
Proposal for adding tuple types into the standard

library
Programming Language C++
Document no: N1382=02-0040

Jaakko Järvi
Indiana University

Pervasive Technology Laboratories
Bloomington, IN

jajarvi@cs.indiana.edu

September 10, 2002

1 Motivation

Tuple types exist in several programming languages, such as Haskell, ML,
Python and Eiffel, to name a few. Tuples are fixed-size heterogeneous con-
tainers. They are a general-purpose utility, adding to the expressiveness of the
language. Some examples of common uses for tuple types are:

• Return types for functions that need to have more than one return type.

• Grouping related types or objects (such as entries in parameter lists) into
single entities.

• Simultaneous assignment of multiple values.

This proposal describes tuple types for C++. The standard library pro-
vides the pair template which is being used throughout the standard library,
demonstrating the usefulness of tuple-like constructs. The proposed tuple type is
basically a generalization of the pair template from two to an arbitrary number
of elements. In addition to the features and functionality of pairs, the proposed
tuple types:

• Support a wider range of element types (e.g. reference types).

• Support input from and output to streams, customizable with specific
manipulators.

• Provide a mechanism for ‘unpacking’ tuple elements into separate vari-
ables.

1

Doc. no: N1382=02-0040 2

2 Impact on the standard

All features described in this document can be implemented in a library, with-
out requiring any core language changes. However, the implementation would
benefit from a set of core language changes:

• Adding support for variable-length template argument lists.

• Making a reference to a reference to some type T equal to a reference to T
(core language issue 106).

• Allowing default template arguments for function templates (core language
issue 226).

• Ignoring cv-qualifiers that are added to function types (core language issue
295).

• Adding support for templated typedefs.

There are at least a few different approaches for implementing tuples underneath
a common interface.

For these reasons we do not suggest that a fixed implementation be standard-
ized, but rather that the proposed text for the standard state the requirements
for a tuple implementation in the form of valid expressions and the semantics
of those expressions. Also, this approach leaves room for a built-in tuple type,
or for a tuple template with special support from the compiler, which we see as
being worth considering. Compared to built-in tuple types in other languages,
a library solution still falls short in some aspects. For instance, in the program-
ming language Python, the function argument list is implicitly a tuple. This
is a feature that cannot be added to C++ as a library, but would be a most
useful.1

In sum, this proposal defines the requirements for a standard tuple type. The
requirements are stated so as to allow a library implementation with the current
language, but also a future transition to a more feature-rich built-in tuple type,
or to a library implementation that can take advantage of new language features,
such as variable length template argument lists or templated typedefs.

The concrete additions and changes to the standard are:

• A new section describing the requirements for the tuple template.

• Backwards-compatible changes to pair to allow pairs to act as tuples.

• A utility class and two utility function templates to be used in passing
reference arguments through a pass-by-copy interface. These templates
have uses outside of tuples and should thus be described elsewhere in the
standard, possibly together with the type traits library [1, 5], which has
been proposed for standardization [4].

1Truly generic forwarding functions that could take any number of parameters would be
supported. For example, one constructor definition in a derived class could cover a large set
of base class constructors with different arities and argument types.

Doc. no: N1382=02-0040 3

We propose two new standard headers. The basic tuple definitions are to be
included by including the <tuple> header. Operators for reading tuples from
a stream and writing tuples to a stream introduce a dependency to <istream>
and <ostream>, and so tuple input and output operators will be defined in a
separate header <tupleio>.

3 Tuples in a nutshell

The purpose of this section is to give an informal overview of the features that
the tuple types provide. The feature set is largely based on the Boost Tuple
Library [2, 3].

3.1 Defining tuple types

The tuple template can be instantiated with any number of arguments from 0
to some predefined upper limit. In the Boost Tuple library, this limit is 10. The
argument types can be any valid C++ types. For example:

typedef tuple<A, const B, volatile C, const volatile D> t1;
typedef tuple<int, int&, const int&, const volatile int&> t2;
typedef tuple<void, int()(int)> t3;

Note that even types of which no objects can be created (cf. void, int()(int)),
are valid tuple elements. Naturally, an object of a tuple type with such an
element type cannot be constructed.

3.2 Constructing tuples

An n-element tuple has a default constructor, a constructor with n parameters,
a copy constructor and a converting copy constructor. By converting copy con-
structor we refer to a constructor that can construct a tuple from another tuple,
as long as the type of each element of the source tuple is convertible to the type
of the corresponding element of the target tuple. The types of the elements
restrict which constructors can be used:

• If an n-element tuple is constructed with a constructor taking 0 elements,
all elements must be default constructible. For example:

tuple<int, float> a; // ok
class no_default_constructor { no_default_constructor(); };
tuple<int, no_default_constructor, float> b; // error
tuple<int, int&> c; // error, no default construction for references

• If an n-element tuple is constructed with a constructor taking n elements,
all elements must be copy constructible and convertible (default initializ-
able) from the corresponding argument. For example:

Doc. no: N1382=02-0040 4

tuple<int, const int, std::string>(1, ’a’, "Hi")
tuple<int, std::string>(1, 2); // error

• If an n-element tuple is constructed with the converting copy constructor,
each element type of the constructed tuple type must be convertible from
the corresponding element type of the argument.

tuple<char, int, const char(&)[3]> t1(’a’, 1, "Hi");
tuple<int, float, std::string> t2 = t1; // ok

The argument to this constructor does not actually have to be of the
standard tuple type, but can be any tuple-like type that acts like the
standard tuple type, in the sense of providing the same element access
interface. For example, std::pair is such a tuple-like type. For example:

tuple<int, int> t3 = make_pair(’a’, 1); // ok

3.3 make_tuple

Tuples can also be constructed using the make_tuple (cf. make_pair) utility
function templates. This makes the construction more convenient, saving the
programmer from explicitly specifying the element types:

tuple<int, int, double> add_multiply_divide(int a, int b) {
return make_tuple(a+b, a*b, double(a)/double(b));

}

By default, the element types are plain non-reference types. E.g., the make_tuple
invocation below creates a tuple of type tuple<A, B>:

void foo(const A& a, B& b) {
...
make_tuple(a, b);
...

}

This default behavior can be changed with to utility functions ref and cref.
An argument wrapped with ref will cause the element type to be a reference
to the argument type, and cref will similarly cause the element type to be a
reference to the const argument type. For example:

A a; B b; const A ca = a;
make_tuple(cref(a), b); // constructs tuple<const A&, B>(a, b)
make_tuple(ref(a), b); // constructs tuple<A&, B>(a, b)
make_tuple(ref(a), cref(b)); // constructs tuple<A&, const B&>(a, b)
make_tuple(cref(ca)); // constructs tuple<const A&>(ca)
make_tuple(ref(ca)); // constructs tuple<const A&>(ca)

Doc. no: N1382=02-0040 5

Array arguments to make_tuple result in the corresponding tuple element
being a reference to a const array. This is to avoid the need to wrap arrays with
cref, as arrays cannot be copied as such anyway. Note that make_tuple cannot
be made to accept references to function types without the ref wrapper, unless
core language issue 295 is resolved.

3.4 Assignment

The assignment operation is defined as element-wise assignment. Consequently,
two tuples are assignable as long as they are element-wise assignable. For ex-
ample:

tuple<char, int, const char(&)[3]> t1(’a’, 1, "Hi");
tuple<int, float, std::string> t2;
t2 = t1; // ok

Analogously to the converting copy constructor, it suffices that the right-hand
side of the assignment operator is a tuple-like object.

3.5 The tie function templates

The tie functions are a short-hand notation for creating tuples where all element
types are references. A tie call corresponds to an invocation of make_tuple
where all arguments have been wrapped with ref. For example, the tie and
make_tuple invocations below both return the same type of tuple object, namely
tuple<int&, char&, double&>:

int i; char c; double d;
tie(i, c, d);
make_tuple(ref(i), ref(c), ref(d));

A tuple that contains non-const references as elements can be used to ‘unpack’
another tuple into variables. For example:

int i; char c; double d;
tie(i, c, d) = make_tuple(1, ’a’, 5.5);

After the assignment, i == 1, c == ’a’ and d == 5.5. A tuple unpacking
operation like this is found, for example, in ML and Python. It is convenient
when calling functions which return tuples.

3.5.1 Ignore

The library provides an object called ignore which allows one to ignore elements
in an assignment to a tuple. Any assignment to ignore is a no-operation. For
example:

char c;
tie(ignore, c) = make_tuple(1, ’a’);

After this assignment, c == ’a’.

Doc. no: N1382=02-0040 6

3.6 Number of elements

The number of elements in a tuple type is accessible as a compile-time constant:

tuple_size<tuple<int, int, int, int> >::value; // equals 4

3.7 Element type

The type of the Nth element of a tuple type is accessed using the tuple_element
template:

tuple_element<2, tuple<int, char, float, double> >::type // float

Indexing is zero-based. The index must be an integral constant expression and
using an index that is out of bounds results in a compile time error.

3.8 Element access

Let t be a tuple object. The expression get<N>(t) returns a reference to the
Nth element of t, where N is an integral constant expression.

tuple<int, float, char>(1, 3.14, ’a’) t;
get<2>(t); // equals ’a’

Indexing is zero-based. Using an index that is out of bounds results in a com-
pilation error.

3.9 Relational operators

Tuples implement the operators ==, !=, <, >, <= and >= using the corresponding
operators on elements. This means that if any of these operators is defined
between all elements of two tuples, the same operator is defined between the
tuples as well.

The operator== is defined as the logical AND of the element-wise equality
comparisons. The operator!= is defined as the logical OR of the element-wise
inequality comparisons. The operators <, >, <= and >= each define a lexicograph-
ical ordering. An attempt to compare two tuples of different lengths results in a
compile-time error. The comparison operators are “short-circuited”: elementary
comparisons start from the first elements and are performed only until the result
is known. Elements after that are not accessed. For example:

tuple<int, float, char> t(1, 2, ’a’);
tuple<int, char, int> u(1, 1, 1000);
t < u; // ok, false

tuple<int, int, int, int> x;
tuple<int, int, int> y;
x < y; // error, different sizes

Doc. no: N1382=02-0040 7

tuple<int, int, complex<double>, int> x;
tuple<int, int, string, int> y;
x < y; // error, no operator< between complex<double> and string

3.10 Input and output

The library overloads the streaming operators << and >> for tuples. Output
is implemented by invoking operator<< for each element, and input similarly
with invocations of operator>>. When writing a tuple to a stream, opening
and closing characters are written around the body of the tuple. Additionally, a
delimiter character is written between each two consecutive elements. Similarly,
the opening, closing and delimiter characters are expected to be present when
extracting a tuple from an input stream. The default delimiter between the
elements is a space, and the default opening and closing characters are the
parentheses. For example:

cout << make_tuple(1, ’a’, "C++");

outputs (1 a C++).
The library defines three formatting manipulators for tuples, tuple_open,

tuple_close and tuple_delimiter to change, respectively, the opening, clos-
ing and delimiter characters for a particular stream. For example:

cout << tuple_open(’[’) << tuple_close(’]’)
<< tuple_delimiter(’,’)
<< make_tuple(1, ’a’, "C++");

outputs the same tuple as: [1,a,C++].
Note that in general it is not guaranteed that a tuple written to a stream

can be extracted back to a tuple of the same type, since the streamed tuple
representation may not be unambiguously parseable. This is true, for instance,
for tuples with string or C-style string element types.

3.11 Performance

Based on the experience with the Boost Tuple library, it is reasonable to expect
an optimizing compiler to eliminate any extra cost of using tuples compared
to using hand-written tuple-like classes. Inlining and copy propagation are the
optimizations required to attain this goal.

Concretely, accessing tuple members should be as efficient as accessing a
member variable of a class. Further, constructing a tuple should have no other
cost than the cost of constructing the elements as separate objects. The same
should be true for assignment.

Doc. no: N1382=02-0040 8

Text in the standard
Text enclosed with brackets and typeset in sans serif is a comment, not proposed
standard text [This is a comment].

4 Annex B: Implementation quantities

[Add to the list of implementation quantities:]

— Number of elements in one tuple type [10].

5 Tuple library

This clause describes the tuple library that provides a tuple type as the class
template tuple that can be instantiated with any number of arguments. An
implementation can set an upper limit for the number of arguments. Each
template argument specifies the type of an element in the tuple. Consequently,
tuples are heterogeneous, fixed-size collections of values.

For certain tuple operations, the argument type does not have to a be tuple
type. Instead, it suffices that the argument type is tuple-like. The following
subclauses describe the requirements for tuple types and for types that are
tuple-like. All tuple types are tuple-like.

Valid Expressions for all types

is_tuple<T>::value

Type: static const bool (integral constant expression).
Value: true if T is, or derives from, an instantiation of the tuple template.
Users may not specialize this trait. An implementation may define this trait for
any tuple-like type.

is_tuple_like<T>::value

Type: static const bool (integral constant expression).
Value: true if T is a tuple type or an instance of pair. Users may specialize
this class template to indicate the conformance of a type to the requirements
for a tuple-like type. Setting the value to true for a type that does not conform
to all of the requirements for a tuple-like type causes undefined behavior.

tuple_size<T>::value

Type: static const int (integral constant expression).
Value: Number of elements in T. The number of elements in any non-tuple-like
type is 1. The number of elements in a tuple-like type must be nonnegative.

Doc. no: N1382=02-0040 9

tuple_element<N, T>::type

Requires: 0 ≤ N < tuple_size<T>::value
Value: The type of the Nth element of T, where indexing is zero-based. If T is a
non-tuple-like type and N == 0, the value is T. A diagnostic must be produced
for a value of N that is out of bounds.

5.1 Tuple-like requirements

A type P is tuple-like if

• is_tuple_like<P>::value == true, and

• tuple_size<P>::value is a valid integral constant expression with a non-
negative value, and

• tuple_element<N, P>::type is a valid expression that designates a type
whenever N is in bounds, and

• get<N>(p), where p is either of type P or const P, has the semantics
defined in the Element access subclause.

5.2 Notation

T, U are tuple types
t, u objects of types T and U
tc, uc objects of types const T and const U
P a tuple-like type
p, pc objects of types P and const P
Xi the type of the ith element in X, where X is a tuple-like type
xi the ith element of x, where x is of a tuple-like type
For all i in X For all indices i from 0 to tuple_size<X>::value - 1 for

a tuple-like type X.
The notation T0, T1, ..., TN stands for a comma separated list of types which
may contain any number of elements from 0 to N+ 1, where N+ 1 ≤ maximum
number of allowed tuple elements. The notation t0, t1, ..., tn is an analo-
gous list of objects.

Element access

get<N>(p)

Requires: 0 ≤ N < tuple_size<P>::value
Return type: tuple_element<N, P>::type&
[Assuming core issue 106 is resolved to make a reference to a reference be just
a reference instead of an error. Otherwise, the return type must be defined as:
add_reference<tuple_element<N, P>::type>::type.]
Returns: A reference to the Nth element of p, where indexing is zero-based.

Doc. no: N1382=02-0040 10

get<N>(pc)

Requires: 0 ≤ N < tuple_size<P>::value
Return type: const tuple_element<N, P>::type&
[Assuming core issue 106 is resolved to make a reference to a reference be just
a reference instead of an error. Otherwise, the return type must be defined as:
add_reference<const tuple_element<N, P>::type>::type (see [4]).]
Returns: A reference to the Nth element of pc, where indexing is zero-based.
Notes: Constness is shallow. If element_type<N, P>::type is some reference
type X&, the return type is X&, not const X&. However, if the element type is
non-reference type T, the return type is const T&.
[This is consistent with how constness is defined to work for member variables of
reference type.]

[There are alternative syntaces for element access. One particularly appealing
syntax is something like: t[index<N>], or even t[_1], t[_2], etc. We decided not
to propose that syntax, because operator[] cannot be defined as a free function,
and would thus prevent adding tuple-likeness into a type non-intrusively.]

Assignment

t = pc

Requires: tuple_size<T>::value == tuple_size<P>::value. For all i in T,
ti = pci is a valid expression.
Effects: Performs ti = pci for all i in T.
Return type: T&
Returns: t

Equality and inequality comparisons

tc == uc

Requires: tuple_size<T>::value == tuple_size<U>::value. For all i in T,
tci == uci is a valid expression returning a type that is convertible to bool.
Return type: bool
Returns: true iff tci == uci for all i in T. For any two zero-length tuples e
and f, e == f returns true.
Effects: The elementary comparisons are performed in order from the zeroth
index upwards. No comparisons or element accesses are performed after the first
equality comparison that evaluates to false.

t != u

Requires: T::size == U::size. For all i in T, ti != ui is a valid expression
returning a type that is convertible to bool.
Return type: bool
Returns: true iff ti != ui for some i. For any two zero-length tuples e and
f, e != f returns false.
Effects: The elementary comparisons are performed in order from the zeroth

Doc. no: N1382=02-0040 11

index upwards. No comparisons or element accesses are performed after the first
inequality comparison that evaluates to true.

<, >, <= and >= comparisons

t � u, where � is either < or >
Requires: T::size == U::size. For all i in T, ti � ui and ui � ti are valid
expressions whose result types are convertible to bool.
Return type: bool
Returns: The result of a lexicographical comparison with � between t and u,
defined equivalently to:

(bool)(t0 � u0) || !((bool)(u0 � t0)) && ttail � utail,
where rtail for some tuple r is a tuple containing all but the first element of r.
For any two zero-length tuples e and f, e � f returns false.

t � u, where � is either <= or >=
Requires: T::size == U::size. For all i in T, ti � ui and ui � ti are valid
expressions whose result types are convertible to bool.
Return type: bool
Returns: The result of a lexicographical comparison with � between t and u,
defined equivalently to:

(bool)(t0 � u0) && (!((bool)(u0 � t0)) || ttail � utail),
where rtail for some tuple r is a tuple containing all but the first element of r.
For any two zero-length tuples e and f, e � f returns true.
Notes: The above definitions for comparison operators do not impose the re-
quirement that ttail (or utail) must be constructed. It may be even impossible,
as t (or u) is not required to be copy constructible. Also, all comparison opera-
tors are short circuited to not perform element accesses beyond what is required
to determine the result of the comparison.

[The comparison operators (as well as streaming operators defined below), are only
defined for tuple types instead of tuple-like types. This is because it is somewhat
tricky to overload operators to accept any tuple-like type and not to create ambigu-
ities. A straightforward solution to provide comparison and streaming functionality
for tuple-like types would be to define fully generic function templates, with names
like tuple_print and tuple_compare, that implemented the same functionality
as the comparison and streaming operators.]

Construction

tuple<T0, T1, ..., TN>()

Requires: Each element type can be default constructed.
Effects: Default initializes each element.

tuple<T0, T1, ... TN>(t0, t1, ..., tN)

Requires: Each element type Ti is copy constructible. The type of each argu-
ment ti is convertible to Ti.

Doc. no: N1382=02-0040 12

Effects: Copy initializes each element with the value of the corresponding pa-
rameter doing conversions as needed.

tuple<T0, T1, ... TN>(pc)

Requires: tuple_size<P>::value == N+1. For each i in P, Pi is convertible
to Ti.
Effects: Copy initializes each element i with pci.
[There seem to exist (rare) conditions where the converting copy constructor and
element-wise construction conflict. One example of this is if one is constructing a
one-element tuple where the element type is another tuple type T. If the parameter
passed to the constructor is not of type T, but rather a tuple type that is convertible
to T, the conflict arises. It is possible to make this case fail, and provide another
constructor, distinguished with an extra dummy parameter. Instead of

tuple<tuple<A> >(tuple())

where B is convertible to A. The programmer would then have to write something
like:

tuple<tuple<A> >(tuple(), ignore)

]

Input and output

In this section, a return type specified as istream or ostream is understood to
mean an instance of basic_istream or basic_ostream, which is the type of
the returned stream object, or from which this type derives.

os << t, where os is an instance of basic_ostream.
Requires: For all i in T, os << ti is a valid expression.
Effects: Inserts t into os as Lt0dt1d...dtnR, where L is the opening, d the
delimiter and R the closing character, set by tuple formatting manipulators.
Each element ti is output by invoking os << ti. A zero-element tuple is output
as LR and a one-element tuple is output as Lt0R.
Return type: ostream&
Returns: os

is >> t, where is is an instance of basic_istream.
Requires: For all i in T, is >> ti is a valid expression.
Effects: Extracts a tuple of the form Lt0dt1d...dtnR, where L is the opening,
d the delimiter and R the closing character set by tuple formatting manipulators.
Each element ti is extracted by invoking is >> ti. A zero-element tuple expects
to extract LR from the stream and one-element tuple expects to extract Lt0R.

If bad input is encountered, calls is.set_state(ios::failbit) (which may
throw ios::failure (27.4.4.3).
Return type: istream&

Doc. no: N1382=02-0040 13

Returns: is
Notes: It is not guaranteed that a tuple written to a stream can be extracted
back to a tuple of the same type.

Tuple formatting manipulators

The library defines the following three stream manipulator functions. The type
designated tuple manip is implementation-specified and may be different for
each function.

tuple manip tuple_open(char_type c)
tuple manip tuple_close(char_type c)
tuple manip tuple_delimiter(char_type c)

Returns: Each of these functions returns an object s of unspecified type such
that if out is an instance of basic_ostream<charT,traits>, in is an instance
of basic_istream<charT,traits> and char_type equals charT, then the ex-
pression out << s (respectively in >> s) sets c to be the opening, closing, or
delimiter character (depending on the manipulator function called) to be used
when writing tuples into out (respectively extracting tuples from in).
Notes: Implementations are not required to support these manipulators for
streams with sizeof(charT) > sizeof(long); out << s and in >> s are re-
quired to fail at compile time if out are in are such streams and the implemen-
tation does not support tuple formatting manipulators for them.
[The constraint stated in the above Notes section allows an implementation where
the delimiter characters are stored in space allocated by xalloc, which allocates
an array of longs. A more general alternative is to store pointers to the delimiter
characters in the xalloc-allocated array, and register a callback function (with
ios_base::register_callback) for the stream to take care of deallocating the
memory. If this approach is taken, the delimiters could be chosen to be strings
instead of single characters. This might be worthwhile, such as to allow delimiters
like ", ".]

Utility functions for tuple construction

The library provides the class template any_holder that can hold objects or
references of any type. The observable behavior of any_holder must be as if
implemented:

Doc. no: N1382=02-0040 14

template <class T>
class any_holder {
T data;

public:
typedef T type;

operator T() { return data; }
T unwrap() { return data; }

any_holder(const T& t) : data(t) {}
};

[If core issue 106 is not resolved to make a reference to a reference be just a reference
instead of an error, the constructor parameter type must be defined as: typename
add_reference<typename add_const<T>::type>::type] (see [4])

Reference types wrapped in any_holder can be passed by copy, and as const
references, without affecting the constness of the wrapped object. Two template
functions, ref and cref, are provided to create any_holder objects.

template <class T> inline any_holder<T&> ref(T& t);

Returns: any_holder<T&>(t).

template <class T> inline any_holder<const T&> cref(const T& t);

Requires: T cannot be a function type.
[This requirement may be unnecessary depending on the resolution of core language
issue 295]
Returns: any_holder<const T&>(t).

template<class V0, class V1, ..., class VN>
... make_tuple(const V0& v0, const V1& v1, ..., const VN& vn);

Return type: tuple<T0, T1, ..., TN>, where

• if Vi is an array type, then Ti is a reference to const Vi.

• if the cv-unqualified type Vi is any_holder<X>, then Ti is X.

• otherwise Ti is Vi, with any const qualifications removed.

Example:
int i; float j;
make_tuple(1, "C++", ref(i), cref(j))

creates a tuple of type
tuple<int, const char (&) [4], int&, const float&>

Notes: The make_tuple function template must be implemented for each dif-
ferent number of arguments from 0 to the maximum number of allowed tuple
elements. To construct a tuple which contains a reference to a function, the
function reference must be wrapped inside ref.

Doc. no: N1382=02-0040 15

tie(t0, t1, ..., tn)

Effects: As if implemented:
template<class T0, class T1, ..., class TN>
tuple<T0&, T1&, ..., TN&> tie(T0& t0, T1& t1, ..., TN& tn) {
return tuple<T0&, T1&, ..., TN&>(t0, t1, ..., tn);

}
for each different number of arguments from 0 to the maximum number of
allowed tuple elements.

The library provides the class swallow_assign, as if implemented:
struct swallow_assign {
template <class T>
swallow_assign& operator=(const T&) { return *this; }

};

The library provides an object ignore of type swallow_assign. It must be
possible to use ignore in multiple translation units in a program.
Example: tie functions allow one to create tuples that unpack tuple-like ob-
jects into variables. ignore can be used for elements that are not needed:

int i; std::string s;
tie(i, ignore, s) = make_tuple(42, 3.14, "C++");
// i == 42, s == ”C++”;

6 Pairs

[Wording to make pairs tuple-like]

Pairs are tuple-like types (see [number of the section where tuple-like is de-
fined]). The following subclauses define the semantics of the expressions pair
types must support to comply to the tuple-like requirements.

Notation

P is an instance of the pair template
p, pc are objects of types P and const P

is_tuple_like<P>::value

Type: static const bool (integral constant expression).
Value: true.

tuple_size<P>::value

Type: static const int (integral constant expression).
Value: 2

tuple_element<0, P>::type

Values: P::first_type

Doc. no: N1382=02-0040 16

tuple_element<1, P>::type

Values: P::second_type

get<0>(p)

Return type: P::first_type&
Returns: p.first

get<1>(p)

Return type: P::second_type&
Returns: p.second

get<0>(pc)

Return type: const P::first_type&
Returns: pc.first

get<1>(pc)

Return type: const P::second_type&
Returns: p.second

7 Acknowledgements

The author is indebted to Jeremiah Willcock for his suggestions and help in
preparing this document. The Boost Tuple Library, the basis of this proposal,
has benefited from suggestions by many in the Boost community, including
Gary Powell, Douglas Gregor, Jens Maurer, Jeremy Siek, William Kempf, Vesa
Karvonen, John Max Skaller, Ed Brey, Beman Dawes, David Abrahams and
Hartmut Kaiser.

References

[1] The Boost Type Traits library. www.boost.org/libs/type_traits, 2002.

[2] Jaakko Järvi. The Boost Tuple Library. www.boost.org/libs/tuple, 2001.

[3] Jaakko Järvi. Tuple types and multiple return values. C/C++ Users Jour-
nal, 19:24–35, August 2001.

[4] John Maddock. A Proposal to add Type Traits to the Standard Library.
C++ Standards Committee Doc. no. J16/02-0003 = WG21/N1345, March
2002.

[5] John Maddock and Steve Cleary. C++ type traits. Dr. Dobb’s Journal,
October 2000.

