float  z)  {}; 

 }; 



 template  <  typename  ...  V> 
 void  print(V...  v)  { 

 (std::cout  <<  ...  <<  v  )  <<  '\n'  ; 
 } 

 int  main()  { 
 constexpr  auto  param_range  =  param_range(^X::fun); 
 print(/*  expand  param_range  to  a  list  of  parameter  names  */); 

 } 

 We can see multiple possible ways in which this could be achieved: 

 1.  meta::name_of(param_range)... 

 It is unclear whether that syntax would work as we see no examples of reflections range 

 pack expansion without using the splicing operator in p1240r2. 

 2.  meta::name_of(...[:param_range:])... 

 The  meta::name_of(meta::info)  takes a  meta::info  object,  so this is unlikely to 

 work; in fact we can confirm  that  meta::name_of([:*param_range.begin():]) 11

 does not compile. 

 3.  ...[:meta::name_of(param_range):]... 

 Similarly applying  meta::name_of(meta::info)  inside  a splicing expression can be 

 confirmed  to not compile. 12

 4.  meta::name_of(^...[:param_range:])... 

 This will probably work since  meta::name_of(^[:*param_range.begin():]) 
 compiles fine  , though the need to utilize ^ operator  twice seems a bit clunky 13

 ...meta::name_of(^[:meta::param_range(^X::fun):])... 

 13  https://cppx.godbolt.org/z/9qnbn9x5G 

 12  https://cppx.godbolt.org/z/a8ee54Ehe 

 11  https://cppx.godbolt.org/z/rKb5WjGj9 
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 ABI Compatibility 

 While the discussion of ABI compatibility is not strictly related to the usage of reflection for 

 creating Python bindings, it has been an important consideration in C++/Python bindings 

 discussion. ABI compatibility issues could occur in two cases: 

 1.  Bindings were created with a Python library version that is incompatible with the Python 

 interpreter that is loading them. 

 2.  A type that is passed between two Python/C++ binding libraries has different binary 

 representations between the two. 

 Point 1 is an obvious problem and we will not be discussing it here. For point 2, the problem can 

 typically occur when bindings are shared. To visualize this, consider three C++ libraries: A, B, and 

 C, with the caveat that both A and B depend on C. It can be easily observed that if A creates an 

 object of a type X belonging to C, which is subsequently passed to B, both A and B have to use 

 the same binary representation of X. To solve this problem at scale, we can see two approaches - 

 using an integration build or fat bindings. 

 Integration Build 

 With this approach, all libraries and their bindings are built from source together and are 

 deployed together. This way, the possibility of having multiple libraries with the same 

 dependency, but different ABI representations, is eliminated 

 Pros 

 ●  Allows bindings to be re-used across libraries 

 ●  Each library is comprised of only the necessary binary code 14

 ●  Handles singletons without additional work 

 Cons 

 ●  Additional deployment time guarantees are necessary 

 ●  Can’t be safely used out of the box with the Python Package Index (PyPI) 

 Fat Bindings 

 With this approach, every binding library statically links its dependencies, hides symbols, and 

 exposes every C++ type as a distinct type in Python, hence avoiding any possible collisions. 

 14  Only the code that is the subject of bindings and the bindings code itself. External dependencies and 
 their bindings can be dynamically loaded by Python at runtime. 



 Pros 

 ●  No library re-use and hence no ABI problems 15

 ●  Safe to use with the Python Package Index (PyPI) 

 Cons 

 ●  Not possible to share singletons among libraries without additional logic 16

 ●  Library sizes are larger as each library is comprised of its own binary code as well as the 

 code of all its dependencies 

 ●  Bindings cannot be re-used out of the box 

 Appendix 

 1.  C++ Reflection for Python Binding - 

 https://accu.org/journals/overload/27/152/standish_2682/ 

 2.  Pybind11 -  https://pybind11.readthedocs.io/en/stable/ 

 3.  Programming for every language, everywhere all at once - CoreCpp ‘22 talk - 

 https://www.youtube.com/watch?v=43Tmqn-sFsk 

 4.  Reflection on attributes:  https://wg21.link/p1887 

 16  Since each extension links in all their dependencies and hides symbols, each module has its own version 
 of a singleton. We do not know of any generic solution to this problem. 

 15  Notably pybind11 has an added feature that tries to recognize “compatible” types by additional means, 
 which might still cause ABI compatibility problems. 
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