
A Simple Approach to Universal Template Parameters
Document #: P2989R1
Date: 2024-02-15
Programming Language C++
Audience: EWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Gašper Ažman <gasper.azman@gmail.com>

Abstract

In P1985R3 [3], we explore universal template parameters (a template parameter that can be
a type, non-type, or template name). We proposed allowing the use of universal template
parameters in all contexts, which would have added a large amount of complexity to both the
specification and implementations for limited benefits. In this paper, we propose the much
simpler subset of the feature.

Revisions

R1

• Update the implementation experience

• Fix code examples and add compiler explorer links

• Expand the section about deduction of universal template arguments, and propose a
new solution to deduce the type of value template parameters deduced fron a univeral
template argument.

• Add a CPO example

R0

• Initial revision

Difference with P1985R3 [3]

This paper is really a follow-up on P1985R3 [3]. The main difference is that we are merely
proposing that universal template parameters can be used only as template arguments of
other templates. They cannot be used in any other context.

template <universal template U>
void f() {
SomeOtherTemplate<U>(); // ok.

1

mailto:corentin.jabot@gmail.com
mailto:gasper.azman@gmail.com
https://wg21.link/P1985R3
https://wg21.link/P1985R3
https://wg21.link/P1985R3

U foo; // error: U is not used as a template argument.
U = 0; // error: U is not used as a template argument.

}

This change was made to simplify the design as it completely side step parsing ambiguities,
syntax disambiguators, and so on.

Other than this change, the feature and the design are still very much the same, as this feature
presents few design options. We present some new design questions not considered in earlier
papers and report on early implementation efforts in Clang.

Examples

We presented motivating examples in P1985R3 [3], but we offer two more here.

Template CPOs

Applied to a tuple-like std::get, can return either the Nth element, or the element of a specific
type. Indeed, std::get has multiple overloads with types and non-types template parameters

template<std::size_t I, class... Types >
const auto & get(const tuple<Types...>& t) noexcept;
template<class T, class... Types >
const auto & get(const tuple<Types...>& t) noexcept;

int main() {
std::tuple t{1, 2.0};
get<0>(t); // extract the 0th element
get<double>(t); // extract the element that is a double

}

This is great, but it only works for free functions, not CPOs. LEWG wants a CPO alternative to
std::get as described in P2769R1 [1].

So we can implement std::get_element<N>(t), but not std::get_element<T>(t). The best we
could do would be to give that second CPO a different name, maybe std::get_element_from_-
type<T>(t). Not great, not terrible.

Universal template parameters solve that problem nicely:

template <universal template>
inline constexpr int get_element = /*delete*/0;

template <typename T>
inline constexpr __get_element_t::__cpo<T> get_element<T>;

template <std::size_t I>
inline constexpr __get_element_v::__cpo<I> get_element<I>;

[Full example on Compiler Explorer].

2

https://wg21.link/P1985R3
https://wg21.link/P2769R1
https://compiler-explorer.com/z/YfEP79qqb

Generic rebind

Consider this allocator:

template <class T, size_t BlockSize = 42>
class BlockAllocator {

public:
using value_type = T;
T* allocate(size_t);
void deallocate(T*, size_t);

};

This allocator cannot be rebound: it provides no rebind nested alias and one of its template
arguments is an NTTP. Because of the lack of universal template parameters, allocator_-
traits::rebind_alloc works only with allocators for which all the template parameters are
types.

Universal parameters would allow a more generic implementation of rebind_alloc:

template <typename, typename>
struct rebind_alloc_t;

template <template <class, universal template...> typename Alloc, class T, universal template
... Args, class U>

struct rebind_alloc_t<Alloc<T, Args...>, U> {
using type = Alloc<U, Args...>;

};
template <class Alloc>
struct allocator_traits {

template<class T>
using rebind_alloc = rebind_alloc_t<Alloc, T>::type;

};
using rebound = allocator_traits<BlockAllocator<int>>::rebind_alloc<long>; // now ok
using rebound2 = allocator_traits<BlockAllocator<int, 128>>::rebind_alloc<long>; // ok too

[Demo on compiler explorer]

ranges::to

The code :

auto v = view | ranges::to<llvm::SmallVector> ();

is currently ill-formed because llvm::SmallVector has a defaulted NTTP:

template <typename T, unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value>
class SmallVector;

This proposal fixes this issue by allowing us to redefine ranges::to:

template<template<universal template...> class C, class... Args>
constexpr auto to(Args&&... args);

3

https://gcc.godbolt.org/z/z7n978vdv

Such a change would allow llvm::SmallVector and similar classes (e.g., folly::small_vector
works the same way) to be usable with ranges::to.

Design

The design involves as few elements as possible.

• A universal template parameter can be declared in the template-head of a function,
class, or variable template.

• The name of a universal template parameter (which is found by unqualified lookup) can
only be used as an argument to a template (and nowhere else).

• Universal template parameters can be packs.

• Universal template parameters cannot be defaulted.

• Forwarding a universal template argument to another template combined with partial
template specialization is the main mechanism of use of universal template parameters.

Partial ordering of universal template parameters

Anything that can be a template argument can be the argument binding to a universal
template parameter, hence the name universal template parameter.

Consequently, universal template parameters are less specialized than any other sort of
template with which they are compared, which allows specializing an entity based on template
parameter kind.

template <universal template>
constexpr bool is_variable = false; // #1
template <auto a>
constexpr bool is_variable<a> = true; // #2

Here, #2 is more specialized than #1 because a universal template parameter is less specialized
than a non-type parameter.

Deduction of universal template arguments

The guiding principle for this is that whatever the universal template parameter is compared
with, that’s what it deduces to.

To specify this fully, we have to consider every kind of binding.

typenames

If the corresponding template argument is a type, the corresponding template parameter
deduces to that type.

4

template <universal template T>
struct S {};
template <universal template U, template <universal template> typename T>
void f(T<U> x);

using A = S<int>; // T deduces to int
void h1() {
f(A{}); // calls f<int, S>

}

template names

If the template argument denotes a template name (or concept name), the corresponding
universal template parameter is deduced to be a template (or concept) template parameter
with the same template head.

// S and f from the previous section
using B = S<std::pair>; // T is compared against template <typename T, typename U> struct pair

;
using C = S<std::conditional_t>; // T is a type-alias std::conditional_t
using D = S<std::regular>; // T is a concept-name std::regular
using E = S<std::is_same_v>; // T is a variable-template std::is_same_v

void h2() {
f(B{}); // calls f<std::pair, S>
f(C{}); // calls f<std::conditional_t, S>
f(D{}); // calls f<std::regular, S>
f(E{}); // calls f<std::is_same_v, S>

}

Expressions

If the template argument is an expression, the corresponding universal template parameter
becomes a non-type template parameter. But the question of how the type of these non-type
parameters are deduced.

We considered the following options:

• Using auto semantics: This would prevent deducing reference types. And while the
use cases for references in template parameter is somewhat limited, there are use
cases, and preventing them would be against the main motivation of universal template
parameters, which is to forward arbitrary templates argument. This is the option we
implemented, but it is also the worst option.

• Using decltype(auto) semantics (proposed in R0 of this paper). This works for most
cases and is fairly easy to implement.

Consequently, the following would be ill-formed:

template <int&> struct A { };

5

template <universal template U> B : A<U> { };
int x;
B<x> b1;

And it makes partial specialization somewhat subtle:

static constexpr int a = 0;

template <universal template>
struct S { // #1

static constexpr int value = 0;
};

template <>
struct S<a> { // #2

static constexpr int universal = 1;
};

void test() {
static_assert(S<a>::i == 1); // a is deduced as int
static_assert(S<(a)>::i == 0); // (a) is deduced as const int& and #2 is
specialized for int, so #1 is picked

}

• Apply decltype(auto) rules but deduce a reference for id-expressions. This almost works,
except it would create an inconsistency for parameter forwarded to a decltype(auto)
template parameter (C case):

template <auto&> struct A { };
template <auto> struct B { };
template <decltype(auto)> struct C { };

template <template<universal template> class Z, universal template U>
struct Foo : Z<U> { };

int x;
Foo<A, x> b1; // Ok: type of U is int&, instantiate A<int&>
Foo<B, x> b1; // Ok: type of U is int&, instantiate B<int>
Foo<C, x> b1; // Unexpected: type of U is int&, instantiate C<int&>,

// wheras C<x> would be ill-formed.

• Defer type deduction of id-expressions.

To make decltype(auto) consistent, instead of deducing the type of an id-expression
used as argument to a universal template parameter, we could defer the deduction to
the point at which it is used (as a template argument for a value template parameter):

template <int&> struct A { };
template <universal template U> struct B : A<U> { };
int x;
B<x> b1;

6

If we try to deduce the type of U from x, then U is int and the program is ill-formed
(because int& cannot bind to int) If instead, U is deduced to be a sort of symbolic
reference to the variable x, and we then perform argument deduction for A<U>, which
in effect would be identical to performing deduction for A<x>, then the program above
would be well-formed.

Under this model:

template <decltype(auto)> struct A { };
template <auto&> struct B { };
template <template <universal template> class Z, universal template U>
using Alias = Z<U>;

int i;

Alias<A, i> a1; // ill-formed (non-constant expression used as template argument)
Alias<A, (i)> a2; // ok A<int&>
Alias<B, i> a3; // ok B<int&>

To achieve this behavior, id-expressions bound to a universal template parameter would
behave as sort of symbolic references to the variable they denote, a bit like structured
binding of aggregates. They would presumably always be type-dependent even if the
variable they denote is not. We think this might be the better model, as it allows ””perfect
forwarding”” of variables through universal parameters.

However, this idea came quite close to Kona, such that we have not had time to imple-
ment it or to iron out the specifics. Nevertheless, we think this approach is the most
promising, as it is uncompromising.

• We considered letting users control whether to deduce a reference with some syntax,
but this would add more complexity than it would solve problems. Deducing the exact
type has the big advantage of making universal template parameters always be the
exact same thing as the argument from which they are deduced, which is easier to teach.

Concepts

Because concepts cannot be specialized, and because we have no good motivation for doing
otherwise, we do not propose to support universal template parameters in the template
heads of concepts. Universal template parameters also cannot be constrained with anything
resembling a type-constraint. However, universal template parameter names can appear in
template arguments in requires clauses. Constraining an entity to accept only specific kinds
of universal template parameters is therefore possible.

Function template

We are not proposing to allow passing an overload set or a function template as a universal
template argument. This might be worth future consideration but would come with imple-
mentation challenges. Overall this is an orthogonal feature that has less to do with universal

7

template arguments than with the countless ”overload set as first class objects” (P1170R0 [7])
and ”customization point objects” (P2547R1 [4]) papers.

Library Support: Universal template parameters with is

We propose a set of library traits to accompany the core language feature.

template <universal template T>
inline constexpr bool is_typename_v = false;
template <universal template U>
inline constexpr bool is_nttp_v = false;
template <universal template U>
inline constexpr bool is_template_v = false;
template <universal template U>
inline constexpr bool is_type_template_v = false;
template <universal template U>
inline constexpr bool is_var_template_v = false;
template <universal template U>
inline constexpr bool is_concept_v = false;

These type traits can be specialized as follow:

template <typename T>
inline constexpr bool is_typename_v<T> = true;

template <decltype(auto) V>
inline constexpr bool is_nttp_v<V> = true;

template <template<universal template...> typename U>
constexpr bool is_template_v<U> = true;

template <template<universal template...> auto U>
constexpr bool is_template_v<U> = true;

template <template<universal template...> concept U>
constexpr bool is_template_v<U> = true;

template <template<universal template...> typename U>
inline constexpr bool is_type_template_v<U> = true;

template <template<universal template...> auto U>
inline constexpr bool is_var_template_v<U> = true;

template <template<universal template...> concept U>
inline constexpr bool is_concept_v<U> = true;

[Demo on compiler explorer]

The final wording will most likely include support for the non-_v version of these traits.

We would be remiss if we did not propose std::is_specialization_of (P2098R1 [5]) here:

8

https://wg21.link/P1170R0
https://wg21.link/P2547R1
https://godbolt.org/z/cEfvsaf4j
https://wg21.link/P2098R1

template<template<universal template...> typename, typename>
inline constexpr bool is_specialization_of_v = false;

template<
template<universal template...> typename Primary,
universal template... Args
>
inline constexpr bool is_specialization_of_v<Primary, Primary<Args...>> = true;

Unlike P2098R1 [5], which was rejected for not being universal enough (the technology did
not exist at the time), this implementation not only supports checking specializations for any
class templates, including those having template parameters that are not types, but also
specialization of variable templates.

[Demo on compiler explorer]

In which we mention reflection

One of the things we do not propose in this paper is to force the interpretation of a universal
template as a specific kind ”in place”, in contrast with P1985R3 [3]. That is, to use a universal
template parameter, you have to pass it to another template, which is then specialized
for templates, NTTP, template names, and so on. Naming a universal template parameter
anywhere except as a template argument is ill formed.

There are a few reasons for this design choice. First, for types and NTTP, writing as_type and
as_value, respectively, as library functions (not proposed), is easy enough.

template<universal template>
struct as_type;
template<typename T>
struct as_type<T> { using type = T; };
template <universal template T>
using as_type_t = as_type<T>::type;

template<universal template U>
constexpr auto as_value_v = delete;
template<decltype(auto) V>
constexpr decltype(auto) as_value_v<V> = V;

These would allow extracting a type/value from a UTTP:

template <universal template U>
constexpr auto test() {

if constexpr(is_typename_v<U>) {
using a = as_type<int>::type; // ok
return a{42};

}
else if constexpr(is_nttp_v<U>) {

decltype(auto) v = as_value_v<U>;
return v;

}

9

https://wg21.link/P2098R1
https://godbolt.org/z/5W47odaK5
https://wg21.link/P1985R3

}
static_assert(test<int>() == 42);
static_assert(test<24>() == 24);

[Demo on Compiler Explorer]

The second reason is that use cases are limited. We need universal template parameters so
we can handle entities of different shapes in generic contexts, by forwarding them to other
templates, as illustrated in the examples at the start of this paper.

However, the main reason is that the concern is somewhat orthogonal and not specific to this
proposal. Enter reflection. which we already mentioned in P1985R3 [3], and not just because
we love to talk about reflection in every paper.

Reflection has a feature called splicing — although terminology changed over the years — by
which you can convert a reflection of an entity back into that entity. Because it is possible to
reflect on anything (in a theoretical future), then splicing a reflection can produce any kind of
entity (we apologize to Core for our liberal use of ”entity” throughout this paper).

Quoting from P1240R2 [8]:

struct S { struct I { }; };
template<int N> struct X;
auto refl = ˆS;
auto tmpl = ˆX;
void f() {

typename[:refl:] * x; // Okay: declares x to be a pointer to S.
[:refl:] * x; // Error: attempt to multiply int by x.
[:refl:]::I i; // Okay: splice as part of a nested-name-specifier.
typename[:refl:]{}; // Okay: default-constructs an S temporary.
using T = [:refl:]; // Okay: operand must be a type.
struct C: [:refl:] {}; // Okay: base classes are types.
template[:tmpl:]<0>; // Okay: names the specialization.
[:tmpl:] < 0 > x; // Error: attempt to compare X with 0.

}

This set of examples is rather illustrative of what we need to solve in general. Both splices
and UTP are dependent expressions and need some form of parsing disambiguator to be
usable in arbitrary contexts, like other dependent names (i.e., member of classes templates).

So both P1985R3 [3] and reflection had similar needs for disambiguating new interesting
names, and both papers try to come up with rules for cleverly avoiding the need for a disam-
biguator syntax. As shown in P1985R3 [3], if we allowed some form of aliases of universal
template parameters and/or some form of general aliasing that would allow more entities to
become dependent the need for disambiguation syntaxes would increase. Of course, work
is done on member packs and pack aliases, which adds a layer of consideration to these
disambiguation syntaxes.

Adding disambiguators and implicit disambioguators rules would have a nontrivial impact
on C++ parsers, so progressing one step at a time seems reasonable. Thus we focus solely

10

https://godbolt.org/z/oTPGvEYoa
https://wg21.link/P1985R3
https://wg21.link/P1240R2
https://wg21.link/P1985R3
https://wg21.link/P1985R3

on allowing universal template parameters. Once we have the basis right, we can expand to
allow UTP in more places, if we find a compelling use case for it. Both reflection and the use
of UTP outside of template arguments should have a consistent syntax for disambiguators
and consistent rules for where we can and cannot omit them.

Syntax

The set of possible syntaxes is for universal template parameters infinite trying to do an
exhaustive search is unlikely productive,

• universal template Foo works (i.e., is not ambiguous). A search for #define universal
finds one instance in a no-longer maintained project.

• template auto which is the syntax used by circle and P1985R0 [2] reused auto in incon-
sistent ways which we and many others found undesirable.

• template as an isolated keyword is perfectly fine, but some committee members have
expressed opposition to that.

• __any or __universal would also work, but C++ doesn’t traditionally embrace underscore-
prefixed keywords (unlike C).

• universal_template or similar would also work but again we don’t often use underscore
in keywords (though, co_yield and co do).

• anytmplarg or any such weird enough keyword to be unlikely to be used as identifier
would also work. (we can’t pick something non-weird, to not break existing code).

We are proposing universal template. EWG seem to not hate it going from previous discus-
sions. We are, of course, not proposing tomake universal a keyword. In a template parameter
declaration, universal template would have a special meaning, so the meaning of universal
would be contextual, like module, final and override.

template <
universal template, // template
universal foo // type constraint or NTTP

>

The proposed feature allows us to express ideas that can’t be expressed otherwise, so it is
important, but we expect universal template parameters will mostly be used by select generic
facilities. Terseness is not a goal here.

The template auto syntax is perhaps less cromulent than the two other options ilustrated
above as. In addition to overloading auto with a novel meaning (one that has little to do with
variables), this syntax makes it harder (for a human) to distinguish variable templates, tem-
plate variable template parameters, template template parameters with a variable template,
universal templates, template template parameters with a universal template, etc.

template <
auto, // variable
template auto, // universal parameter
template <auto> auto, // variable template

11

https://tinyurl.com/pth8v9p7
https://wg21.link/P1985R0

template <template auto> auto // variable template with a universal template parameter.
>
struct S;

We should clarify that none of the options proposed here pose any challenge for implemen-
tation. The only concern is what will feel more intuitive to developers with time, and any
reasonable syntax we pick will become familiar with time.

Status of this proposal and implementation

The design presented in this paper roughly matches the implementation of universal template
parameters in Circle (itself inspired by a previous iteration of this proposal), albeit with a
different syntax.

We provide a prototype implementation in Clang to demonstrate implementability in a second
C++ compiler and discover any interesting design questions we might otherwise miss. Our
implementation compile the examples presented in this paper. However it remains a prototype
that is not production ready. The implementation represented a few weeks of work. The main
challenge of bringing this proposal to production ready implementations certainly resides in
the testing of all possible combination of template parameter and arguments.

Our aim is to agree on general design and syntax in Kona and then to follow-up in the next
few months with wording. We should also progress P2841R0 [6], first since we intend for
concepts and variable templates to be valid universal template parameters. There is a better
order of operation, especially for ease of specification.

Wording

TBD!

Acknowledgments

We would like to thank Bengt Gustafsson, Brian Bi, Joshua Berne, and Pablo Halpern for their
valuable feedback on this paper.

Thanks to Barry Revzin for suggesting an alternative to deduce the type of value template
parameters.

We also want to thank Lori Hughes for helping edit this paper on short notice.

References

[1] Ruslan Arutyunyan and Alexey Kukanov. P2769R1: get_element customization point object.
https://wg21.link/p2769r1, 5 2023.

12

https://wg21.link/P2841R0
https://wg21.link/p2769r1

[2] Gašper Ažman and Mateusz Pusz. P1985R0: Universal template parameters. https:
//wg21.link/p1985r0, 1 2020.

[3] Gašper Ažman, Mateusz Pusz, Colin MacLean, Bengt Gustafsonn, and Corentin Jabot.
P1985R3: Universal template parameters. https://wg21.link/p1985r3, 9 2022.

[4] Lewis Baker, Corentin Jabot, and Gašper Ažman. P2547R1: Language support for cus-
tomisable functions. https://wg21.link/p2547r1, 7 2022.

[5] Walter E Brown and Bob Steagall. P2098R1: Proposing std::is_specialization_of. https:
//wg21.link/p2098r1, 4 2020.

[6] Corentin Jabot and Gašper Ažman. P2841R0: Concept template parameters. https:
//wg21.link/p2841r0, 5 2023.

[7] Barry Revzin and Andrew Sutton. P1170R0: Overload sets as function parameters. https:
//wg21.link/p1170r0, 10 2018.

[8] Daveed Vandevoorde, Wyatt Childers, Andrew Sutton, and Faisal Vali. P1240R2: Scalable
reflection. https://wg21.link/p1240r2, 1 2022.

13

https://wg21.link/p1985r0
https://wg21.link/p1985r0
https://wg21.link/p1985r3
https://wg21.link/p2547r1
https://wg21.link/p2098r1
https://wg21.link/p2098r1
https://wg21.link/p2841r0
https://wg21.link/p2841r0
https://wg21.link/p1170r0
https://wg21.link/p1170r0
https://wg21.link/p1240r2

	1 Abstract
	2 Revisions
	2.1 R1
	2.2 R0

	3 Difference with P1985R3 P1985R3
	4 Examples
	4.1 Template CPOs
	4.2 Generic rebind
	4.3 ranges::to

	5 Design
	5.1 Partial ordering of universal template parameters
	5.2 Deduction of universal template arguments
	5.2.1 typenames
	5.2.2 template names
	5.2.3 Expressions

	5.3 Concepts
	5.4 Function template
	5.5 Library Support: Universal template parameters with is
	5.6 In which we mention reflection
	5.7 Syntax

	6 Status of this proposal and implementation
	7 Wording
	8 Acknowledgments

