Doc. No.: 03-0012N1430
Date: 4 March 2003
Projea Editor Lois Goldthwaite

Technical Report on C++ Performance

Executive Summary:

The aim of thisreport is:

» to gve the reader a model of time and space overheads implied by use of
various C++ language and library feaures,

» to debunk widespread myths about performance problems,

* to present techniques for use of C++ in applications where performance
meatters, and

* to present techniques for implementing C++ Standard language and Standard
library facilitiesto yield efficient code.

As far as run-time and space performance is concerned, if you can afford to use C for
an applicaion, you can afford to use C++ in a style that uses C++'s facilities
appropriately for that application.

This report first discusses areas where performance issues matter, such as various
forms of embedded systems programming and high-performance numerical
computation. After that, the main body of the report considers the basic cost of using
language and library facilities, techniques for writing efficient code, and the special
needs of embedded systems programming.

Performance implications of objed-oriented programming are presented. This
discussion rests on measurements of key language fadlities supporting OOP, such as
classs, class member functions, class hierarchies, virtual functions, multiple
inheritance, and run-time type identification (RTTI). It is demonstrated that, with the
exception of RTTI, current C++ implementations can match hand-written low-level

code for equivalent tasks. Similarly, the performance implications of generic
programming wsing templates are discussed. Here, however, the emphasis is on
techniques for effedive use. Error handling using exceptions is discussed based on
another set of measurements. Both time and space overheads are discussed. In
addition, the predictabil ity of performance of a given operation is considered.

The performance implications of 10Streams and Locales are examined in some detall
and many generally useful techniques for time and space optimizations are discussed
here.

The special neads of embedded systems programming are presented, including
ROMability and predictability. Appendices present general C and C++ interfaces to
the basic hardware facil ities of embedded systems.

Acknowledgments

The following people contributed work to this Technica Report:

Dave Abrahams
Mike Ball

Greg Colvin
Embedded C++ Technicd Committee (Japan)
Hiroshi Fukutomi
Lois Goldthwaite
Y enjo Han

Seiji Hayashida
Howard Hinnant
Brendan Kehoe
Robert Klarer

Jan Kristofferson
Dietmar Kuehl
Jens Maurer
Fusako Mitsuhashi
Hiroshi Monden
Nathan Myers
Masaya Obata
Martin O'Riordan
Tom Plum

Dan Saks

Martin Sebor

Bill Seymour
Bjarne Stroustrup
Detlef Vollmann

03-0012N1430 Tecdhnical Report on C++ Performance

Contents:

ACKNOWIEAGMENES. ... e ee e e e e e e e e e et e e e et e eeenes 3
1 INTRODUCTION ... e et e e e e e 9
0 I 1 o1 Y RPN 10
1.2 Typical APPlCAION ArEEB......cccuueeeiiiieee e e e e e e 13
O N = 0110750 0. 0 RS (= 1 01 14
S < A< £ PP TRP T UPPPRTTRPPIN 15
2 LANGUAGE FEATURES-OVERHEADS & STRATEGIES.................. 17
FZ R N\ F= 011 072 T - PPN 17
2.2 Type ConVErsioN OPEIatOrS.ccuuuuieeeiieeeeeiiieeee et e e e eete e e s e e e earneaeeeees 18
2.3 Classesand INheritanCe...........uvveiiiii i e 19
231 Representation OVErNEAAS.......cccuvviiiiiiii e e e e e e e e eees 19
ARG I = 7= S Lol @ oS @) o= - 11T 20
233 Vil FUNCHIONS ...uutttiiiie ettt e e e e e e e e eeeeeesbeanees 21
2.3.3.1 Virtual functions of classtemplates..........ccuvoviieiiiiini e 22
220G 0 S 1 o1 1T 11 o 22
235 MUIPlE INNETANCE.ui e e 23
236 Virtual BaSe ClaSES. .. uuuuu it i e e eiieieeeiititeaittts s e e e e et ettt eant bbb a e e e e e e e eeeeeeesrree 24
228G T A B o 1= 1 0] 1o 1 7= 1 o o [P 25
2.3.8 DYNAMIC CBSt . .cieeeiiiceeiiiie e ee e cee e e e e s e e e e e e et e e e e e e e e e e e et aan 25
2.4 EXCeption HaNAliNg.......coovuniiii e 27
241 Exception Handling Implementation Issues and Techniques............ccevvveeeereiinnennn. 30
22050 T R I ¢ TSR @0 o (= 2N o 0o o 1 1 31
24.1.1.1 SpaceOverhead o the “Code’ Approach.........ccoeevviveviiiiiniiveeeeie e eeeeeenn, 31
24.1.1.2 Time Overhead of the “Code’” Approach...........ccccooieviiiiiiiieeee e, 32
24.1.2 The"Table" APProaCh.........coiiiiiiiii e 33
24.1.21 SpaceOverhead o the “Tabl€” Approath........ccooevvevviiieiiiiiiiee e, 33
24.1.22 TimeOverhead of the “Table” ApproaChcccveiiviiiiiiiiiieeeie e, 33
2.4.2 Predictahility of Exception Handling Overheadcooveviiiiiiieiicceiie e 34
2.4.2.1 Prediction of throw/catch Performance.............uuueiiiiiiiiiiiiiieiec e 34
2.4.2.2 EXCEPLioN SPEGATICALIONS. iieeeii e et r e 35
T = 0] = 36
251 Template OVErhEadS........cccoveveii e 36
252 Templates Vs, INNEMTANCE.ccuvei e e e e 37
2.6 Programmer Direded OptimiZaions.............coevvuiiiieiiiiceeeeee e 39
3 CREATING EFFICIENT LIBRARIES......co e, 59
3.1 The Standard IOStreans Library — OVerviewcccocvvvivieiiiiiieeeriieeeees 59
311 EXEQUANIE SIZE. .o e 59
312 EXEWLION SPEEL.....ccciiiiii e aae 59
01 R T @ o 1= o g .= PP 60
50 0 A @y o o 11 = 1 o I 2T TS 60

3.2 Optimizing Libraries — Reference Example: " An Efficient Implementation of
Locales and IOSIIEATIS”ceiei e ee e e e e e e e e s 60
321 Implementation BasiCSfOr LOCAIES........uvieviiriiieieeiis e eee e e e e e e 61
322 Reducing EXEQUtADIE SIZE.......covviei it 63
323 PreProcessiNg fOr FACES.........uuii it e e 66
324 Compile-Time DEMUPIINGtuuieieeiee e e e e e e e e e e e e a7
78 ST 0 = I o] (] o 68
326 Objed OrganiZationcccieeeeiieeeeie s e e ee e e e e e e rrr e e 70

Page5of 171

Tecdhnical Report on C++ Performance 03-0012N1430

3.27 Library ReCOMPIl@tioncoovuiiieiiiii e e e e e 12

4 USING C++INEMBEDDED SYSTEMS......coo e 73
I R @ 1V = o =X @ o = o £ 73
4.1.1.1 User-defined ObjedS......cccuvviiiiiiiiiiieeeeec e eveen e e eennnn o L
4.1.1.2 Compiler-generated ODJEAS........uvuuiiiiiiie it eeeevieeeeciii e D
412 Constructorsand ROMable OhjedS.oovviiiiiiiiiiieeeeeee e 77
4.2 Hard Real-Time ConSIderations............ocuuueiuuieiiiieeeni et eeeieeeiee e eanaes 77
421 C++ Featuresfor which Acaurate Timing Analysisis Straightforward....................... 77
R O A = 111 = (= 77

N W 1 0= 1o (o= PP 78
42121 SINGEINNEITANCE.uui i 78
42122 MUltiple INheritanCe........ccoevviiiieec e 18
4.21.2.3 Virtual INNEFtaNCe.......cooveiiiiiiiie e 78

4.2.1.3 Virtual fUNCHIONS. ...uueeiii ittt e e e e e e e e eeenerbeens 78
422 C++ Features for which Real-Time Analysisis More Complex.......c.ccvvvveiveeeivinnnnnnn. 78
R A B)Y/ =0 4T o = L (P 79
4,222 Dynamic Memory AllOCAHON.cceuuiiii e eeeee e e e e ee et e 79
e B (= o 1 o R 79
NG B == 1 Vo T I T 11T TP 80

5 HARDWARE ADDRESSNG INTERFACE.......cco e 81
5.1 Introductionto I/O Hardware Addressing........cc.oeveveeiiieiiieieein e e 82
511 Basic Standardization ObJEAIVES..........uuuiiiiiiiiii i e e 82
512 Overview and PriNCIPIES.ui i 83
513 TheADBSraCt MOGE........ccoiiiiiiiiiie e s 83
5131 TREMOUUE SEL....uuvuiiiie ettt e e e e e e e e e eeeeeserenne 84
514 Hardware Register CharaCteristiCS.....uuuuiiiiiiiii i ieeee e e e e e e 85
515 TheMost Basic Hardware ACCESSOPErationS.ovevvvivieeeiieiiieeeeeeeieeeeeeenineeens 85
516 TheacteSSPECITiCalION........ccuviiiiiiiii it 86
517 Theactesshase-SPECIfiCatiONooeiiiiiiiiiiiiii e 87
5.1.7.1 Combined accessspecification and accessbase-specification Characterigtics........ 87
B5.1.7.2 Virtual AdOrESSNg.......uieiiiiiiii e eeee e e e e e 88

5.2 TheClnterface <iohw.h> e, 88
521 Function-Like Macros for Single RegiSter ACCESS........uviieviiiieeeieiiiceee e e e 88
5.22 Function-Like Macros for Register Buffer ACCESS.........ovvevviiiiiiieiiiiiicee e, 89
5.23 Function-Like Macros for accessbase-spedfication Initialization...................cceeee. 20
5.24 Function-Like Macros for accessbase-spedfication Re-Mapping.......ccoovveeeeveiveeenns 90
5.25 Information Required by the InterfaceUSercviiiiiiiiii i, 92
5.3 The C++ Interface<hardware> 92
531 TheClassTemplate €QISEr_aCCESS, a3
5.3.2 Header "SINLN" 95
533 TheStructhw_base) 95
5.34 Common Spedfications for accesspecification TYPES.......covvvveeeiiiiiiviiiiiiiiiiiiennn 96
5.35 ACCESS MEINOOS......coiiiiiiiiiiie e 97
5.35.1 TheClassTemplate struct mm_direct_address 97
APPENDIX A: GUIDELINESFOR USING THE IOHW INTERFACES......... 99
A.1 Usage INtrodUCLION couuiii et e e e e 99
A.2 UsSIiNg aCCESS-SPECITICAIONSvvviiiiiciie e e 99
A.2.1 Using accessspecifications with Dynamic Informationccccvvvvviviviinnnennnnnn. 100
A.3 HarOWarE ACOESS ... iiiieii ettt e e e e e e e e e e eaas 101
A.BL INOEXEA ACCESS. ..uvvtunii ettt e e e e e e e e et ettt bbb et e e e e e e aeeeeeesesbennnrren 102

Page6 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

A.3.2 Initidization of FegiSter_access ... 102

APPENDIX B: IMPLEMENTING THE IOHW INTERFACES.................... 103

B.1 General Implementation Considerations.............cccoeevvuieiiiiiveniiieiiieeeie 103

0 0 . U1 o = P 103

B.1.1.1 RecoMMENAEd SEEPS.....cuuui et eeee it e e e e e e e e e 103

B.1.1.2 Compiler CONSIAErationSuuiieiiiiiiiieeeiiiies e e e e e e e e e e e aaa e 103

B.1.2 Overview of Hardware Device Connedion OptionS..........ccocevvvviiieveiiinienieeeeiinnnnn, 104

B.1.2.1 Multi-addressng and Device Register ENAianness...........oovevvevviiieevienniieeeeennn 104

B.1.2.2 AdOresSSINENIEAVE.coveeiiiiiiii e 105

B.1.2.3 Device Connedion OVENVIEW...........ceuuuiiiuiiiiieeeereee e e e e ettt a e e e e e e e e e e 106

B.1.2.4 Generic Buffer INABX e 106

B.1.3 Implementing accessspecifications for Different Device Addressng Methods......... 107

B.1.3.1 BuSCoNNEdion ParaMEterSoiiiieeeiiiieeiiiiiiiiee et 108

B.1.3.2 Detedion of Read / Write Violationsin Device RegiStersS........ccccvevvevveiineeeeenns 109

B.1.3.3 Implementation for Different Processor BUSSES..........ccuvcvveeviiiiiieeieeeeiiieeeeeenenn, 111

B.1.3.4 Implementation for Different Access Methods...........cooeevviiiiiiciiiieei e, 111

B.1.3.5 Optimization Posshiliti esfor Typical Implementations............cccccoeeevvviiieieeenns 112

B.1.4 ALOMIC OPEraliON......cceiiieieeeiieii s e e e et e e e e et e e e e et e e e e e eeate e e e eeaa e e eeertnn e eaannns 113

B.1.5 Read-Modify-Write Operations and Multi-Addressng............ccccceeeeevviiiiiceeeeeennnnn. 113

B.1.6 INItI@liZAON......ciiiiiieiiiiee e 114

B.1.7 Intrindc Featuresfor [/O HardWare ACCESS........uiviieeeeeiieiiieiiiiieniiiies e e e e e e eeeeeenns 115

B.2 Implementation Guidelines for the C++ Interface.............cccoooeevveieiienn. 116

B.2.1 Annotated Sample Implementation...........ccovevviiiiiii e 116

B.2.1.1 Common Definitions— Structhw_base 117

B.2.1.2 Implementation for acoeSSSPECITiCaALIONS.uuvuiiieee e 118

B.2.1.3 Actual AccessImplementation...........cccuuiieiiiiiii e e 122

B.2.1.4 Thelnterfacel€QISIEr_acCess, 127
APPENDIX C: IMPLEMENTING THE C INTERFACE IN TERMSOF THE

CHHINTERFACE. ... e 131

APPENDIX D: TIMING CODE ... e 133

D.1 Meauringthe Overheal of ClassOperations.........c.cccceveviiieiiiniieeineennnn. 133

D.2 Meauring Template OverheaS..........coooeviiiiiiiiii i 141

D.3 The Stepanov Abstradion Penalty Benchmarkcoooviiiiiiiieenn, 147

D.4 Comparing Function Objedsto Function Pointers.............cocooovviiiieiennn.. 152

D.5 Meauringthe Cost of Synchronized [/O..........c.ooeviiiiiiiiiicee e, 156

APPENDIX E: BIBLIOGRAPHY ... 159

Page7 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

1 Introduction

“Performance” has many aspeds — exeaution speed, code size, data size, and memory
footprint at run-time, or time and space onsumed by the ait/compile/link process It
could even refer to the time necessary to find and fix code defects. Mogt people ae
primarily concerned with exeaution speed, although program footprint and memory
usage @an ke aitical for small embedded systems where the program is dored in
ROM, or where ROM and RAM are combined on a single chip.

Efficiency has been a major design goa for C++ from the beginning, also, the
principle of “zero overheal” for any feaure that is not used in a program. It has been
a guiding principle from the ealiest days of C++ that “you don’'t pay for what you
don't use”.

Language features that are never used in a program should not have a ©st in extra
code size, memory size, or run-time. |If there ae places where C++ cannot guarantee
zeo overhea for unused feaures, this paper will attempt to document them. It will
also discussways in which compiler writers, library vendors, and programmers can
minimize or eliminate performance penalties, and will discuss the trade-offs among
different methods of implementation.

Programming for resource-constrained environments is another focus of this paper.
Typically, programs that run into resource limits of some kind are either very large or
very small. Very large programs, such as database servers, may run into limits of disk
gpaceor virtual memory. At the other extreme, an embedded application may be
constrained to run in the ROM and RAM spaceprovided by a single chip, perhaps a
total of 64K of memory, or even smaller.

Apart from the isaues of resource limits, some programs must interfacewith system
hardware & a very low level. Higtorically the interfaces to hardware have been
implemented as proprietary extensions to the compiler (often as maaos). This has led
to the situation that code has not been portable, even for programs written for a given
environment, because e&h compiler for that environment has implemented different
sets of extensions.

Page9 of 171

Tecdhnical Report on C++ Performance 03-0012N1430

1.1 Glossary

ABC — commonly used shorthand for an Abstract Base Class — a base class (often a
virtual base clasg which contains pure virtual member functions and thus cannot
be instantiated (81S-10.4).

Access M ethod — refers to the way a memory cell or an 1/O device is conneded to the
procesor system and the way in which it is addressed.

Addressng Range — a procesor has one or more aldressing ranges. Program
memory, data memory and |/O devices are all conneded to a processor
addressing range. A procesor may have special ranges which can only be
addressed with special procesor instructions.

A procesr's physicd address and data bus may be shared among multiple
addressing ranges.

Address Interleave — the gaps in the aldressing range which may occur when a
deviceis conneded to a processor data bus which has a bit width larger than the
devicedatabus.

Cache — a buffer of high-speed memory used to improve accss times to mediunm-
spead main memory or to low-speal storage devices. If an item is found in
cache memory (a "cadhe hit"), access is faster than going to the underlying
device If anitemisnot found (a"cade miss"), then it must be fetched from the
lower-speal device

Code Bloat —the generation of excessive amounts of code instructions, for instance,
from unnecessary template instantiations.

Code Size — the portion of a program's memory image devoted to exeautable
instructions. Sometimes immutable data also is placed with the wde.

CrossCagst — a cat of an objed from one base class sibobjed to another. This
requires RTTI and the use of the dynamic_cast<...> operator.

Data Size — the portion of a program's memory image devoted to data with static
storage duration.

Device —this term is used to mean either a discrete 1/0 chip or an 1/0 function block
in asingle chip processor system. The data bus bit width has significance to the
access method used for the 1/0 device

Device Bus —the data bus of a device The bit width of the device bus may be less
than the width of the processor data bus, in which case it may influence the way
the deviceis addressd.

DeviceRegister —asingle logical register inadevice. A device may contain multiple
registers located at different addresses.

DeviceRegister Buffer — multiple mntiguous registersin adevice

Page 10 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

Device Register Endianness— the endianness for a logical register in adevice The
device register endianness may be different from the endianness used by the
compiler and processor.

Down-Cast —a cat of an objed from a base class sibobjed, to a more derived class
subobject. Depending on the complexity of the objed's type, this may require
RTTI and the use of the dynamic_cast<...> operator.

EEPROM - Electrically Erasable Programmable Read-Only Memory. EEPROM
retains its contents even when the power is turned off, but can be eased by
exposing it to an eledricd charge. EEPROM is similar to flash memory
(sometimes called flash EEPROM). The principal difference is that EEPROM
requires data to be written or erased one byte & atime whereas flash memory
allows data to be written or erased in blocks.

Endianness— if the width of a data value is larger than the width of data bus of the
device where the value is dored the data value must be located at multiple
procesor addresses.

Big-endian and little-endian refer to whether the most significant byte or the
least significant byte is locaed on the lowest (first) address

Embedded System — a program which functions as part of a device Often the
software is burned into firmware instead of loaded from a storage device It is
usually a freestanding implementation rather than a hosted one with an operating
system (81S-1.417).

Flash Memory — a non-volatile memory device type which can be read like ROM.
Flash memory can be updated by the procesor system. Erasing and writing
often require special handling. Flash memory is considered to be ROM in this
document.

Interleave — see adressinterleave.

[/O — Input/Output — in this paper, the term used for reading to and writing from
deviceregisters.

I/O Bus — special procesor addressing range used for input and output operations on
hardware registersin adevice

I/O Device—synonym for device

/O Mapped Device — device mnneded to a spedal processor addressing range used
for input and output operation of hardware registers.

Locality of Reference —the heuristic that most programs tend to make most memory
and disk acesses to locaions nea those accesd in the recent past. Keeing
items aacessed together in locaions nea each other increases cache hits and
deaeases page faults.

Logical Register — refers to a device register treated as a single entity. A logical
register will consist of multiple physical device registers if the width of the
device bus is less than the width of the logicd register.

Page1lof 171

Tecdhnical Report on C++ Performance 03-0012N1430

Memory Bus — a processor addressing range used when addressng deta memory
and/or program memory. Some procesr architedures have separate data and
program memory busses.

Memory Device — chip or function block intended for holding program code and/or
data.

Memory Mapped 1/0 — I/O devices conneded to the processor addressing range
which are also used by data memory.

MTBF — MearTime Between Failure — the statistically determined average time a
device is expeded to operate corredly without failing. The alculation takes
into acount the MTBF of all devices in a system. The more devices in a
system, the lower the syssem MTBF.

Non-Volatile Memory — a memory device that retains the data it stores, even when
eledric power isremoved.

Overlays — atednique for handling programs that are larger than avail able memory,
older than Virtual Memory Addressing. Different parts of the program are
arranged to share the same memory, with each overlay loaded on demand when
another part of the program calls into it. The use of overlays has largely been
succealed by virtual memory addressing where it is available, but it may still be
used in memory-limited embedded environments or where predse programmer
or compiler control of memory usage improves performance

Page — a olledion of memory addresses treated as a unit for partitioning memory
between appli cations or swapping out to disk.

Page Fault —an interrupt triggered by an attempt to accessa virtual memory address
not currently in physical memory, and thus the neal to swap virtual memory
from disk to physicd memory.

POD - shorthand for "Plain Old Data’ — term used in the Standard (81S-1.815) to
describe adata type which is compatible with the equivalent data type in C in
layout, initialization, and its abil ity to be cpied with memcpy.

PROM - Programmable Read Only Memory. It is equivalent to ROM in the context
of this document.

RAM —Random Access M emory. Memory devicetype for holding deta or code. The
RAM content can be modified by the procesor. Content in RAM can be
accessed more quickly than that in ROM, but is not persistent through a power
outage.

Real-Time — refers to a system in which average performance and throughput must
med defined goals, but some variation in performance of individual operations
can be tolerated (also "Soft Red-Time"). “Hard Real-Time” means that every
operation must med specified timing constraints.

ROM — Rea Only Memory. A memory device type, normally used for holding
program code, but may contain data of static storage duration aswell. Content
in ROM can not be modified by the processor.

Page 12 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

ROM able — refers to entities that are gopropriate for placement in ROM in order to
reduce usage of RAM or to enhance performance

ROM ability — refers to the processof placing entities into ROM so as to enhance the
performance of programs written in C++.

RTTI — Run Time Type Information. Information generated by the compiler which
makes it possible to determine & runtime if an objed is of a specified type.

Swap —

Swapped Out —

Swapping —the processof moving part of a program’s code or datafrom fast RAM to
a slower form of storage such as a hard disk. See &so Working Set and Virtual
Memory Addressng.

System-on-Chip (SoC) — a term referring to an embedded system where most of the
functionality of the system is implemented on a single chip, including the
procesr(s), RAM and ROM.

Text Size —a ommmon alternative name for “Code Size”.

UDC — commonly used shorthand for a User Defined Conversion, which refers to the
use, implicit or explicit, of a class member conversion operator.

Up-Cast — a cast of an objed to one of its base class sibobjeds. This does not
require RTTI and can use the static_cast<...> operator.

VBC — commonly used shorthand for a Virtual Base Class (81S-10.1). A single sub-
objea of the VBC is shared by every sub-objed in an inheritance graph which
declares it as avirtual base.

Virtual Memory Addressing — a technique for enabling a program to address more
memory spacethan is physicdly available. Typicaly, portions of the memory
gpacenot currently being addressed by the processor can be “swapped out” to
disk space A mapping function, sometimes implemented in specialized
hardware, translates program addresses into plysical hardware addresses. When
the processor neals to accessan addressnot currently in physical memory, some
of the data in physicad memory is written out to disk and some of the stored
memory is real from disk into physical memory. Since reading and writing to
disk is slower than accessng memory devices, minimizing swaps leals to faster
performance.

Working Set — the portion of arunnng program that at any given time is physically
in memory and not swapped out to disk or other form of storage device

WPA — Whole Program Analysis. A term used to refer to the processof examining
the fully linked and resolved program for optimization possibilities. Traditional
analysis is performed on a single tranglation unit (sourcefile) at atime.

1.2 Typical Application Areas

Since no computer has infinite resources, al programs have some kind of limiting
constraints. However, many programs never encounter these limits in pradice Very

Page 13 0f 171

Tecdhnical Report on C++ Performance 03-0012N1430

small and very large systems are those most likely to neal effedive management of
limited resources.

1.2.1 Embedded Systems

Embedded systems have many restrictions on memory-size and timing requirements
that are more significant than are typical for non-embedded systems. Embedded
systems are used in various application areas as follows':

e Scale
» Small

These systems typically use single dips containing both ROM and
RAM. Single-chip systems (System-on-Chip or SoC) in this category
typically hold approximately 32 KBytes for RAM and 32 48 or 64
KBytes for ROM?.

Examples of applicaions in this caegory are:

» engine oontrol for automobil es

* hard disk controllers

* consumer eledronic gopliances

*» gmart cads, aso cdled Integrated Chip (IC) cards — about the
size of a aedit card, they usually contain a processor system
with code and data embedded in a chip which is embedded (in
the literal meaning of the word) in a plastic cad. A typical size
is 4 KBytes of RAM, 96 KBytes of ROM and 32 KBytes
EEPROM. An even more onstrained smart cad in use
contains 12 KBytes of ROM, 4 KBytes of flash memory and
only 600 Bytes of RAM data storage

> Medium

These systems typically use separate ROM and RAM chips to exeaute
afixed application, where sizeis limited. There ae different kinds of
memory device, and systems in this caegory are typically composed of
several kinds to achieve different objedives for cost and speed.
Examples of applicaions in this caegory are:

hand-held digital VCR

printer

copy machine

digital till camera — one wmmon model uses 32 MBytes of
flash memory to hold pictures, plus faster buffer memory for
temporary image cature, and a procesor for on-the-fly image
compresson

! Typical systems during the year 2003
2 These numbers are derived from the popular C8051 chipset.

Page 14 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

~

» Large

These systems typically use separate ROM and RAM devices, where
the aplicaion is flexible and the size is relatively unlimited.
Examples of applicaions in this caegory are:

» personal digital assistant (PDA) — equivalent to a personal
computer without a screen, keyboard, or hard disk

digital television

set-top box

ca navigation system

central controllers for large production lines of manufaduring
machines

e Timing:

Of course, systems with soft red-time or hard red-time @nstraints are not
necessarily embedded systems; they may run on hosted environments.

A\

» Critical (soft real-time and hard real-time systems)
Examples of applicaions in this caegory are:

motor control

nuclea power plant control

hand-held digital VCR

mobile phone

CD or DVD player

eledronic musical instruments

hard disk controllers

digital television

digital signal processing (DSP) applicaions

N

» Non-critical
Examples of applicaions in this caegory are:

digital still camera
copy machine

printer

ca navigation system

1.2.2 Servers

For server applicaions, the performance-critical resources are typically speed
(e.g. transadions per seoond), and working-set size (which also impads
throughput and speed). In such systems, memory and data storage are
measured in terms of megabytes, gigabytes or even terabytes.

Often there ae soft real-time wnstraints bounded by the need to provide
service to many clients in a timely fashion. Some examples of such
applications include the aentral computer of a pulic lottery where transactions
are heavy, or large scale high-performance numerical applications, such as

Page 150f 171

Tecdhnical Report on C++ Performance 03-0012N1430

wedaher forecating, where the c@lculation must be completed within a cetain
time.

These systems are often described in terms of dozens or even hundreds of
multiprocesrs, and the prime limiting fador may be the Mean Time Between
Failure (MTBF) of the hardware (increasing the anount of hardware results in
adeaease of the MTBF — in such a cae, high-efficiency code would result in
greder robustness.

Page 16 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

2 Language Features— Overheads &
Strategies

Does the C++ language have inherent complexities and overheads which make it
unsuitable for performance-critical applications? For a program written in the C-
conforming subset of C++, will penalties in code size or exeaution speed result from
using a C++ compiler instead of a C compiler? Does C++ code necessarily result in
“unexpeded” functions being called at run-time, or are cetain language fedures, like
multiple inheritance or templates, just too expensive (in size or speed) to risk using?
Do these feaures impose overheads even if they are not explicitly used?

This Tedchnicd Report examines the major feaures of the C++ language that are
perceived to have an associated cost, whether real or not:

* Namespaas

* Type Conversion Operators

* Inheritance

* Run-Time Type Information (RTTI)
* Exception handling (EH)

* Templates

* The Standard |OStreams Library

2.1 Namespaces

Namespaces do not add any space or time overheads to code. They do, however, add
some @mplexity to the rules for name lookup. The principal advantage of
namespaces is that they provide amechanism for partitioning names in large projects
in order to avoid name clashes.

Namespace qualifiers enable programmers to use shorter identifier names when
compared with alternative medhanisms. In the &sence of namespaces, the
programmer has to explicitly alter the names to ensure that name clashes do not occur.
One common approad to thisisto use a caonical prefix on each name:

staticc har*mylib_nane =" MWReallyUsefulL ibrary";
staticc har*mylib_copyright=" Junel5,2 003";

st d: :cout< <" Nane: "< <mylib_nane <<std::endl
<<" Copyright: "< <mylib_copyright <<std::endl;

Page 17 of 171

Tecdhnical Report on C++ Performance 03-0012N1430

Another common approad is to placethe names inside aclass and use them in their
qualified form:
cl assT hisLiblnfo {
staticc har* nane;
staticc har* copyright;

h

char*T hisLi bl nfo:: nanme =" Anot herU seful Library";
char*T hisLi bl nfo::copyright="Augustl 7,20 03";

st d::cout< <" Nane: "< <ThisLiblnfo::namre <<s td:: endl
<<" Copyright: "< <ThisLiblnfo::copyright< <std::endl

With namespace s, the number of charaders necessry is similar to the class
alternative, but unlike the class alternative, qualification can be avoided with using
declarations which move the unqualified names into the aurrent scope, thus allowing
the names to be referenced by their shorter form. This saves the programmer from
having to type those extra charaders in the source program, for example:

nanespace T hi sLi bl nfo {

char* nane
char* copyri ght

" Yet A notherU seful Library";
" Decenberl1l 8,2 003"

h

usi ng T hi sLi bl nf o: : naneg;
using T hi sLi bl nfo:: copyri ght;

st d::cout< <" Nane: "< <nane << std ::endl
<<" Copyright: "< <copyright< < std::endl;

When referencing names from the same enclosing ramespace no using dedaration
or namespacequalification is necessary.

2.2 Type Conversion Operators

C and C++ permit explicit type conversion using cast notation (81S-5.4), for example:
inti _pi=(int)3.14159;

Standard C++ adds four additional type mnversion operators, using syntax that looks
like function templates, for example:

inti=s tatic_cast<int>(3.14159);

The four syntadic forms are:

const_cast<Type>(expression) /I 81S5.211
static_cast<Type>(expression) /I 81S5.29
reinterpret_cast<Type>(expression) /I 81S$5.2.10
dynamic_cast<Type>(expression) Il 81S$5.2.7

The semantics of cast notation (which is gill recognized) are the same as the type
conversion operators, but the latter distinguish between the different purposes for
which the cat isbeing uised. Thetype mnversion operator syntax is easier to identify
in source ®de, and thus contributes to writing programs that are more likely to be

Page 18 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

corred3. It should be noted that asin C, a cat may creae atemporary objed of the
desired type, so casting can have run-time implicaions.

The first threeforms of type conversion operator have no size or spead penalty versus
the euivalent cast notation. Indeed, it is typicd for a compiler to transform cast
notation into one of the other type mnversion operators when generating objed code.
However, dynamic_cast<T> may incur some overheal at run-time if the required
conversion involves using RTTI mechanisms such as crosscasting (82.3.8).

2.3 Classes and Inheritance

Programming in the object-oriented style often involves heavy use of class
hierarchies. This dion examines the time and space overheals imposed by the
primitive operations using classes and class hierarchies. Often, the alternative to
using class hierarchies is to perform similar operations using lower-level facilities.
For example, the obvious alternative to a virtual function call is an indirea function
call. For thisreason, the cds of primitive operations of classes and class hierarchies
are ompared to those of similar functionality implemented without classes.

Most comments about run-time @sts are based on a set of simple measurements
performed on three different machine achitedures using six different compilers run
with avariety of optimizaion options. Each test was run multiple times to ensure that
the results were repeatable. The code is presented in Appendix D:. The aim of these
measurements is neither to get a predse statement of optimal performance of C++ on
a given machine nor to provide a ©mparison between compilers or machine
architedures. Rather, the aim is to gve developers a view of relative asts of
common language nstructs using current compilers, and also to show what is
possible (what is achieved in one compiler is in principle possible for all). We know
— from specialized compilers not in this fudy and reports from people using
unreleased beta versions of popular compilers —that better results are possible.

In general, the statements about implementation tedniques and performance ae
believed to be true for the vast majority of current implementations, but are not meant
to cover experimental implementation techniques, which might produce better — o
just different — results. See“Inside the C++ Object Model” [BIBREF-17] for further
information.

2.3.1 Representation Overheads

A class without a virtual function requires exadly as much spaceto represent as a
struct with the same data members. That is, no spaceoverhea is introduced from
using a class compared to a C struc t, A class objed does not contain any data
that the programmer does not explicitly request (apart from possible padding to
achieve gpropriate dignment, which may also be present in C structs). In particular,
a non-virtual function does not take up any spacein an objed of its class and neither
does a gatic data or function member of the class

3 the compiler does not provide the type cnversion operators natively, it is possible to implement them using function

templates. Indeed, prototype implementations of the type conversion operators were often implemented this way.

Page 19 of 171

Tecdhnical Report on C++ Performance 03-0012N1430

A polymorphic class (aclass that has one or more virtual functions) incurs a per-
objed spaceoverhead of one pointer, plus a per-class spaceoverhead of a “virtual
function table” consisting of one or two words per virtual function. In addition, a per-
class gpace overhead of a “type information objed” (aso called “run-time type
information” or RTTI) is typically about 40 bytes per class, consisting of a name
string, a ouple of words of other information and another couple of words for eah
base classhole program analysis (WPA) can be used to eliminate unused virtual
function tables and RTTI data. Such analysis is particularly suitable for relatively
small programs that do not use dynamic linking, and which have to operate in a
resource-constrained environment such as an embedded system.

Some aurrent C++ implementations share data structures between RTTI support and
exception handling support, thereby avoiding representation overhead specifically for
RTTI.

Aggregating dataitems into asmall class or struct can impose arun-time overhead
if the compiler does not use registers effedively, or in other ways fails to take
advantage of possible optimizations when class objeds are used. The overheals
incurred through the failure to optimize in such cases are referred to as “the
abstraction penalty” and are usually measured by a benchmark produced by Alex
Stepanov(D.3). For example, if accessing a value through a trivial smart pointer is
significantly slower than aacessing it through an ordinary pointer, the compiler is
inefficiently handling the astradion. In the past, most compilers had significant
abstraction penalties and several current compilers gill do. However, a least two
compilers® have been reported to have abstradion penalties below 1% and another a
penalty of 3%, so eliminating this kind of overhead is well within the state of the at.

2.3.2 Basic Class Operations

Calling a non-virtual, non-static, non-inline member function of a classcosts as much
as calling a freestanding function with one extra pointer argument indicaing the data
on which the function should operate. Consider a set of simple runs of the test
program described in Appendix D:

Table2.3-1 #1 #2 #3 #4 #5
Non-virtual: px->f(1) 0.019 0.002 0016 0.085 0
g(ps, 1) 0.020 0.002 0.016 0.067 0
Non-virtual: x.g(1) 0.019 0.002 0016 0.085 0
9(&s, 1) 0.019 0 0.016 0.067 0.001
Staticmenber: X::h(1) 0.014 0 0.013 0.069 0
h(1) 0.014 0 0.013 0.071 0.001

4 These are production compilers, not just experimental ones.

Page200of 171

03-0012N1430 Tecdhnical Report on C++ Performance

The mpiler/machine cmbinations #1 and #2 match traditional “common sense”
expectations exadly, by having calls of a member function exactly match calls of a
non-member function with an extra pointer argument. As expeded, the two last calls
(the X:h(1) cdl of a static member function and the h(1) call of a global function)
are faster because they don’t pass a pointer argument. Implementations #3 and #5
demonstrate that a dever optimizer can take alvantage of implicit inlining and
(probably) caching to produce results for repeated cdls that are 10 times (or more)
faster than if a function call is generated. Implementation #4 shows a small (<15%)
advantage to non-member function calls over member function calls, which
(curiously) is reversed when no pointer argument is passed. Implementations #1, #2,
and #3were run on one system, while #4 and #5were run on another.

The main lesson drawn from this table is that any differences that there may be
between non-virtual function calls and hon-member function calls are minor and far
lessimportant than differences between compil ers/optimizers.

2.3.3 Virtual Functions

Calling avirtual function is roughy equivalent to calling a function through a pointer
stored in an array:

Table2.3-2 #1 #2 #3 #4 #5
Virtual : px->f (1) 0.025 0012 0019 0.078 0.059
Ptr-to-fct: p[1](ps,1) 0020 0.002 0016 0.055 0.052
Virtual : x. f(1) 0.020 0.002 0016 0.071 0

Ptr-to-fct: p[1](&,1) 0017 0013 0018 0.055 0.048

When averaged over a few runs, the minor differences sen above smooth out,
illustrating that the cost of virtual function and pointer-to-function calls is identical.
Here it is the compiler/machine combination #3 that most closely matches the naive
model of what is going on. For x.f(1) implementations #2 and #5recognizethat the
virtual function table need not be used becaise the exact type of the object is known
and a non-virtual call can be used. Implementations #4 and #5 appea to have
systematic overheads for virtual function calls (caused by treaing single-inheritannce
and multiple inheritance euivalently, and thus missing an optimization). However,
this overhea is on the order of 20% and 126 — far less than the variability between
compilers.

Comparing Table 2.3-1 and Table 2.3-2, we seethat implementations #1, #2, #3, and
#5 confirm the obvious assumption that virtual calls (and indirect cdls) are more
expensive than non-virtual calls (and dired calls). Interestingly, the overhead isin the
range 20% to 23% where one would expect it to be, based on a simple @unt of
operations performed. However, implementations #2 and #5 demonstrate how
(implicit) inlining can yield much larger gains for non-virtual calls. Implementation
#4 counter-intuitively shows virtual callsto be faster than non-virtual ones. If nothing
else, this shows the danger of measurement artifads. It may also show the effed of

Page2lof 171

Tecdhnical Report on C++ Performance 03-0012N1430

additional effort in hardware and optimizers to improve the performance of indirea
function calls.

2.3.3.1 Virtual functions of classtemplates

Virtual functions of a class template can incur overheal. If a class template has
virtual member functions, then each time the classtemplate is gecialized it will have
to generate new specializaions of the member functions and their associated support
structures such as the virtual function table.

A graight-forward library implementation could produce hundreds of KBytes in this
case, much of which is pure replication at the instruction level of the program. The
problem is a library modularity issue. Putting code into the template. when it does
not depend on template-parameters and could be separate cde, may cause eah
instantiation to contain potentially large and redundant code sequences. One
optimization avail able to the programmer is to use non-template helper functions, and
to describe the template implementation in terms of these helper functions. For
example, many implementations of the std:map class $ore data in a red-bladk tree
structure. Because the red-bladk treeis not a dass template, its code need not be
duplicaed with each instantiation of std::map

A similar tedhnique places non-parametric functionality that doesn’'t need to be in a
template into a non-template base class This technique is used in several places in
the standard library. For example, the std:ios_base class (81S-27.4.2) contains
static data members which are shared by all instantiations of input and output streams.
Finally, it should be noted that the use of templates and the use of virtual functions are
often complementary techniques. A class template with many virtual functions could
be indicative of adesign error, and should be caefully re-examined.

2.3.4 Inlining

The discusson above mnsidersthe g of afunction call to be asimple fad of life (it
does not consider it to be overhead). However, many function calls can ke eliminated
through inlining. C++ dlows explicit inlining to be requested, and popular
introductory texts on the language seem to encourage this for small time-critical
functions. Basically, C++'s inline s meant to be used as a replacement for C's
function-style maaos. To get an idea of the effectiveness of inline | compare alls of
an inline member of a classto a non-inline member and to a maao.

Page 22 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

Table2.3-3 #1 #2 #3 #4 #5
Non-inline: px->g(1) 0.019 0.002 0016 0.085 0
Non-inline: x.g(1) 0.019 0.002 0016 0.085 0
Inline: ps- >k(1) 0.007 0.002 0.006 0.005 0
Mecr o: K(ps, 1) 0.005 0.003 0.005 0.006 0
Inline: x. k(1) 0.005 0.002 0.005 0.006 0
Mecr o: K(&s, 1) 0.005 0 0.005 0.005 0.001

The first observation here is that inlining provides a significant gain over a function
call (the body of these functions is a simple expression, so this is the kind of function
where one would exped the greatest advantage from inlining). The exceptions are
implementations #2 and #5 which already have adieved significant optimizations
through implicit inlining. However, implicit inlining cannot (yet) be relied upon for
consistent high performance. For other implementations, the advantage of inlining is
significant (facorsof 2.7, 2.7, and 17).

2.3.5 Multiple Inheritance

When implementing multiple inheritance, there exists awider array of implementation
techniques than for single inheritance. The fundamental problem is that ead call has
to ensure that the this pointer passed to the cdled function points to the mrred sub-
objed. This can cause time and/or spaceoverheal. The this pointer adjustment is
usually done in one of two ways.

« The dler retrieves a suitable off set from the virtual function table and adds it
to the pointer to the clled objed, or

e a“thunk” isused to perform this adjustment. A thunk is a simple fragment of
code that is called instead of the adual function, and which performs a
constant adjustment to the objed pointer before transferring control to the
intended function.

Table2.3-4 #1 #2 #3 #4 #5
Sl,n on-virtual: px->g(1) 0.019 0.002 0016 0.085 0
Basel,n on-virtual: pc->g(i) 0.007 0.003 0.016 0.007 0.004
Base2,n on-virtual : pc->gg(i) 0.007 0.004 0017 0.007 0.028

Sl,v irtual: px->f (1) 0.025 0013 0.019 0.078 0.059
Basel,v irtual: pa->f (i) 0.026 0012 0.019 0.082 0.059
Base2,v irtual: pb->f f (i) 0.025 0012 0.024 0.085 0.082

Page 23 of 171

Tecdhnical Report on C++ Performance 03-0012N1430

Here, implementations #1 and #4 managed to inline the non-virtual calls in the
multiple inheritance @se, where they had not bothered to do so in the single
inheritance cae. Thisdemonstratesthe dfedivenessof optimization and also that we
cannot simply assume that multiple inheritance imposes overheals.

It appeasthat implementations #1 and #2 d not incur extra overheads from multiple
inheritance @ompared to single inheritance. This could be caised by imposing
multiple inheritance overheads redundantly even in the single inheritance cae.
However, the cmmparison between (single inheritance) virtual function cdls and
indirea function callsin Table 2.3-2 shows this not to be the case.

Implementations #3 and #5 show overhead when using the second branch of the
inheritancetree as one would exped to arise from aneed to adjust athis pointer. As
expected, that overheal is minor (25% and 20%) except where implementation #5
misses the opportunity to inline the all to the non-virtual function on the second
branch. Again, differences between optimizes dominate differences between
different kinds of calls.

2.3.6 Virtual Base Classes

A virtual base class adds additional overhead compared to a non-virtual (ordinary)
base class. The ajustment for the branch in a multiply-inheriting class can be
determined statically by the implementation, so it becomes a simple ald of a constant
when neaded. With virtual base classes, the position of the base class subobjed with
resped to the mmplete objed is dynamic and requires more evaluation — typicaly
with indiredion through a pointer — than for the non-virtual M| adjustment.

Table 2.3-5 #1 #2 #3 #4 #5
Sl,n on-virtual: px->g(1) 0.019 0.002 0.016 0.085 0
VBC,n on-virtual: pd->gg(i) 0.010 0.010 0.021 0.030 0.027
Sl,v irtual: px->f (1) 0.025 0.013 0.019 0.078 0.059
VBC v irtual: pa- >f (i) 0.028 0.015 0025 0081 0.074

For non-virtual function calls, implementation #3 appeas closest to the naive
expectation of a slight overhead. For implementations #2 and #5that dight overhead
becomes significant because the indiredion implied by the virtual base class causes
them to miss an oppatunity for optimization. There doesn't appea to be a
fundamental problem with inlining in this case, but it is most likely not common
enough for the implementers to have bothered with — so far. Implementations #1 and
#4 again appea to be misdng a significant optimization opportunity for “ordinary”
virtual function calls. Counter intuitively, using a virtual base produces faster code!

The overhead implied by using a virtual base in a virtual call appeas small.
Implementations #1 and #2 lkeep it under 15%, implementation #4 ggets that overhead
to 3% but (from looking at implementation #5) that is done by missng optimization
opportunitiesin the cae of a “normal” single inheritance virtual function call.

Page 24 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

As aways, simulating the effed of this language fedure through other language
feaures also caries a wst. If a programmer decides not to use avirtual base dass,
yet requires a class that can be passed around as the interfaceto a variety of classes,
an indiredion is needed in the acess to that interface and some mechanism for
finding the proper class to be invoked by a all through that interface must be
provided. This mechanism would be & least as complex as the implementation for a
virtual base class much harder to use, and less likely to attract the attention of
optimizers.

2.3.7 Type Information

Given an object of a polymorphic class(a classwith at least one virtual function), a
type_info objed can ke obtained through the use of the typeid operator. In
principle, this is a simple operation which involves finding the virtual function table,
through that finding the most-derived classobjea of which the objed is part, and then
extrading a pointer to the type_info objed from that object’s virtual function table
(or equivalent). To provide ascale, the first row of the table shows the cost of a all
of a global function taking one agument:

Table 2.3-6 #1 #2 #3 #4 #5

Global : h(1) 0.014 0 0.013 0.071 0.001
Onbase: t ypei d(pa) 0.079 0.047 0218 0.365 0.059
Onderived: t ypei d(pc) 0.079 0.047 0105 0381 0.055
On VBC: t ypei d(pa) 0.078 0.046 0217 0379 0.049

VBCond erived: typeid(pd) 0.081 0.046 0.113 0.382 0.048

There is no reason for the spead of typeid to dffer depending on whether a base is
virtual or not, and the implementations reflect this. Conversely, one @uld imagine a
difference between typeid for a base class and typeid on an objed of the most
derived class. Implementation #3 demonstrates this. In general, typeid seems very
slow compared to a function call and the small amount of work required. It is likely
that this high cost is caused primarily by typeid being an infrequently used operation
which hes not yet attraded the atention of optimizer writers.

2.3.8 Dynamic Cast

Given a pointer to an objed of a polymorphic class a cat to a pointer to another base
subobject of the same derived class objed can be done using a dynamic_cast .| In
principle, this operation involves finding the virtual function table, through that
finding the most-derived class objed of which the objed is part, and then using type
information associated with that object to determine if the @nversion (cast) is
allowed, and finally performing any required adjustments of the this pointer. In
principle, this cheding involves the traversal of a data structure describing the base
classs of the most derived class Thus, the run-time st of a dynamic_cast may
depend on the relative positions in the classhierarchy of the two classes involved.

Page250f 171

Tecdhnical Report on C++ Performance 03-0012N1430

Table2.3-7 #1 #2 #3 #4 #5

Virtualc all: px->f (1) 0.025 0013 0.019 0078 0.059
Up-castt ob asel: cast (pa, pc) 0.007 0 0.003 0.006 0

Up-castt ob ase2: cast (pb, pc) 0.008 0 0.004 0.007 0.001
Down-castf rombasel: cast(pc, pa) 0.116 0.148 0.066 0.640 0.063
Down-castf rombase2: cast(pc, pb) 0117 0209 0065 0.632 0.070
Cross- cast : cast (pb, pa) 0.305 0356 0.768 1332 0.367

2-levelu p-castt ob asel:

cast (pa, pcc) 0.005 0 0.005 0.006 0.001

2-levelu p-castt ob ase2:

cast (pb, pcc) 0.007 0 0.006 0.006 0.001

2-leveld own-castf rombasel:

cast (pcc,pa) 0.116 0148 0066 0.641 0.063

2-leveld own-castf rombase2:

cast (pcc,pb) 0117 0203 0.065 0634 0.077

2-levelc ross-cast: cast(pa, pb) 0300 0.363 0.768 1.341 0.377
2-levelc ross-cast: cast(pb, pa) 0308 0306 0.775 1343 0.288

As with typeid | we see the immaturity of optimizer technology. However,
dynamic_cast js a more promising target for effort than is typeid . While
dynamic_cast s not an operation likely to occur in a performance aitical loop of a
well-written program, it does have the potential to be used frequently enough to
warrant optimization:

An up-cast (cast from derived class to base clas§ can be compiled into a
simplethis pointer adjustment, as done by implementations #2 and #5

A down-cast (from base classto derived class) can be quite complicated (and
therefore quite expensive in terms of run-time overhead), but many cases are
simple. Implementation #5 shows that a down-cast can be optimized to the
equivalent of a virtual function call, which examines a data structure to
determine the necessary adjustment of the this pointer (if any). The other
implementations use simpler strategies involving several function calls (about
4,10, 3, and 10calls, respedively).

Crosscasts (casts from one branch of a multiple inheritance hierarchy to
another) are inherently more complicated than down-casts. However, a cross
cast could in principle be implemented as a down-cast followed by an up-cast,
so one should exped the st of a aosscast to converge on the @ of a
down-cast as optimizer technology matures. Clealy these implementations
have along way to go.

Page 26 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

2.4 Exception Handling

Exception handling provides a systematic and robust approach to coping with errors
that cannot be recovered from locally at the point where they are detected.

The traditional alternatives to exception handling (in C, C++, and aher languages)
include:

* Returning error codes

Setting error gate indicaors (e.g. ern 0)

Calling error handling functions

Escaping from a mntext into error handling code using longjmp
Passing along a pointer to a state objed with each call

When considering exception handling, it must be cntrasted to alternative ways of
dealing with errors. Plausible aeas of comparison include:

e Programming style

* Robusthess and completenessof error handling code
* Run-time system (memory size) overheads

* Overheals from handling an individual error

Consider atrivial example:

doublef 1(inta){r eturnl.0O/a ;
doublef 2(inta){r eturn2.0/a ;
doublef 3(inta){r eturn3.0/a ;

B e e

doubleg (intx ,i nty ,i ntz)

returnf 1(x)+f 2(y)+f 3(2);
}

This code contains no error handling code. There ae several techniques to detect and
report errors which predate C++ exception handling:

voiderror(constc har*e)

//h andleerror

}

doublef 1(inta)
{
if(a<=0) {
error("badi nputv aluef orf 1()");
returno;
}
el se
returnl.0/a;

Page 27 of 171

Tecdhnical Report on C++ Performance 03-0012N1430

inte rror_state=0 ;
doublef 2(inta)

if(a<=0) {
error_state=7 ;
returnO;

}

el se
return2 .0/a;

}

doublef 3(inta ,i nt*e rr)

if(a<=0) {
*err=7;
returnO;

}

el se
return3 .0/a;

}
intg (intx ,i nty ,i ntz)

doublex x=f 1(x);
doubley y=f 2(y);

if(error_state)({
//h andleerror
}

ints tate=0 ;
doublez z=f 3(z, &stat e);

if(state){
//h andleerror
}

returnx x+y y+z z;

}

Ideally a real program would use a onsistent error handling style, but such
consistency is often hard to achieve in a large program. Note that the error_state
technique is not thread safe unless the implementation provides support for thread
unique static data, and branching with if(error_state) may interfere with pipeline
optimizations in the procesor. Note also that it is hard to use the error() function
tedhnique effectively in programs where error() may not terminate the program.
However, the key point here is that any way of deding with errors that cannot be
handled locally implies paceand time overheads. It also complicaes the structure of
the program.

Using exceptions the example could be written like this:

st ructE rror{
inte rror_nunber;
Error(intn):e rror_nunber(n){}

Page 28 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

doublef 1(inta)

if(a<=0)
throwError(1);
returnl .0/a;

}
doublef 2(inta)

if(a<=0)
throwError(2);
return2 .0/a;

}
doublef 3(inta)

if(a<=0)
throwError(3);
return3 .0/a;

}

intg (intx ,i nty ,i ntz){
try {
returnf 1(x)+f 2(y)+f 3(2z2);
}c atch(Error&err){
//h andleerror
}

}

When considering the overheads of exception handling, we must remember to take
into acount the g of alternative eror handling techniques.

The use of exceptions isolates the eror handling code from the normal flow of
program exeadtion, and unlike the aror code approad, it cannot be ignored or
forgatten. Also, automatic destruction of stadk objeds when an exception is thrown
renders a program lesslikely to leak memory or other resources. With exceptions,
once aproblem is identified, it cannot be ignored — failure to catch and handle an
exception results in program termination®. For a discussion of techniques for using
exceptions, seeAppendix E of “The C++ Programming Language” [BIBREF-30].

Early implementations of exception handling resulted in significant increases in code
size ad/or some run-time overhead. This led some programmers to avoid it and
compiler vendors to provide switches to suppress the use of exceptions. In some
embedded and resource-constrained environments, use of exceptions was deliberately
excluded either because of fea of overheads or becaise available exception
implementations could not mee a projed’s requirements for predictability.

We @n distinguish three sources of overhead:
» try-blocks Data and code asociated with each try-block or catch clause.

* regular functions Data axd code associated with the normal exeaution of
functions that would not be needed had exceptions not existed, such as missed
optimization opportunities.

5 Many programs catch all exceptionsin MaiN0) to ensure graceul exit from totally unexpected errors. However, this does not
catch urhandled exceptions that may occur during the construction or destruction of static objects (81S-15.3p13)

Page29of 171

Tecdhnical Report on C++ Performance 03-0012N1430

throw-expressions Data and code asociated with throwing an exception.

Ead source of overheal has a @rresponding overhead when handling an error using
traditional techniques.

2.4.1 Exception Handling Implementation Issues and Techniques
The implementation of exception handling must address gveral issues.

try-block Establishes the context for associated cach clauses.

catch clause The EH implementation must provide some run-time type-
identification mechanism for finding catch clauses when an exception is
thrown.

There is sme overlapping —but not identicd — information needed by both
RTTI and EH feaures. However, the EH type-information mechanism must
be able to match derived classes to base classes even for types without virtual
functions, and to identify built-in types such asint . On the other hand, the
EH type-information does not need support for down-casting or crosscasting.

Because of this overlap, some implementations require that RTTI be enabled
when EH is enabled.

Cleanup of handled exceptions Exceptions which are not re-thrown must
be destroyed upon exit of the cdch clause. The memory for the exception
objea must be managed by the EH implementation.

Automatic and temporary objects with non-trivial destructors ~ Destructors
must be alled if an exception occurs after construction of an object and before
its lifetime ends (81S-3.8), even if no try/cach is present. The EH
implementation is required to keep tradk of all such objeds.

Congtruction of objects with non-trivial destructors If an exception
ocaurs during construction, all completely constructed base classes and sub-
objeds must be destroyed. This means that the EH implementation must tradk
the aurrent state of construction of an object.

throw-expression A copy of the exception objed being thrown must be
allocaed in memory provided by the EH implementation. The dosest
matching cach clause must then be found using the EH type-information.
Finally, the destructors for automatic, temporary, and partialy constructed
objeds must be exeauted before wntrol is transferred to the cdch clause.

Enforcing exception specifications Conformance of the thrown types to the
list of types permitted in the exception-spedfication must be chedked. If a
mismatch is deteded, the unexpeded-hander must be alled.

operator new After calling the destructors for the partially constructed
objed, the mrresponding operator delete must be clled if an exception is
thrown during construction.

Again, asimilar mechanism to the one implementing try/catch can be used.

Page300f 171

03-0012N1430 Tecdhnical Report on C++ Performance

Implementations vary in how costs are dlocaed aaossthese elements.
The two main strategies are:

» The “code” gpproach, where ade is asociated with each try-block, and
* The“table” approad, that uses compil er-generated static tables.

There ae also various hybrid approadhes. This paper only discusses the two principal
implementation approades.

2.4.1.1 The" Code" Approach

Implementations using this approach have to dynamicdly maintain auxiliary data
structures to manage the cature and transfer of the exeaution contexts, plus other
dynamic data-structures involved in tracking the objeds that need to be unwound in
the event of an exception. Early implementations of this approach used
setimp /longjmp to return to a previous context. However, better performance @n be
obtained using special-purpose @de. It is also possible to implement this model
through the systematic use of (compiler generated) return codes. Typicd ways in
which the mde gproad deals with the issues identified in 2.4.1 are & follows:

e try-block Save the exeaution environment and push a reference to catch
code on EH stadk at try-block entry.

» Automatic and temporary objects with non-trivial destructors Register eat
constructed objed together with its destructor in preparation for later
destruction. Typical implementations use alinked list structure on the stad.
If an exception is thrown, this list is used to determine which objeds need to
be destroyed.

» Construction of objectswith non-trivial destructors One well-known
implementation increments a counter for eat base class and subobjed as they
are onstructed. If an exception is thrown during construction, the @unter is
used to determine which parts neead to be destroyed.

» throw-expression After the cdch clause has been found, invoke the
destructors for all constructed objeds in the region of the stadk between the
throw-expresson and the assciated cach clause. Restore the execution
environment associated with the cdch clause.

2.4.1.1.1 Space Overhead of the“Code’ Approach

* No exception handling cost is associated with an individual objed, so objed
sizeis unaffeded.

* Exception handling implies a form of RTTI, which may require some increase
to code size, data size or both.

* Exception handling code is inserted into the objed code for ead try/catch.
» Code registering the need for destruction is inserted into the objed code for
each stadk object of atype with a non-trivial destructor.

Page31lof 171

Tecdhnical Report on C++ Performance 03-0012N1430

* A cost is associated with chedking the throw-spedfications of the functions
that are cdled.

2.4.1.1.2 Time Over head of the “Code” Approach

* Onentry to ead try-block
» Commit changes to variables enclosing the try-block
» Stadk the exeaution context
» Stadk the ssciated cach clauses
* On exit from each try-block
» Removethe ssciated cach clauses
» Remove the stadked exeaution context
* When calling regular functions
» If the function has an exception-spedfication, register it for cheding
* Aseah local and temporary object is creaed
» Register with the arrent exception context as they are aeaed
* Onthrow or re-throw
» Locde the orresponding cach clause (if any) — this involves me
run-time ched (possibly resembling RTTI chedks)
If found, then:
* destroy the registered local objeds
» check the excetion-spedfications of the functions called in-

between
= usethe ssciated exeaution context of the cdch clause
Otherwise:

» call theunexpeded-hander
e Onentry to ead cach clause
» Remove the asciated catch clauses
* Onexit from each cach clause
» Retirethe aurrent exception objed (destroy if necessary)

The “code” model distributes the code and assciated data structures throughout the
program. This means that no separate run-time support system is needed. Such an
implementation can be portable and compatible with implementations that translate
C++ to C or another language.

There aetwo primary disadvantages of the “code” model:

* The asociated stadk and run-time asts can be high for try-block entry.

 Even when no exceptions are thrown, the bookkeeping of the exception
handling stadk must be performed for automatic, temporary and partially
constructed objeds.

That is, code unrelated to error handling is slowed down by the mere possibility of
exceptions being wsed. This is similar to error-handling strategies that consistently
check error gtate or return values.

Page320f 171

03-0012N1430 Tecdhnical Report on C++ Performance

The st of this (in this model, unavoidable) bookkeeping varies dramatically from
implementation to implementation. However, one vendor reports speed impad of
about 6% for a C++ to ISO C tranglator. This is generally considered a very good
result.

2.4.1.2 The" Table" Approach

Typical implementations using this approach will generate read-only tables for
determining the aurrent exeaution context, locating cach clauses and tradking objeds
needing destruction. Typical ways in which the table goproadc deals with the issues
identified in 2.4.1 are asfollows:

e try-block This method incurs no run-time @st. All bookkeeing is pre-
computed as a mapping between program counter and code to be exeauted in
the event of an exception. Tables increase program image size but may be
moved away from working set to improve locality of reference Tables can be
placal in ROM or, on hosted systems with virtual memory, can remain
swapped out until an exception is adually thrown.

* Automatic and temporary objects with non-trivial destructors No run-
time wsts are asciated with normal exeaution. Only in the event of an
exception is it necessary to intrude on normal exeaution.

» throw-expression The satically generated tables are used to locae
matching handers and intervening objeds neeading destruction. Again, no
run-time msts are asciated with normal execution.

2.4.1.2.1 Space Overhead of the“Table” Approach

* No exception handling cost is associated with an objed, so objed size is
unaff ected.

* Exception handling implies a form of RTTI, implying some increase in code
and data size

* Thismodel uses gatically allocated tables and some library run-time support.

* A runtime st is asciated with cheding the throw-spedfications of the
functionsthat are cdled.

2.4.1.2.2 Time Over head of the“ Table” Approach

* Onentry to ead try-block
» Some implementations commit changes in exeaution state to variables
in the scopes enclosing the try-block — ather implementations use a
more sophisticated stete table®
* On exit from each try-block

N

> No overhed

®nsuch implementations, this eff ectively makes the variables partially Volatile and may prejudice other optimizations as a
result.

Page 33 0f 171

Tecdhnical Report on C++ Performance 03-0012N1430

When calling regular functions
» No overhea
Aseah local and temporary object is creaed
» No overhea
On throw or re-throw
» Using the tables, determine if there is an appropriate cadch clause
If there is, then:
» destroy all local, temporary and partially constructed objeds
that occur between the throw-expression and the cach clause
» check that the exception honors the exception-spedfications of
functions between the throw and the hander
» transfer control to the ctch clause
Otherwise:
» call the unexpeded-hander
On entry to ead catch clause
» No overhea
On exit from each catch clause

~

> No overhed

The primary advantage of this method is that no stadk or run-time @sts are asociated
with managing the try/catch or objed bookkeguing. Unless an exception is thrown,
no run-time overheal is incurred.

Disadvantages are that implementation is more complicated, and does not lend itself
well to implementations that translate to another high-level language, such as C. The
static tables can be quite large. This may not be aburden on systems with virtual
memory, but the st can ke significant for some eanbedded systems. All associated
run-time asts occur only when an exception is thrown. However, becaise of the
need to examine potentially large and/or complex state tables, the time it takes to
respond to an exception may be large, variable, and dependent on program size and
complexity. This neadsto be fadored into the probable frequency of exceptions. The
extreme cae is a system optimized for infrequent exceptions where the first throw of
an exception may cause disk acesses.

One vendor reported a code and data space impad of about 15% for the generated
tables. It is possible to do better, asthis vendor had no need to optimize for space

2.4.2 Predictability of Exception Handling Overhead

2.4.2.1 Prediction of throw/catch Performance

For some programs, difficulty in predicting the time nealed to pass control from a
throw-expresson to an appropriate cdch clause is a problem. This uncertainty comes
from the need to destroy automatic objeds and —in the “table” model — from the need
to consult the table. In some systems, especially those with real-time requirements, it
is important to be aleto predict acairately how long operations will take.

For this reason current exception handling implementations may be unsuitable for
some gplicaions. However, if the @ll tree ca be Satically determined, and the

Page 34 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

table method of EH implementation is used, it is possible to saticdly analyze the
sequence of events necessary to transfer control from a given throw-expression to the
corresponding cach clause. Eacd of the events could then be staticdly analyzed to
determine their contribution to the cost, and the whole sequence of events aggregated
into asingle cst domain (worst-case and best-case, unbounded, indeterminate). Such
analysis does not differ in principle from current time estimating methods used for
non-exception code.

One of the reservations expressed about EH is the unpredictable time that may elapse
after athrow-expresson and before antrol passes to the cach clause while aitomatic
objeds are being destroyed. It should be possible to determine acarately the wsts of
the EH mechanism itself, and the @st of any destructors invoked would need to be
determined in the same way asthe st of any other function is determined.

Given such analysis, the term “unpredictable” is inappropriate. The s may be quite
predictable, with a well-determined upper and lower bound. In some caes (reaursive
contexts, or conditional cdl trees), the s may not be determined statically. For
real-time gplications, it is generally most important to have a determinate time
domain, with a small deviation between the upper and lower bound. The adual speed
of exeaution is often lessimportant.

2.4.2.2 Exception Spedfications
In general, an exception-spedfication must be chedked at run-time. For example:
voidf (intx)t hrow(AB)

//w hat ever

}

will in a straightforward implementation generate code roughly equivalent to:

voidf (intx)
{

try {
//w hat ever

}c atch(A& {
t hrow,
}c atch(B&){
t hrow,
}c atch(...) {
unexpect ed();
}

}

In principle, static analysis (especially whole program analysis) can be used to
eliminate such tests. This may be espedally relevant for applications that do not
support dynamic linking, which are not so large or complex asto defea analysis, and
do not change so frequently as to make analysis expensive. Dependent on the
implementation, empty exception-spedfications can be especially helpful for
optimization.

The use of an empty exception-specification should reduce overheals. The aller of a
function with an empty exception-specification can perform optimizations based on

Page350f 171

Tecdhnical Report on C++ Performance 03-0012N1430

the knowledge that a cdled function will never throw any exception. In particular,
objeds with destructors in a block where no exception can be thrown neel not be
protected against exceptions. That is, in the “code” model no registration is needed,
and in the “table” model no table entry neeals to be made for that objed. For example:

intf (inta)t hrow();
charg (consts td::string&s)

std::strings 2=s;
intmaxi mum=s tatic_cast<int>(s.size());
intx=f (maxi nunj;
if(x<0| |maximm<=x)
x=0 ;
returns 2[xJ;

}

Here the compiler need not protect against the possbility of an exception
being thrown after the cnstruction of s2.

There is of course no requirement that a compiler performs this optimization.
However, a compiler intended for high-performance use is likely to perform it.

2.5 Templates

2.5.1 Template Overheads

A class template or function template will generate anew instantiation of code eab
time it is gecialized with different template-parameters. This can lead to an
unexpectedly large amount of code ad data’. A typical way to illustrate this problem
isto create alarge number of Standard Library containers to hold pointers of various
types. Eadchtype @an result in an extra set of code and data being generated.

In one experiment, a program instantiating 100instances of a single spedalizaion of
std::list<T*>, for some type T, was compared with a second program instantiating
a single instance of std::list<T*> for 100 dfferent types T. These programs were
compiled with a number of different compilers and a variety of different compiler
options. The results varied widely, with one compiler producing code for the second
program that was over 19 times as large & the first program; and another compiler
producing code for the first program that was nealy 3 times as large & the second.

The optimization here is for the compiler to reagnize that while there may be many
specializaions with different types, at the level of machine de-generation, the
specializaions may adually be identical (the type system is not relevant to machine
code).

While it is possible for the @mpiler or linker to perform this optimization
automatically, the optimization can also be performed by the Standard Library
implementation or by the gplication programmer.

! Virtual function tables, EH statetables, etc.

Page 36 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

If the compiler supports partial spedalization and member-function templates, the
library implementer can provide partial spedalizations of containers of pointers to a
single underlying implementation that uses void* . This technique is described in The
C++ Programming Language 3rd edition [BIBREF-30].

In the dsence of compiler or library support, the same optimization technique an be
employed by the programmer by writing a class template alled, perhaps, plist<T>

that is implemented using std::list<void*> to which al operations of plist<T>
are delegated.
Source @de must then refer to plist<T > rgther than std:list<T*> , 0 the

technique is not transparent, but it is a workable solution in the absence of tool or
library support. Variations of thistechnique can be used with other templates.

2.5.2 Templates vs. Inheritance

Any non-trivial program needs to ded with data structures and algorithms. Becaise
data structures and algorithms are so fundamental, it is important that their use be &
simple and error-free & possible.

The template cntainers in the Standard C++ Library are based on principles of
generic programming, rather than the inheritance gproac used in other languages
such as Smalltalk. An ealy set of foundation classes for C++, called the National
Ingtitutes of Health ClassLibrary (NIHCL), was based on a class hierarchy following
the Smalltalk tradition.

Of course, this was before templates had been added to the C++ language, but it is
useful in illustrating how inheritance @mpares to templates in the implementation of
programming idioms such as containers.

In the NIH Class Library, all classes in the treeinherited from a roat class Object |
which defined interfaces for identifying the real class of an objed, comparing objects,
and printing objeas’. Mogt of the functions were declared virtual, and so had to be
overridden by derived classes’. The hierarchy also included a class Class that
provided a library implementation of RTTI (which was also not yet part of the C++
language). The Collection classes, themselves derived from Object | could hold
only other objeds derived from Object which implemented the necessary virtual
functions.

8 The Objec t gassitsalf inherited from Class NIHCL , which encapsulated some static data membersused by all classes.

° Presumably, had the NIHCL been written today, these would have been pure virtual functions.

Page 37 of 171

Tecdhnical Report on C++ Performance 03-0012N1430

But the NIHCL had several disadvantages due to its use of inheritance versus
templates for the implementation of container classes. The following is a portion of
the NIHCL hierarchy (taken from the README file):

NIHCL -L ibraryStaticMenberV ari abl esa nd Functi ons
Object -Rooto ft heNIHClassL ibraryln heritanceTree
Bitset -S eto fS malll ntegers(|ike Pascal'st ypeSET)
Cass -C lassDescriptor
Col | ection -A bstractC |assf orC ol le ctions
Arraychar -B yteArray
ArrayOb -Arrayo fO bjectP ointers
Bag -U norderedCollectiono fO bj ects
SeqCltn -A bstractC lassf orO rdered,| ndexedColl ections
Heap -Min-MaxHeapo fO bject Pointers
Li nkedLi st -S ingly-LinkedLi st
O deredCitn -OrderedCollectiono fO bjectP ointers
Sorteddtn -S ortedColle ction
KeySortCltn -K eyed SortedCol |l ection
Stack -S tacko fO bjectP ointers
Set -U norderedCollectiono fN on- Dupl i cat e Obj ects
Dictionary -S eto fA ssoci ati ons
IdentDict -DictionaryKe yedb yObjectA ddress
IdentSet -S etK eyedb yObject Address
Fl oat -F | oatingP oi ntN unber
Fraction -R ationalA rithnetic
Integer -1 ntegerN unber O bj ect
Iterator -C ollectionl terator
Link -A bstractC | assf orL inkedList Links
Li nkGo -L inkContainingObject Pointer
LookupKey - A bstractC lassf orD ictio naryA ssoci ations
Assoc - A ssociationofO bjectP ointers
Assoclnt -A ssociationo fO bject Pointerwithl nteger
Nl -T heNilO bject
Vector -A bstractC |assf orV ectors
BitVec -B itV ector
ByteVec -B yteVector
ShortVec -S hortl ntegerV ector
IntVec -1 ntegerV ector
LongVec -L ongl ntegerV ector
Fl oatVec -F loatingPointV ector
Doubl eVec -D oubl e-PrecisionFloati ngPointV ector

Thus the class KeySortCltn (roughly equivalent to std:map), is sven layers deep
in the hierarchy:
NI HCL
hj ect
Col I ection
Seqd tn
Orderedd tn
Sortedd tn
KeySortCdtn

Becaise alinker cannot know which virtual functions will be alled at run-time, it
typically includes the functions from all the precaling levels of the hierarchy for ead
classin the exeautable program. This can leal to code bloat without templates.

There ae other performance disadvantages to inheritance-based coll ection classes:

* Primitive types cannot be inserted into the mlledions. Insteal, these must be
replaceal with classes in the Object hierarchy, which are programmed to have

Page 38 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

similar behavior to primitive aithmetic types, such as Integer and Float |
This circumvents processor optimizations for arithmetic operations on
primitive types. In addition, it is difficult to dugicate exadly the behavior of
primitive types through classmember functions and operators.

* Because C++ has compile-time type checking, providing type-safe mntainers
for different contained data types requires code to be dugicated for ead type.
Type safety is the same reason that template @ntainers are instantiated
multiple times. To avoid this duplicaion of code, the NIHCL colledions hold
pointers to a generic type — the base Object class. However, this is not type-
safe, and requires run-time ceds to ensure objeds are type-compatible with
the mntents of the wlledions. It also leads to many more dynamic memory
alocaions, which can hinder performance Because classes used with the
NIHCL must inherit from Objed and are required to implement a number of
virtual functions, this lution is intrusive on the design of classes from the
problem domain. For this reasson alone, the obligation to inherit from
class Object often means that the use of multiple inheritance also becomes
necessary, since domain specific classes may have their own hierarchical
organization. The C++ Standard Library containers do not impose such
requirements on their contentsl10.

* The C++ Standard Library establishes a set of principles for combining data
structures and algorithms from different sources. Inheritance-based libraries
from different vendors — where the algorithms are implemented as member
functions of the mntainers — can ke difficult to integrate and dfficult to
extend.

2.6 Programmer Directed Optimizations

There ae many fadorsthat influence the performance of a computer program. At one
end of the scale is the high-level design and architecdure of the overall system, at the
other is the raw speeal of the hardware and operating system software on which the
program runs. Assuming that the goplicaions programmer has no control over these
fadors of the system, what can be done & the level of writing code to achieve better
performance?

Compilers typically use aheuristic processin optimizing code that may be diff erent
for small and large programs. Therefore, it is difficult to recommend any techniques
that are guaranteed to improve performance in all environments. It is vitally
important to measure aperformance-critical application in the target environment and
concentrate on improving performance where bottlenedks are discovered. Becaise so
many factors are involved, measuring adual performance @n be difficult but remains
an essential part of the performancetuning process

The best way to optimize aprogram is to use space and time-efficient data structures
and algorithms. For example, changing a sequential seach routine to a binary seach

10 A class used in a Standard container must be Assignable gnq CopyConstructible ; often it additionally needs to have
adefault congtructor and implement OP€rator == gpqoperator <

Page390of 171

Tecdhnical Report on C++ Performance 03-0012N1430

will reduce the average number of comparisons required to search a sorted N-element
table from about N/2 to just log;N; for N=100Q this is a reduction from 500
comparisonsto 10. For N=1,000,000, the average number of comparisons s 20.

Another example is that std:vector IS a more compad data structure than
std::list . A typical std:vector<int> implementation will use about threewords
plus one word per element, whereas a typical std:list<int> implementation will

use &out two words plus three words per element. That is, asuming
sizeof(int)==4 , a gandard vector of 1,000int s will occupy approximately 4,000
bytes, whereas alist of 1,000int swill occupy approximately 12,000 kytes. Thanks
to cade and pipeline effects, traversing such a vector will be much faster than
traversing the equivalent list. Typicaly, the cmpadness of the vedor will also
asare that moderate amounts of insertion or erasure will be faster than for the
equivalent list. There ae good reasons for std::vedor being recommended as the
default standard library container*:.

The C++ Standard Library provides sveral different kinds of containers, and
guarantees how they compare & performing common tasks. For example, inserting an
element at the end of an std::vector takes constant time (unlessthe insertion forces
a memory reallocaion), but inserting one & the beginning or in the middle takes
linea time increasing with the number of elements that have to be moved to make
spacefor the new element. With an std:list on the other hand, insertion of an
element takes constant time & any point in the olledion, but that constant time is
somewhat slower than adding one to the end of a vector. Finding the N™ element in
an std::vector involves a simple ongtant-time aithmetic operation on a random-
acces iterator accessing contiguous gorage, whereas an std:list would have to be
traversed one dement at atime, so accesstime grows linearly with the number of
elements. A typical implementation of std:map maintains the elements in sorted
order in a red-blad tree structure, so accessto any element takes logarithmic time.
Though ot a part of the C++ Standard Library (at the time this is written), a
hash_map is cgpable of faster lookups than an std:map | but is dependent on a well-
chosen hash function and bucket size Poor choices can degrade performance
significantly.

Always measure before dtempting to optimize — it is very common for even
experienced programmers to guess incorredly about performance implications of
choosing one kind of container over another. Often performance depends critically on
the machine achitecture and the quality of optimizer used.

The C++ Standard Library also provides a large number of algorithms with
documented complexity guarantees. These ae functions that apply operations to a
sequence of elements. Achieving good performance, as well as correctness, is a major
design fador in these algorithms. These @n be used with the Standard containers,
with native arays, or with newly written containers, provided they conform to the
Standard interfaces.

llThe recommendation comes from Bjarne Stroustrup in [BIBREF-30] and from Alex Stepanov in private correspondence.

Page400f 171

03-0012N1430 Tecdhnical Report on C++ Performance

If profiling reveals a bottlenedk, small local code optimizations may be effedive. But
it is very important aways to measure first. Transforming code to reduce run-time or
gpace onsumption can often deaease program readability, maintainability,
modularity, portability, and robustness as a side effect. Such optimizaions often
saaifice important abstractions in favor of improving performance but while the
performance st may be reduced, the effed on program structure and maintainability
needs to be fadored into the decision to rewrite code to achieve other optimization
goals.

An old rule of thumb is that there is a trade-off between program size and execution
speead —that techniques such as declaring code inline can make the program larger
but faster. But now that processors make extensive use of on-board cade and
instruction pipelines, the smallest code is often the fastest as well. Compilers are free
to ignore inline diredives and to make their own decisions about which functions to
inline, but adding the hint is often useful as a portable performance enhancement.
With small one- or two-line functions, where the implementation code generates
fewer ingtructions than a function preamble, the resulting code may well be both
smaller and faster.

Programmers are sometimes surprised when their programs call functions they have
not explicitly spedfied, maybe have not even written. Just as a single innocuous-
looking line of C code may be a maao that expands to dozens of lines of code,
possibly involving system calls which trap to the kernel with resulting performance
implications, asingle line of C++ code may also result in a sequence of function calls
which is not obvious without knowledge of the full program. Simply dedaring a
variable of user-defined type such as.

X vl; /11 ooksi nnocent
Xv2=7 ; /1o bviouslyi nitialized

can result in hidden code being exeauted. In this case, the declaration of v1 implicitly
invokes the class X's default constructor to initialize the objed v1. The purpose of
constructors and destructors is to make it impossible to forget mandatory processing
a the beginning and end of an objed's lifetime. Depending on the dassdesign, proper
initializetion may involve memory allocations or system callsto aajuire resources

Although declaring a user-defined variable in C does not implicitly invoke a
constructor, it is important to remember that the object must till be initialized and
that code would have to be explicitly called by the programmer. Resources would
also have to be explicitly released at the gpropriate time. The initialization and
release ade is more visible to the C programmer, but possibly lessrobust becaise the
language does not support it automaticaly.

Page41of 171

Tecdhnical Report on C++ Performance 03-0012N1430

Understanding what a C++ program is doing is important for optimization. If you
know what functions C++ silently writes and call's, careful programming can keep the
"unexpeded" code to a minimum. Some of the works cited in the bibliography
(Appendix E:) provide more extensive guidance (e.g. [BIBREF-17]), but the
following provides sme suggestions for writing more dficient code:

Shift expensive mmputations from the most time-critical parts of a program to
the least time-critical parts (often, but not always, program start-up).
Tedhniques include lazy evaluation and caching of pre-computed values. Of
course, these strategies apply to programming in any language, not just C++.

In congtructors, prefer initializetion of data members to assgnment. If a
member has a default constructor, that constructor will be clled to initialize
the member before aty assgnment takes place Therefore, an assignment to a
member within the constructor body can mean that the member is initialized as
well as assgned to, effedively doubling the amount of work done.

As a general principle, do not define a variable before you are realy to
initialize it. Defining it ealy results in a @nstructor cdl (initialization)
followed by an assignment of the value needed, as opposed to simply
constructing it with the value needed. Apart from performance issues, there is
then no chance that the variable an be used before it has received its proper
initial value.

Understand how and when the compiler generates temporary objeds. Often
small changes in coding style an prevent the aeaion of temporaries, with
consequent benefits for run-time speed and memory footprint. Temporary
objeds may be generated when initializing objeds, passing parameters to
functions, or returning values from functions.

Passing arguments to a function by value [e.g. void f(T X)] is cheg for
built-in types, but potentially expensive for classtypes since they may have a
non-trivial copy constructor. Passing by address[e.g. void f(T const® X)]
is light-weight, but changes the way the function is called. Passing by
referenceto-const [e.g.void f(T const& x)] combines the safety of
passing by value with the efficiency of passing by address'.

12 Of courseif the argument type and the expression type differ, atemporary variable may be aeated by the compiler.

Page42of 171

03-0012N1430 Tecdhnical Report on C++ Performance

e Cadling a function with a type that differs from the function’s declared
argument type implies a cnversion. Note that such a cnversion can require
work to be done & run-time. For example:

voi df 1(doubl e);

fi(7.0); /In oc onversion(passb yv alue i mgiesc opy)
fl(7); /lc onversion: f 1(doubl e(7))

voidf 2(constd oubl e&);

f2 (7.0); //n oc onversion

f2(7); /I m eans: const double tnmp = 7, f(tm);
voidf 3(std::string);

std::strings=" MES";

f3 (s); /In oc onversion(passb yv alue i mdiesc opy)

f3("NES"); [/c onversion: f3(std::string("NES"));

voidf 4(consts td::string&);
fa4 (s); /In oc onversion(passb yr eference,n oc opy)
f4 ("AS"); //m eans: const std::string tnp("AS'); f4(tm);

If a function is called several times with the same value, it can be worthwhile
to put the value in a variable of the gpropriate type (such as s in the example
above) and passthat. That way, the conversion will be done onceonly.

e Unless you neal automatic type mnversions, declare all one-argument
constructors® explicit . This will prevent them from being called
accidentally. Conversions can sill be done when necessary by explicitly
stating them in the @de, thus avoiding the penalty of hidden and urexpeded
conversions.

* Rewriting expressions can reduce or eliminate the nead for temporary objeds.
For example, if a, b, and ¢ are objeds of class Matrix
Marixa ; /1 inefficient: don'tc reatean objectb efore

/11 ti sr eallyn eeded;d efaulti nitialistion
//c anb ee xpensive

a=b+c ; Il inefficient: (b+c)c reates at enporary
/1o bjecta ndt hena ssigns itt oa

Marixa=b ; // better: nod efaulti nit ialization

a +=c; Il better: not enmporaryob je ctsc reated

Better yet, use alibrary that eliminates need for the rewrite using +=. Such
libraries, which are @wmmon in the numeric C++ community, usually use
function objeds and expresson templates to yield uncompromisingly fast code
from conventional-looking source

1 This refers to any congtructor that may be @lled with a single argument. Multiple parameter constructors with default
arguments can be called as one-argument constructors.

Page43of 171

Tecdhnical Report on C++ Performance 03-0012N1430

» Use the return value optimization to gve the mmpiler a hint that temporary
objeds can be eliminated. This technique enables the compiler to use the
memory for a function's return value to hold a locd objed of the same type
that would atherwise have to be wpied into the return value locaion, thus
saving the s of the wpy. This is usually signalled by inserting constructor
arguments into the return statement:

constR ationalo perator*(Rationalc onst& |hs,
Rationalc onst& rhs)
{

returnRational (I hs. nunerator()*r hs.nunerator(),
| hs. denom nator ()*r hs.denominator());

}

Less carefully written code might create alocal Rational variable to hold the
result of the clculation, use the assignment operator to copy it to atemporary
variable holding the return value, then copy that into a variable in the alling
function.

/In ott hisway. .

constR ationalo perator*(Rationalc onst& |hs,
Rationalc onst& rhs)
{

Rati onalt np; /lc allst hedefaultc onstr uctor(ifa ny)
t mp. ny_nuner at or =1 hs.nunerator () * rhs. nunerat or ();
tmp. ny_denoni nator=1 hs.denoninator()* rhs.denom nator();

returnt np; //c opies tnp tot her eturnv alue,w hichis
/I thenc opiedi ntot her eceivingv ariable

}

However, with recett improvements in compiler tednology, modern
compilers may optimizethis code in asimilar manner.

» Prefer the prefix versus the postfix forms for increment and deaement
operators.

Postfix operators like i++ copy the existing value to a temporary objed,
increment the internal value, and then return the temporary. Prefix operators
like ++i increment the adua value first and return a reference to it. With
objeds guch as iterator s which may be structures containing pointers to
nodes, creaing temporary copies may be expensive when compared to built-in
int g,

for(list<X>::iteratori t=m ylist.begin();
it! =mylist.end();
++it) /IN OTE:r athert han it++
{

}

/1.

* Dynamic memory allocation and deallocation can be abottlenedk. Consider
writing classspedfic operator new() and operator delete() functions,
optimized for objeds of a specific size or type. It may be possible to regycle
blocks of memory instead of releasing them badk to the heg whenever an
objed is deleted.

Page44of 171

03-0012N1430 Tecdhnical Report on C++ Performance

» Sometimes it is helpful to “widen” the interface for a dass with functions that
take different data types to prevent automatic conversions (such as adding an
overload on char * to a function which takes an std::string parameter).
The numerous overloads for operators +, ==, != | and < in the <string> header
are a example of such a "fat" interface*. If the only supported parameters
were std::string s, then charaders and pointers to charader arrays would

have to be @nverted to full std:string objects before the operator was
applied.
e The Standard class std::string is not a lightweight component. Becaise it

has a lot of functionality, it comes with a cetain amount of overhead. And
because the @nstructors of the Standard Library exception classes described
in Clause 19 of IS 14882 (dthough ot their base dass std:iexception)
require an argument of type std::string , this overhead may be included in a
program inadvertently.In many applicaions, strings are aeaed, stored, and
referenced, but never changed. As an extension, or as an optimizaion, it
might be useful to create alighter-weight, unchangeable string class

» Reference oounting is a widely used optimization technique. In a single-
threaded application, it can prevent making unnecessary copies of objeds.
However, in multi-threaded applications, the overhead of locking the shared
data representation may add unnecessary overheads, negating the performance
advantage of reference munting*®.

* Pre-compute values that won't change. To avoid repeaed function calls inside
aloop, rather than writing:

while(nyListlterator! =myList.end()). ..

for(size_tn=0 ;n<m vyVector.size(),+ +n) .. .

instead call myListend() or myVector.size() exadly once before the loop,
storing the result in a variable which can be used in the repeaed comparison,
for example:

std::list<nyT>::iteratorm yEnd=m yList. end();
whil e (nyListlterator! =myEnd). ..

e Onthe other hand, if a function such as myListend() is s simple that it can
be inlined, the rewrite may not yield any performance alvantage over what a
good compiler would produce for the original code.Some implementations of
std::list<T>::size() have linea complexity rather than constant complexity.
This latitude is allowed by the Standard container requirements gecified in
81S-23.1.Cdlling such a function inside a loop would result in quadratic

M 1tis also worth noting that even if a conversion is needed, it is sometimes better to have the conversion performed in ore
place, where an overloaded “wrapper” function calls the one that really performsthe work. Thiscan help to reduce program size,
where each caller would atherwise perform the conversion.

15 Of course, if optimization for space is more important than optimization for time, reference counting may still be the best
choice.

Page450f 171

Tecdhnical Report on C++ Performance 03-0012N1430

behavior. For the same reason it is better to use if(myList.empty()) rather
than if(MyList.size()==0)

» Objed-oriented programming often leads to a number of small functions per
class often with trivial implementation. For example:

cl ass X
{
private:
i nt val ue_;
double*a rray_; //p ointert oarrayof [size]d oubles
size t size_;
publ i c:
i nt value() {r eturnv alue_; }
size_t size() {r eturnsize_; }

/. ..
h

Small forwarding functions can usually be inlined to advantage, especially if
they occupy lesscode spacethan preparing the stadk frame for a function call.
As arule of thumb, functions consisting of only one or two lines are generally
good candidates for inlining.

* When procesors read ahead to maintain a pipeline of instructions, too many
function calls can slow down performance becaise of branching or cade
misses. Optimizers work best when they have stretches of sequential code to
analyze, becaise it gives them nore opportunity to use register alocation,
code-movement, and common sub-expression elimination optimizations. This
is why inline functions can help performance as inlining exposes more
sequential code to the optimizer. Manual techniques, such as avoiding
conditional code and unrolling short loops, also help the optimizer do a better
job.

* The use of dynamic binding and virtual functions has $sme overheal in both
memory footprint and run-time performance This overhead is minor,
especially when compared with alternative ways of achieving run-time
polymorphism (82.3.3). A bigger fador is that virtual functions may interfere
with compiler optimizations and inlining.

Note that virtual functions should be used only when run-time polymorphic
behavior is desired. Not every function needs to be virtual and not every class
should be designed to be abase class

Page 46 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

Many programs written in some cnventional objed-oriented styles are very
slow to compile, because the compiler must examine hundreds of header files
and tens of thousands of lines of code. However, code can be structured to
minimize re-compilation after changes. This typically produces better and
more maintainable designs, becaise they exhibit better separation of concerns.

Consider a classcal example of an objed-oriented program:

cl ass S hape {
public: /li nterfacet ouserso fS hapes
virtualv oiddraw()c onst;
virtualv oidr otate(intd egrees);
. ..
pr ot ect ed: //c ommond ata(fori nplenenters ofS hapes)
Poi ntc enter;
Col orc ol;
/1.

h

classCircle:p ublicsShape {
publ i c:

void draw()c onst;

void rotate(int){ }

. ..
pr ot ect ed:

i nt r adi us;

/1.

h

classTriangle:p ublicShape {
publ i c:

void draw()c onst;

void rotate(int);

. ..
pr ot ect ed:

Poi nta ;

Poi ntb ;

Pointc ;

/1.

h

The ideais that users manipulate shapes through Shape's public interface and
that implementers of derived classes (such as Circle and Triangle) share
aspeds of the implementation represented by the proteaded members.

It is not easy to define shared aspeds of the implementation that are helpful to
all derived classes. For that reason, the set of proteded members is likely to
need changes far more often than the public interface For example, even
though a center is arguably a valid concept for al Shapes, it is a nuisance to
have to maintain a Point for the canter of a Triangle ; it makes more sense to
calculate the center if and only if someone expresses interest in it.

The protected members are likely to depend on implementation detail s that the
clients of Shape would rather not have to depend on. For example, much code
using a Shape will be logically independent of the definition of Color | yet the
presence of Color in the definition of Shape makes all of that code dependent
on the healer files defining the operating system's notion of color, often

Page47of 171

Tecdhnical Report on C++ Performance 03-0012N1430

requiring that the client code is recompiled whenever such healer files are
changed.

When something in the protected part changes, client code using Shape has to
be recompiled, even though only implementers of derived classes have acess
to the protected members. Thus, the presence of "information helpful to
implementers" in the base class— which also acts as the interfaceto users — is
the source of several problems:

» Ingtability in the implementation,

» Spurious recompilation of client code (when implementation
information changes), and

» Excess inclusion of header files into client code (because the
"information helpful to implementers' neals those headers).

Thisis metimes known as the "brittle base class problem".

The obvious lution isto omit the "information helpful to implementers’ for
classes that are used as interfaces to users. In other words, interface classes
should represent “pure” interfaces and therefore take the form of abstrad
classes, for example:

cl ass S hape {

public: //i nterfacet ouserso fS hapes
virtualv oiddraw()c onst=0
virtualv oidr otate(intd egrees)=0;
virtualP ointc enter()c onst=0;
. ..
/In odata

h

classCircle:p ublicShape {
publ i c:
void draw()c onst;
void rotate(int){ }
Pointc enter()c onst{r eturncent; }

/1.

pr ot ect ed:
Poi ntc ent;
Col orc ol;
i nt radi us;
/1.

Page48of 171

03-0012N1430 Tecdhnical Report on C++ Performance

classTriangle:p ublicShape {
publ i c:
void draw()c onst;
void rotate(int);
Poi ntc enter()c onst;
/1.
pr ot ect ed:
Col orc ol;
Poi nta ;
Poi ntb ;
Pointc ;
/1.

h

The users are now insulated from changes to implementations of derived
classes. This technique has been known to deaease build times by orders of
magnitude.

But what if there really is ssme information that is common to all derived
classes (or even to several derived classes)? Simply placethat information in a
class and derive the implementation classes from that:

cl ass S hape {

public: /11 nterfacet ouserso fS hapes
virtualv oiddraw()c onst=0 ;
virtualv oidr otate(intd egrees)=0;
virtualP ointc enter()c onst=0;
. ..
//n odata

h
st ructC omon {
Col orc ol;
/1.
h
classCircle:p ublicShape,p rotectedConmon{
publ i c:
void draw()c onst;
void rotate(int){ }
Pointc enter()c onst{r eturncent; }
/1.
pr ot ect ed:
Poi ntc ent;
i nt r adi us;
h
classTriangle:p ublicShape,p rotectedCommn {
publ i c:
void draw()c onst;
void rotate(int);
Poi ntc enter()c onst;
/1.
pr ot ect ed:
Poi nta ;
Poi ntb ;
Pointc ;
h

* Another technique for ensuring better separation between parts of a program
involves an interface objed holding a single pointer to an implementation

Page49of 171

Tecdhnical Report on C++ Performance 03-0012N1430

objed. This is often called “the PIMPL” (Pointer to IMPLementation'®)
idiom. For example:

/Il nterfaceh eader:
cl assVisible {
cl assHi dden;

H dden*p | npl ;
publ i c:
voidf cnl();

h

/I'l nplementations ource:
cl assVisibl e:: Hidden {

publ | c
voidf cnl_inpl ();

h
voidVisible::fcnl(){p Inpl->fcnl_inpl();}

e Use function objects'’” with the Standard Library algorithms rather than
function pointers. Function pointers defeat the data flow analyzers of many
optimizers, but function objeds are passed by value and optimizers can easily
handle inline functions used on objects.

A function with one or more default arguments can be alled without
specifying its full argument list, relying on the compiler to insert the default
values. This necessarily requires the nstructor to crede a temporary objed
for ead default value. If the construction of that temporary is expensive and
if the function is called several times, it can be worth while to construct the
default argument value somewhere and use that value in each call. For

example:

cl ass C

{

publ i c:
Clinti){. ..} /I'p ossiblye xpensive
intmf()c onst
/1.

h

intf(constC&x=C (0)){ //c onstructa newC(0)f ore ach
/lc allt of ()
returnx .nf();

}

intg () { _ _
staticc onstCx (0); //c onstructx in thef irstc all
returnx .nf();

}

16Also known as the "Cheshire Cat” idiom.

1 Objects of a dass type that has been designed to behave like a function, because it defines operator () as a member function.
Often all the member functions of such a type are defined inline for efficiency.

Page500f 171

03-0012N1430 Tecdhnical Report on C++ Performance

constCc 0(0); //c onstructc Of oru sei n callsofh ()
inth(constC &x=c 0) {

returnx .nf();
}

When programming "close to the metal”, such as for accessing low-level
hardware devices, some use of assembly code may be unavoidable. The C++
asm dedaration (81S-7.4) enables the use of assembly code to be minimized.

The alvantage of using short assembler functions can be lost if they have to be
placal in separate source files where the efficiency gained is over-shadowed
by the overheal of calling and returning a function, plus attendant effects on
the instruction pipeline and register management. The asm dedaration can be
used to insert small amounts of assembly code inline where they provide the
most benefit.

However, a compiler istypically unaware of the semantics of inlined assembly
instructions. Thus, use of inlined assembly instructions can defea other
important optimizations such as common sub-expression elimination and
register alocaion. Consequently, inline asembly code should be used only
for operations that are not otherwise acessible using C++.

Whenever possible, compute values and cach errors at translation time rather
than run-time. With sophisticated use of templates, a wmplicaed bock of
code can be compiled to a single mnstant in the executable, therefore having
zeo run-time overhead. This might be described as code implosion (the
opposite of code explosion). For example:
tenplate<intN >
classF actorial {

publ i c:
staticc onsti ntv alue=N*F actoria I< N-1>::val ue;
¥

cl assF actorial <1>{
publ i c:

staticc onsti ntv alue=1;
b

Using this class template'®, the value N is accesshle a compile-time as
Factorial<N>::value

As another example, the following classand function templates can be used to
generate inline mde to calculate the dot product of two arrays of numbers:

18 \within li mitations, remember that if an iNt s 32-bits, the maximum N can beisjust 12

Page51of 171

Tecdhnical Report on C++ Performance 03-0012N1430

/IG ivenaf orwardd eclaration:
tenplate<intDimc lassT>
structd ot _cl ass;

/las pecializedb asec asef orr ecursion:
tenplate<classT >
structd ot _class<1, T>{
statici nlineTd ot(constT *a ,c onstT * b)
{r eturn* a** b;}
H

/It her ecursivet enpl ate:
tenplate<intDimc lassT>
structd ot _class{
statici nlineTd ot(constT *a ,c onstT * b)
{r eturndot_class<Dim1, T>: :dot(a+l, b+1)+
*a** b, }
H
/. ..a nds onesyntactics ugar:
tenplate<intDimc lassT>
inlineTd ot(constT *a ,c onstT *b)
{r eturndot_class<DimT>::dot(a,b); }

/I'T hen
intp roduct=d ot<3>(a,b);

/It esultsi nt hes ane(near-)opti nalc odeas
intp roduct=a [0]*b[0]+a [1]*b[1l]+a [2]*Db[2];

Template meta-programming and expression templates are not techniques for
novice programmers, but an advanced praditioner can use them to good effed.

» Templates provide mmpile-time polymorphism, wherein type selection does
not incur any run-time penalty. |If appropriate to the design, consider using
classtemplates as interfaces instead of abstract base classes. For some designs
it may be gpropriate to use templates which can provide mpile-time
polymorphism, while virtual functions which provide run-time polymorphism
may be more gopropriate for others.

Templates have several useful properties: they impose no space or code
overhead on the class used as atemplate agument, and they can be atadched to
the class for limited times and puposes. If the dass does not provide the
needed functionality, it can be defined externaly through template
specializaion. If certain functions in the template interface ae never used for
agiven class they need not be defined because they will not be instantiated.

In the example below, the talk_in_German() function in the "interface' is
only defined for class CuckooClock | becaise that is the only objed for
which it is needed. Invoking talk_in_German() on an objed of a different
type resultsin a compiler diagnostic:

#i ncl ude < i ost ream>
usings td::cout;
usingstd::endl;

Page52 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

/I's omedomaino bjects
cl assDog {
publ i c:
voidt alk()c onst{c out< <" woofw oof" << endl;}
h

cl ass C uckood ock {
publ i c:
voidt al k()const{c out< <" cuckooc uckoo" <<e ndl;}
voidt al k_in_German()const{c out< <" wacheta uf!" <<
endl; }
h

cl assBigBend ock {
publ i c:
voidt alk()const{c out< <" takeat ea-break" <<endl; }
voi dp | ayBongs() const{c out< <" bingbong bingbong"< <
endl; }
h

cl assSilentd ock {
/1d oesn'tt alk
h

Il'g enerict enplatet op roviden on-inheritance-based
/I'p ol ynor phi sm
tenplate<classT >
cl assT al kative {
T& t;
publ i c:
Tal kative(T&obj):t (obj){ }
voidt al k()const{t .talk();}
voidt al k_in_German()const{t .talk_in_Geman();}

h

/I's pecializationt oadaptf unctionality
te npl ate <>
cl assT al kat i ve<Bi gBend ock> {

Bi gBend ock&t;
publ i c:

Tal kat i ve(Bi gBend ock& o bj)

it (obj)

voidt al k()const{t .playBongs(); }
h

/I's pecializationt oa ddmissingf unctional ity
te npl ate <>
cl assT al kati ve<Si | ent A ock> {
Silent d ock&t;
publ i c:
Tal kative(Silentd ock& o bj)
it (obj)
voidt al k()const{c out< <" tickt ock"<< endl; }

h

/la dapterf unctiont osinplifys yntaxi nusage
tenplate<classT >
Tal kati ve<T>makeTal kati ve(T&obj){
returnT al kati ve<T>(obj);
}

Page53of 171

Tecdhnical Report on C++ Performance 03-0012N1430

/If unctiont ouseanobjectw hichi nplenents the
/I Tal kative tenpl ate-interface
tenplate<classT >

voi d makel t Tal k(Tal kati ve<T>1)

t.tal k();

in tm ai n()

Dog aDog;

Cuckood ock a Cuckood ock;
Bi gBend ock a Bi gBend ock;
Silentd ocka Sil ent C ock;

//u seo bjectsi ncontextswhichdonot requiret al king

. ..

Tal kat i ve<Dog>t d(aDog);

td.tal k(); /Iw oofw oof

Tal kat i ve<Quckood ock>t cc(aCuckood ock);

tcc.tal k(); /I cuckoo c uckoo

nmakeTal kat i ve(aDog) . tal k() ; /Iw oofw oof

makeTal kat i ve(aCuckooCd ock).tal k_i n_German(); /l'w achet

I auf!

makel t Tal k(makeTal kati ve(aBi gBend ock)); /1b ingb ong
/1b ingb ong

makel t Tal k(makeTal kati ve(aSi | ent A ock)); /1t ickt ock

returnO;

}

Controlling the instantiation of class templates and function templates can help
to reduce the footprint of a program. Some @mpilers instantiate atemplate
only once into a separate "repository”; others instantiate every template into
every translation unit where it is used. In the latter case, the linker typically
eliminates duplicates. If it does not, the exeautable @an suffer significant
memory overheals.

Explicit instantiation of a classtemplate specialization causes instantiation of
all of its members into the translation unit containing the explicit instantiation
diredive. In addition to instantiating a class template & a whole, explicit
instantiation can also be used for a member function, member class or static
data member of a classtemplate, or a function template or member template
Specializaion.

For example (from 81S-14.7.292):

te nplate<classT >classArray{v oidmf();};
te npl atec | ass A rray<char >;
te nplatev oi dArray<int>::nf();

te npl ate<classT >voids ort(Array<t>&v){ /* ...* [}
te nplatev oi ds ort (Array<char>§&);

Page 54 of 171

03-0012N1430

Tecdhnical Report on C++ Performance

namespace N {
tenplate<classT >voidf (T&{}
}

templatev oidN::f<int>(int&);

Explicitly instantiating template wde into a library can save space in every
translation unit which links to it. For example, in their run-time libraries,
some library vendors provide instantiations of std::basic_string<char>

and std::basic_string<wchar_t> . Some ompilers also have command-
line options to force complete template instantiation or to suppress it as
nealed.

In addition to these portable wding techniques, programming tools offer additional
platform-spedfic help for optimizing programs. Some of the techniques available
include the following:

 Compiler options are usually extra aguments or switches, which pass
instructions to the compiler. Some of these instructions are related to
performance, and control how to:

>

>

>

>

Generate exeautable wde optimized for a particular hardware
architedure.

Optimize the translated code for size or speed. Often there ae sub-
options to exercise finer control of optimization techniques and how
aggressively they should be gplied.

Suppress the generation of debugging information, which can add to
code and datasize

Instrument the output code for run-time profiling, as an aid to
measuring performance and to refine the optimization strategies used
in subsequent builds.

Disable exception handling overhead in code which does not use
exceptions at all.

Control the ingtantiation of templates.

» #pragma diredives allow compilers to add feaures Pecific to machines and
operating systems, within the framework of Standard C++. Some of the
optimization-related uses of #pragma diredives are to:

>

>

.
r

Specify function calling conventions (a C++ linkage-specification can
also be used for this purpose).

Influencethe inline expansion of code.
Specify optimizaion strategies on a function-by-function basis.

Page550f 171

Tecdhnical Report on C++ Performance 03-0012N1430

» Control the placement of code or data into memory areas (to achieve
better locality of reference d run-time).

» Affect the layout of class members (through aignment or padking
constraints, or by suppressing compiler-generated data members).

Note that #pragma s are not sandardized and are not portable.

» Linking to static libraries or shared libraries, as appropriate. Linker options
can also be used to control the amount of extra information included in a
program (e.g., symbol tables, debugging formeats).

» Utilities for efficiently allocating small blocks of memory. These may take the
form of system cdls, #pragma s, compiler options, or libraries.

» Additional programs:

» Many systems have autility program'® to remove the symbol table and
line number information from an objed file, once debugging is
complete, or this can often be done a link-time using a linker specific
option. The purpose is to reduce file storage ad, in some @ses,
memory overhead.

» Some systems have utilities®® and tools to interpret profiling data ad
identify run-time bottleneds.

* Sometimes, minimizing compile-time is important. When code is being
creaed and debugged, suppressing optimizaion may enable the compiler to
run faster.

The mogt effedive technique for reducing compile-time relies on reducing the
amount of code to be compiled. The key is to reduce coupling between
different parts of a program so as to minimize the size and number of header
files needed in most translation units. Some techniques for acamplishing this
include the use of abstrad base classes as interfaces and the PIMPL idiom, as
discussed above.

Also, suppressing automatic template instantiation in a given translation unit
may reduce @mpile-time.

19 For instance the ‘strip’ utility which is part of the Software Development Utilities option in the IEEE Posix/Open Group Unix
/1SO/IEC 99452002 specifications.

20 For instance the ‘prof’ utility which isnat part of the Posix/Unix Standard, but is avail able on many systems.

Page 56 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

Realing and parsing header code takestime. Yeas ago, the common pradice
was to #includ e as few healers as possible, so that only necessary symbols
were declared. But with technology to pre-compile healers, build time may
be reduced by using a single header in each translation unit which #include s
everything needed for the program.

Well-designed headers will usually protect their contents againgt multiple
inclusion by following this pattern:

#i f! defined T HH' S HEADER H
#defineT H S_HEADER H

//h erearet hecontentso ft heh eader
#endif /*T H 'S HEADER H*/

The header is sid to be “idempotent” because, regardiess of how many times
it is #include d, it has the effed of being #include d only once If the
compiler provides the “idempotent guard” optimization, it will record in an
internal table the fad that this header is guarded by a macro. If this header is
subsequently #include d again, and the maao THIS_HEADER_Hsill remains
defined, then the compiler can avoid acaessing the header contents.

If the compiler does not perform this optimization, the dedk can be
implemented by the programmer:
#if! defined MY_HEADER H

#i ncl ude" ny_header. h"
#endi f

This has the disadvantage of coupling the header’s guard maao to the source
fileswhich #include that header.

As always, local measurements in specific circumstances should govern the
decision.

Input/output can be aperformance bottlened in C++ programs. By defaullt,
the standard iostreams (cin , cout ~cerr | clog , and their wide-charader
counterparts) are synchronized with the C stdio streams (stdin | stdout |
stderr), so that reads fromcin and stdin | or writesto cout and stdout | can
be freely intermixed. However, this coupling has a performance o, becaise
of the buffering in both kinds of streams. In the pre-sandard "classic"
iostreams library, unsynchronized mode was the default.

If there is no nead for a program to make alls to both standard C streams and
C++ iostreams, synchronization can be turned off with this line of code:

st d::ios_base::sync_w th_stdio(fal se);
If any input or output operation has occurred using the standard streams prior
to the all, the effect is implementation-defined. Otherwise, called with a false

argument, it allows the standard streams to operate independently of the
standard C streams (81S-27.4.2.4).

Another standard default is to flush all output to cout before reading from
cin | for the purpose of displaying interadive prompts to the gplicaion user.

Page57 of 171

Tecdhnical Report on C++ Performance 03-0012N1430

If this synchronized flushing is not neaded, some alditional performance @n
be gained by disablingit:
std::cin.tie(0);

* Anempty body in a class constructor, or an unwritten default constructor, can
invoke an amount of code which may be surprising at first glance This is
because all member subobjeds and base subobjects with constructors must be
initialized as part of the class construction. Compiler-generated default
congtructors are inline member functions, as are function definitions written
within the body of the classdefinition. Therefore an innocent-looking { can
not be asumed to producetrivial machine mde:

cl ass X

{
Aa;
B b;
virtualv oidf ();

h

classY:p ublicX

{
Cc;
D d;

h
classZ:p ublicY

The ongructor for z, itself only empty bradets, causes the cmpiler to
generate mde to initialize all of the base classes and all data members, thus
invoking defined or compiler-generated constructors for classes X, A, B, Y, C,
D, E, and F. If all of these ae inline and non-trivial, a substantial block of
machine mde can be inserted at this point in the program. It will also initialize
the virtual table. Therefore it is important to know what functions will be
called when an object is initialized and to make adive decisions on whether
that code should be placal inline. Empty-bradket functions are often used for
destructors as well, but a smilar analysis of the csts ould be performed
before making them inline.

Page58 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

3 Creating Efficient Libraries

This dion discusses tedhniques which can be used in credaing any library. These
techniques are discussed in the mntext of an implementation of part of the C++
Standard Library.

3.1 The Standard IOStreams Library — Overview

The Standard 10Streams library (81S-27) has a well-eaned reputation of being
inefficient. Most of this reputation is, however, due to misinformation and naive
implementation of this library component. Rather than tadling the whole library, this
report addresses efficiency considerations related to a particular asped used
throughout the 10Sreams library, namely those aspeds relating to the use of the
Locales (81S-22). An implementation approach for removing most, if not all,
efficiency problemsrelated to locales is discussed in 3.2.

The efficiency problems come in several forms:

3.1.1 Executable Size

Typicaly, using anything from the 10Streams library drags in a huge amount of
library code, much of which is not actually used. The principal reason for this is the
use of std::locale in all base classes of the IOSreams library (e.g. std::ios_base
and std::basic_streambuf). Inthe worst case, the ade for all required faces from
the Locales library (81S-22.1.1.1.114) isincluded in the exeautable. A milder form of
this problem merely includes code of unused functions from any face from which one
or more functions are used. Thisisdiscussed in 3.2.2.

3.1.2 Execution Speed

Since cetain aspeds of 10Sreams processing are distributed over multiple facds, it
appeas that the Standard mandates an inefficient implementation. But this is not the
case — by using some form of pre-processing, much of the work can be avoided.
With a slightly smarter linker than is typicdly used, it is possible to remove some of
these inefficiencies. Thisisdiscussed in 3.2.3 and 3.2.5.

Page59of 171

Tecdhnical Report on C++ Performance 03-0012N1430

3.1.3 Object Size

The Standard seems to mandate an std::locale objed being embedded in each
std::iios_base and std::basic_streambuf objed, in addition to several options
used for formatting and error reporting. This makes for fairly large stream objeds.
Using a more alvanced organization for strean objects can shift the csts to those
applications adually using the @rresponding feaures. Depending on the exad
approach taken, the mdgs are shifted to one or more of:

* Compilationtime
» Higher memory usage when adually using the crresponding feaures
* Exeaution sped

Thisisdiscussed in 3.2.6.

3.1.4 Compilation Time

A widespread approach for coping with the ubiquitous lack of support for exported
templates is to include the template implementations in the headers. This can result in
very long compile and link times if, for example, the |OStreams headers are included,
and especially if optimizations are enabled. With an improved approach using pre-
instantiation and consequent deaupling techniques, the compile-time @an be reduced
significantly. Thisisdiscussed in 3.2.4.

3.2 Optimizing Libraries — Reference Example:
" An Efficient Implementation of Locales and I0Streams”

The definition of Locales in the C++ Standard (81S-22) seems to imply a pretty
inefficient implementation. However, thisis not true. It is possible to create dficient
implementations of the Locales library, both in terms of run-time efficiency and
executable size This does take some thought and this report discusses me of the
possibilities that can be used to improve the dficiency of std:locale
implementations with a special focus on the functionality as used by the |OStreams
library.

The gproades discussed in this report are primarily applicable to statically bound
executables as are typically found in, for example, embedded systems. If shared or
dynamically loaded libraries are used, different optimization goals have precalence
and some of the gproaches described here could be wunterproductive. Clever
organization of the shared libraries might deal with some efficiency problems too;
however, this is not discussed in this report.

Nothing described in this report involves magic or redly new tedniques. It just
discusses how well known techniques may be employed to the benefit of the library
user. It does, however, involve alditional work compared to atrivial implementation,
for the library implementer as well as for the library tester, and in some cases for the
compiler implementer. Some of the techniques focus on just one dficiency asped
and thus not al techniques will be gplicable in al situations (e.g. certan
performance improvements can result in additional code spacg. Depending on the

Page 60 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

requirements, the library writer, or possibly even the library user, has to choose which
optimizations are most appropriate.

3.2.1 Implementation Basics for Locales

Before going into the detail s of the various optimizations, it is worth introducing the
implementation of Locales, describing feaures implicit to the Standard definition.
Although some of the material presented in this sdion is not grictly required and
there ae other implementation alternatives, this dion should provide the necessary
detail sto understand where the optimizations should be direded.

An std:locale objed is an immutable mlledion of immutable objeds, or more
precisely, of immutable facds. This immutability trait is important in multi-threaded
environments, becaise it removes the need to synchronize most accesses to locales
and their facds. The only operations needing multi-threading synchronizaion are
copying, assigning, and destroying std::locale objeds and the aedion of modified
locales.

Instead of modifying a locale object to augment the objed with a new facd or to
replace an existing one, std:locale constructors or member functions are used,
creaing new locale objeds with the modifications applied. As a mnsequence
multiple locale objeds can share their internal representation and multiple internal
representations can (in fad, have to) share their facds. When a modified locale object
is creaed, the eisting facets are copied from the original and then the modification is
applied, possibly replacing some facds. For corred maintenance of the facds, the
Standard mandates the necessary interfaces, allowing reference @unting or some
equivalent tedhnique for sharing facds. The corresponding functionality is
implemented in the class std::locale::facet , the base classfor all facds.

Copying, assigning, and destroying std::locale objeds reduces to simple pointer
and reference count operations. When copying a locale object, the reference @unt is
incremented and the pointer to the internal representation is asdgned. When
destroying a locale objed, the reference munt is deaemented and when it dropsto 0,
the internal representation is released. Assgnment is an appropriate cmbination of
these two. What remains is the default construction of an std::locale which is just
the same @& a @py of the aurrent global locale object. Thus, the basic lifetime
operations of std::locale objects are reasonably fast.

Individual facds are identified using an ID, more predsely an objed of type

std::locale::id, which is available as a static data member in all base classes
defining afacd. A facd is a classderived from std::locale::facet which has a
puldicly acaessible static member called id of type std:locale:id 8IS

22.1.1.1.211). Although explicit use of a locale's facets sems to use atype @& an
index (referred to here @& F), the Locales library internally uses Fiid . The
std::locale::id simply stores an index into an array identifying the location of a
pointer to the rresponding facet or O if a locale object does not Sore the
corresponding facet.

In summary, a locale objed is basically a reference ®unted pointer to an internal
representation consisting of an array of pointers to reference @unted facds. In a

Page6l1of 171

Tecdhnical Report on C++ Performance 03-0012N1430

multi-threaded environment, the internal representation and the facds might store a
mutex (or some similar synchronization facility), thus protecting the reference @unt.
A corresponding excerpt of the declarations might look something like this (with
namespace std and ather qualificaions or elaborations of names omitted):

cl ass!| ocal e{
publ i c:
classf acet {
/1.

private:
size_t refs;
nut ex | ock; /1o ptional
3
classi d{
/1.
private:

size_t index;

b

/1.
private:
structi nternal {
. ..
size_tr efs;
mutex | ock; /1o ptional
facet*m enbers;

internal* rep;

h

These declarations are not really required and there ae some interesting variations:

Rather than using a double indiredion with an internal struct | a pointer to an
array of unions can be used. The union would contain members siitable &
reference @unt and possble mutex lock, as well as pointers to facets. The
index O could, for example, be used as “reference @unt” and index 1 as
“mutex”, with the remaining array members being pointersto facds.

Instead of protecting each face objea with its own mutex lock, it is possible
to share the locks between multiple objeds. For example, there may be just
one global mutex lock, because the need to lock facds is relatively rare (only
when amodified locale object is necessary isthere aneal for locking) and it is
unlikely that this global lock remains held for extended periods of time. If this
is too coarse grained, it is possible to place a mutex lock into the static id
objed, such that an individual mutex lock exists for ead face type.

If atomic increment and deaement are available, the reference @unt alone is
aufficient, becaise the only operations needing multi-threading protection are
incrementing and deaementing of the reference munt.

The locale objeds only neal a representation if there ae modified locale
objeds. If such an objed is never creaed, it is possible to use a1 empty
std::locale objed. Whether or not thisisthe cae @n be determined using
some form of "whole program optimization" (83.2.5).

Page 62 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

* Whether an array or some other data structure is used internally does not redly

matter. What is important is that there is a data structure indexed hy
std::locale::id

» A trivial implementation could use anull pointer to indicae that a facd is
absent in agiven locale objed. If apointer to a dummy facd is used instead,
std::use_facet() can simply use a dynamic_cast<>() to produce the
corresponding std::bad_cast exception.

In any case, as tated ealier, it is reasonable to envision a locale objed as being a
reference ounted pointer to some internal representation containing an array of
reference ounted facds. Whether this is adually implemented so as to reduce run-
time asts by avoiding a double indiredion, and whether there ae mutex locks and
where these ae, does not redly matter to the remainder of this discussion. It is,

however, assumed that the implementer chooses an efficient implementation of the
std::locale

It is worth noting that the Standard definition of std::use_facet() and
std::has_facet() differ from ealier Committee Draft (CD) versions quite
significantly. If a face is not found in a locale objed, it is not available for this
locale. Inealier CDs, if aface was not found in agiven locale, then the global locale
objea was ached. The definition chosen for the Standard was made so that the
Standard could be more efficiently implemented — to determine whether a face is
available for a given locale objed, a smple aray lookup is sufficient. Therefore, the
functions std::use_facet() and std:has_facet() could be implemented
something like this:

externs td::locale::facetd umy;

te npl at e < t ypenane F>

boolh as_facet(std::localec onst&l oc){
returnl oc.rep->facets[F::id::index]! = &Junmy;
}

te npl at e < t ypenane F>
F const&use_facet(std::localec onst&l oc){

returnd ynam c_cast<Fc onst & (*| oc.rep->facets[Facet::id::index]);
}

These versions of the functions are tuned for speed. A simple aray lookup, together
with the necessary dynamic_cast<>(), is used to obtain a faceé. Since this implies
that there is a dlot in the aray for ead facd possbly used by the program, it may be
somewhat wasteful with resped to memory. Other techniques might ched the size of
the aray first or store id/facet pairs. In extreme caes, it is possible to locae the
corred face using dynamic_cast<>() and store only those facds that are atually
available in the given locale.

3.2.2 Reducing Executable Size

Linking unused code into an exeautable @n have a significant impad on the
executable size Thus, it is best to avoid having unused code in the executable
program. One source of unused code results from trivial implementations. The
default facet std::locale::classic() includes a cetain set of facds as described

Page 63 of 171

Tecdhnical Report on C++ Performance 03-0012N1430

in 1S22.1.1.1.192. It is tempting to implement the aeaion of the @rresponding
locale with a straightforward approach, namely explicitly registering the listed facets:

std::localeconst&std::locale::classic() {
statics td::local eo bject;
staticb oolu ninitialized=t rue;

if(uninitialized){
obj ect.intern_regi ster(newcollate<char>);
obj ect.intern_regi ster(newcollate<wchar_t>);
/1.

}

returno bject;

}

However, this approac can result in a very large exeautable, as it drags in all facets
listed in the table. The alvantage of this approach is that a relatively simple
implementation of the various locale operations is possible. An alternative one,
producing smaller code, isto include only those facets that are redly used, perhaps by
providing specialized versions of use_facet() and has_facet(). For example:

te npl ate<typenaneF >s tructf acet_aux{
staticFc onst&use_facet(localeconst& |) {
returnd ynani c_cast<Fc onst&(*l.rep
->facets[Facet::id::index]);

staticb oolh as_facet(localec onst&l){
returnl .rep->facets[F::id::index]!= &Jumy;
}
b

te nplate< >s tructf acet_aux<ctype<char>>{
staticc type<char>c onst &use_facet(local e const&l){

try {
returnd ynani c_cast <ct ype<char> const&>(*|.rep

->facets[Facet::id::index]);
}c atch(bad_castc onst&) ({
| ocal e:: facet*f=1I .intern_regis ter(newctype<char>);
returnd ynani c_cast <ct ype<char >&>(* f);

}

staticb oolh as_facet(localec onst&{re turnt rue; }
h

II's imlarlyf ort heotherf acets

te npl at e < typenane F>

F const&use_facet(localeconst&l) {
returnf acet _aux<F>::use_facet(l);

}

te npl at e < typenane F>

boolh as_facet(localec onst&l) {
returnf acet _aux<F>::has_facet(l);

}

Thisisjust one example of many possible implementations for a reaurring theme. A
facd is creaed only if it is indeal referenced from the program. This particular
approach is suitable in implementations where exceptions cause arun-time overhead
only if they are thrown, becaise, like the normal exeaution path, if the lookup of the
facd is successful it is not burdened by the extra cde used to initialize the facd.
Although the @ove @de seems to imply that struct facet aux has to be

Page 64 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

specialized for al required facds individually, this need not be the cae. By using an
additional template agument, it is possible to use partial specialization together with
some tagging mechanism to determine whether the facet should be aeaed on the fly
if it isnot yet present.

Different implementations of the lazy facd initializaion include the use of satic
initializers to register used facets. In this case, the specialized versions of the function
use_facet() would be placeal into individual objed files together with an objed
whose gtatic initialization registers the mrresponding facet. This approadch implies,
however, that the function use_facet) isimplemented out-of-line, possibly causing
unnecessary overhead both in terms of run-time and exeautable size

The next source of unused code is the combination of several related aspeds in just
one facd due to the use of virtual functions. Normally, instantiation of a class
containing Mrtual functions requires that the mde for al virtual functions be present,
even if they are unused. This can be relatively expensive ain, for example, the cae
of the facd dealing with numeric formatting. Even if only the integer formatting
functions are used, the typically larger code for floating point formatting gets dragged
in just to resolve the symbols referenced from the virtual function table.

A better approach to avoid linking in unused virtual functions would be to change the
compiler so that it generates appropriate symbols which enable the linker to determine
whether a virtual function is really called. If it is, the reference from the virtual
function table is resolved; otherwise, there is no neel to resolve it, becaise it will
never be alled anyway.

For the Standard faces however, there is a “poor man's’ alternative that comes close
to having the same effect. The ideais to provide anon-virtual stub implementation
for the virtual functions, which is placed in the library such that it is sached fairly
late. The real implementation is placed before the stub implementation in the same
objea file along with the implementation of the forwarding function. Since use of the
virtual function has to go through the forwarding function, this symbol is also un-
referenced, and resolving it brings in the @rred implementation of the virtual
function.

Editor's Note: It isn't completely dear to me how this works. Is it possble to
illustrate it with a small amourt of code, or a footnote with the
compiler andlinker options for some cmnon implementation?

Unfortunately, it is not totally true that the virtual function can only be alled through
the forwarding function. A classderiving from the face can diredly call the virtual
function because these ae protected rather than private | Thus, it is gill necessary
to drag in the whole implementation if there is a derived facd. To avoid this, another
implementation can ke placal in the same objed file as the mnstructors of the facd,
which can be alled using a hidden constructor for the auttomatic instantiation.
Although it is possible to get these gproadces to work with typical linkers, a
modified compiler and linker provide a much-preferred solution, unfortunately one
which is often outside the scope of library implementers.

Page 65 0of 171

Tecdhnical Report on C++ Performance 03-0012N1430

In many cases, most of the normally visible code bloat can be removed using the two
techniques discussed above, i.e. by including only used facds and avoiding the
inclusion of unused virtual functions. Some of the gpproaches described in the other
sedions can also result in a reduction of exeautable size but the focus of those
optimizations is on a different asped of the problem. Also, the reduction in code size
for the other approadhes is not as significant.

3.2.3 Pre-Processing for Facets

Oncethe exeautable size is reduced, the next observation is that the operations tend to
be slow. Take numeric formatting as an example: to produce the formatted output of
anumber, threedifferent facets are involved:

o num_put, which does the adual formatting, i.e. determining which digits and
symbols are there, doing padding when necessary, etc.

« numpunct, which provides detail s about local conventions, such as the need to
put in thousands separators, which charader to use & adedmal point, etc.

» ctype, which transforms the dharaders produced internally by num_put into
the gpropriate "wide" charaders.

Eacdh of the ctype or numpunct functions called is essentially a virtual function. A
virtual function call can be an expensive way to determine whether a cetain charader
is a decimal point, or to transform a darader between a narrow and wide
representation. Thus, it is necessry to avoid these lls wherever possible for
maximum efficiency.

At first examination there does not appea to be much room for improvement.
However, on closer inspedion, it turns out that the Standard does not mandate cllsto
numpunct or ctyp e for ead pieceof information. If the num_put facet has widened a
charader already, or knows which decimal point to use, it is not required to cdl the
corresponding functions. This can be taken a step further. When creding a locale
objed, cetain data can be @ded using, for example, an auxiliary hidden facd.
Rather than going through virtual functions over and over again, the required data ae
simply cached in an appropriate data structure.

For example, the cate for the numeric formatting might consist of a carader
translation table resulting from widening all digit and symbol charaders during the
initial locale setup. This translation table might also contain the decimal point and
thousands separator — combining data obtained from two different facds into just one
table. Taking it another step further, the cahe might be set up to use two different
functions depending on whether thousands separators are used acwrding to the
numpunct facet or not. Some pre-processing might also improve the performance of
parsing strings like the Boolean values if the std::ios_base::boolalpha flag is =t.

Although there ae many detail s to be handled, such as distinguishing between normal
and cache facds when creaing a new locale objed, the dfed of using a cahe @an be
fairly significant. It is important that the cache facds are not generally shared
between locale representations. To share the cade, it hasto be verified that all facds
contributing to the cadied data ae identicd in ead of the wrresponding locales.

Page 66 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

Also, certain approades, like the use of two different functions for formatting with or
without thousands separators, only work if the default face is used.

3.2.4 Compile-Time Decoupling

It may appea strange to talk about improving compile-time when discussng the
efficiency of Locales, but there ae good reasons for this. First of all, compile-time is
just another concern for performance efficiency, and it should be minimized where
possible. More important to this technicd report however, is that some of the
techniques presented below rely on certain aspeds that are related to the compil ation
process

The first tedchnique that improves compile-time is the liberal use of forward
declarations, avoiding definitions wherever possible. A Standard header may be
required to include other headers that provide aneeded definition (81S-17.4.4.111);
however, this does not apply to declarations. As a consequence, a header need not be
included just because it defines a type which is used only as a return or argument type
in a function declaration. Likewise, a forward declaration is aufficient if only a
pointer to a dasstype is used as a class member (seethe discussion of the PIMPL
idiomin Sedion 2.6).

Looking at the members imbue() and getloc() of the class std:ios_base | it
would seem that the <ios> header is required to include <locale> simply for the
definition of std:locale | becaise gparently an std:ios_base object stores a

locale objed in a member variable. This is not required! Instead, std:ios_base
could store a pointer to the locale's internal representation and construct an
std::locale objed on the fly. Thus, there is no necessity for the header <ios> to
include the header <locale> | The header <locale> will be used elsewhere with the
implementation of the std::ios_base class, but that isa mmpletely different issue.

Why does it matter? Current compilers, lacking support for the export keyword,
require the implementation of the template members of the stream classes in the
headers anyway and the implementation of these classes will need the definitions
from <locale> —won't they? It istrue that some definitions of the template members
will indeed require definitions from the header <locale> | However, this does not
imply that the implementation of the template members is required to reside in the
header files — a simple alternative is to explicitly instantiate the rresponding
templates in suitable objed files.

Explicit instantiation obviously works for the template aguments mentioned in the
Standard; for example, explicit specialization of std:basic_ios<char> and
std::basic_ios<wchar_t> works for the class template std::basic_ios . But what
happens when the user tries ©me other type & the charader representation, or a
different type for the charader traits? Since the implementation is not inline but
requires explicit instantiation, it cannot always be present in the Standard library
shipped with the compiler. The preferred approach to this problem is to use the
export keyword, but in the &sence of this, an entirely different approac is
necessary. One such approach is to instruct the user on how to instantiate the
corresponding classes using, for example, some environment-specific implementation

Page 67 of 171

Tecdhnical Report on C++ Performance 03-0012N1430

file and suitable compiler switches. For instance, instantiating the |OStreams classes
for the charader type mychar and the traits type mytraits might look something like:

c++- 0i o-inst-nychar-nytraits.oi o-inst.cpp\
-Dchar T=nychar- Dtraits=nytraits- D ncl ude="nychar. hpp"

Using such an approach causes ome trouble to the user and more work for the
implementer, which seems to be a fairly high price to pay for a reduction in
dependencies and a speed up of compile-time. But note that the improvement in
compile-time istypically significant when compiling with optimizations enabled. The
reason for this is simple: with many inline functions, the cmpiler passes huge cdunks
of code to the optimizer, which then has to work extra hard to improve them. Bigger
chunks provide better optimization possibilities, but they also cause significantly
longer compile-times due to the non-linea increase in the cmplexity of the
optimization step as the size of the dunks increases. Furthermore, the objed files
written and later processed by the linker are much bigger when all used instantiations
are present in each objed file. This can also impad the executable size, becaise
catain code may be present multiple times, embedded in different inline functions
which have some wde from just one other function in common.

Another reason for having the IOStreams and Local es functions in a separate place is
that it is possible to tell from the undefined symbols which fedures are used in a
program and which are not. This information can then be used by a smart linker to
determine which particular implementation of a function is most suitable for a given
application.

3.2.5 Smart Linking

The discusson above already addresses how to omit unused code by means of a
sightly non-trivial implementation of Locales and virtual functions. It does not
addresshow to avoid unnecessary code. The term “unnecessary code” refers to code
that is adually executed, but which does not have any real effed. For example, the
code for padding formatted results has no effect if the width() is never set to a non-
zeo value. Similarly, there is no neead to go through the virtual functions of the
various facds if only the default locale is ever used. Asin all other aspeds of C++, it
is reasonable to avoid paying a st in code size or performance for any feaure which
is not used.

Page 68 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

The basic ideafor coping with this is to avoid umecessary overheals where possible
by providing multiple implementations of some functions. Since writing multiple
implementations of the same function can easily become amaintenance nightmare, it
makes snse to write one implementation, which is configured at compile-time to
handle different situations. For example, a function for numeric formatting that
optionall y avoids the ade for padding might look like this:

te nplate<typenanec T,t ypenaneOutlt>

num put<cT,O utlt>::do_put(Qutlti t,i os_base& fnt,
cTfill,l ongv) const
{

charb uffer[some_suitabl e_size];
char*e nd=g et_formatted(fnt,v);
if(need_padding& &f nt.width()>0)
returnp ut_padded(it,f nt,f ill,b uff er);
el se
returnput(it,f m,b uffer);
}

The value need_padding s a mnstant Boolean which is st to false if the
compilation is configured to avoid padding code. With a clever compiler (normally
requiring optimization to be enabled) any referenceto put_padded() isavoided, as is
the chedk for whether the width() s greaer than zero. The library would just supply
two versions of this function and the smart linker would need to choose the right one.

To choose the right version, the linker has to be instructed under what circumstances
it should use the one avoiding the padding, i.e. the one where need_padding s %t to
false . A simple analysis shows that the only possbility for width() being non-zero
is the use of the std::ios_base::width() function with a parameter. The library
does not set a non-zero value, and hence the simpler version can be used if
std::ios_base::width() is never referenced from user code.

The example of padding is pretty simple. Other cases are more complex but ill
manageé&ble. Another isaie worth considering is whether the Locales library must be
used or if it is possible to provide the functionality diredly, possibly using functions
that are shared internally between the Locales and the I0Streams library. That is, if
only the default locale is used, the IOSreams functions can call the formeatting
functions direaly, bypassing the retrieval of the @rresponding facet and associated
virtual function call —indeed, bypassng all code related to locales — thus avoiding any
need to drag in the corresponding locale maintenance @de.

The analysis necessary to ched if only the default locde is used is more mmplex,
however. The simplest test isto chedk for use of the locale's constructors. If only the
default and copy constructors are used, then only the default locale is used because
one of the other constructorsis required to create adifferent locale objed. Even then,
if another locale object is constructed, it may not necessarily be used with the

|OStreams. Only if the global locale is changed, or one of
std::ios_base::imbue() , std::basic_ios<...>::imbue() , or
std::basic_streambuf<...>::imbue() is ever called, can the streams be affeded
by the non-default locale objed. Although this is smewhat more @mplex to
determine, it is dill feasible. There ae other approaches which might be exploited

too: for example, whether the streams have to ded with exceptions in the input or

Page 69 of 171

Tecdhnical Report on C++ Performance 03-0012N1430

output functions (this depends on the strean buffer and locales possibly used);
whether invoking callback functions is needed (only if callback s are ever
registered, is this necessary); etc.

In order for the linker to dedde which functionality is used by the gplication, it
mustfollow a set of “rules’ provided by the library implementer to exclude functions.
It is important to base these rules only on the gplicaion code, to avoid unnecessary
restrictions imposed by unused Standard Library code. However, this results in more,
and more a@mplex, rules. To determine which functionality is used by the
application, the unresolved symbols referenced by the gplicaion code ae examined.
Thisrequires that any function mentioned in a “rule” is indeed unresolved and results
in the corresponding functions being non-inline.

There aethreeproblems with this approad:

» The maintenance of the implementation becomes more cmplex becaise extra
work is necessary. This can be reduced to a more accetable level by relying
on a dever compiler to eliminate mde for branches that it can determine ae
never used.

» The analysis of the conditions under which code can be avoided is ometimes
non-trivial. Also, the conditions have to be made available to the linker,
which introduces another potential cause of error.

* Even simple functions cannot be inline when they are used to exclude asimple
implementation of the function std::ios_base::width() . This might result
in lessefficient and sometimes even larger code (for smple functions the st
of calling the function can be bigger than the adual function). See3.2.7 for an
approach to avoiding this problem.

The same gproach can be beneficial to other libraries, and to areas of the Standard
C++ library other than IOStreams and Locales. In general, the library interface @an be
simplified by choosing among similar functions applicable in different situations,
while till retaining the same efficiency. However, this techniqueis not applicable to
all situations and should be used carefully where gpropriate.

3.2.6 Object Organization

A typicd approach to designing a classis to have member variables for all attributes
to be maintained. This may seem to be anatural approad, but it can result in a bigger
footprint than recessary. For example, in an applicaion where the width() s never
changed, there is no ned to actually store the width. When looking at 10Streams, it
turns out that ead std::basic_ios objed might store a relatively large amount of
data to provide functionality that many C++ programmers using |OStreams are not
even aware of, for example:

e A sat of formatting flags is gored in an std:ios_base:fmtflags

subobject.
e Formatting parameters like the width() and the precision() are stored in
std::streamsize objeds.

Page 70 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

e An std:locale subobjed (or some suitable reference to its internal
representation).

e Thepword() andiword() lists.
e Aligt of callback g

» The aror flags and exception flags are stored in objects of type
std::ios_base::iostate . Since eah of these has values representable in
just threebits, they may be folded into one word.

» Thefill charader used for padding.
* A pointer to the used stream buffer.
* A pointer to the tie() ed std::basic_ostream

Thisresults in at least eight extra 32-bit words, even when folding multiple data into
just one 32-bit word where possible (the formatting flags, the state and exception
flags, and the fill charader can fit into 32 bits for the charader type char). These ae
32 bytes for every stream objed even if there is just one stream — for example,
std::cout — which in a given program never uses a different predsion, width (and
thus no fill charader), or locale; probably does not set up special formatting flags
using the pword() or iword() facilities; almost certainly does not use callback s and
is not tie() ed to anything. In such a cae — which is not unlikely in an embedded
application — it might even need no members at all, and operate by simply sending
string literalsto its outpuit.

A different organization could be to use an array of unions and the pword() /iword()
mechanism to store the data. Ead of the pieces of data listed above is given an index
in an array of unions (possibly several pieces can share asingle union like they shared
just one word in the mnventional setting). Only the pword() /iword() pieces would
not be stored in this array because they are required to accessthe aray. A feaure
never acessed does not get an index and thus does not require any spacein the aray.
The only complication is how to ded with the std:locale | because it is the only
non-POD data. This can be handled using a pointer to the locale's internal
representation.

Depending on the exad organizaion, the gproach will show different run-time
charaderistics. For example, the eaiest approac for assigning indices is to do it on
the fly when the @rresponding data ae initialized or first accessed. This may,
however, result in arrays which are smaller than the maximum index and thus the
access to the aray has to be bounds-chedked (in case of an out-of-bound access the
array might have to be increased; it is only an error to access the corresponding
element if the index is bigger than the biggest index provided so far by

std::ios_base::xalloc()).

An alternative is to determine the maximum number of slots used by the Standard
library at link-time or a sart-up time before the first stream objed is initialized. In
this case, there would be no need to chedk for out-of-bound access to the IOStreams
feaures. However, thisinitialization is more mmplex.

A similar approach can be gplied to the std::locale objects.

Page710of 171

Tecdhnical Report on C++ Performance 03-0012N1430

3.2.7 Library Recompilation

So far, the tedhniques described assume that the gplication is linked to a pre-
padkaged library implementation. Although the library might contain different
variations on some functions, it is gill pre-padkaged (the templates possibly
instantiated by the user can also be mnsidered to be pre-padkaged). However, this
asumption is not necessarily corred. If the source code is available, the Standard
library can also be recompiled.

This leads to the “two phase” building of an application: a first phase, the gplication
is compiled against a "normal”, fully-fledged implementation. The resulting objed
files are aitomatically analyzed for features acually used by looking at the
unresolved references. The result of this analysis is 9me anfiguration information
(possbly a file) which uses conditional compilation to remove all unused features
from the Standard library; in particular, removing wused member variables and
unnecessary code. In the second phase, this configuration information is then used to
recompile the Standard library and the gopli cation code for the final program.

This approach does not suffer from drawbacks due to dynamic determination of what
are dfedively static feaures. For example, if it is known at compile-time which
|OStreams feaures are used, the stream objeds can be organized to include members
for exadly those features. Thus, it is not necessary to use alookup in a dynamicaly
alocaed array of facds, possibly using a dynamicaly assigned index, if the full
flexibility of the 10Streams and Locales architecture is not used by the arrent
application. Also, inthe final compilation phase, it is possible to inline functions that
were not previously inlined (in order to producethe unresolved symbol references).

Page 72 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

4 Using C++ in Embedded Systems

4.1 ROMability

For the purposes of this technical report, the terms “ROMable” and “ROMability”
refer to entities that are gpropriate for placement in Read-Only-Memory and to the
processof placing entities into Read-Only-Memory so as to enhance the performance
of programs written in C++.

There aetwo principal domains that benefit from this process

* Embedded programs that have @nstraints on available memory, where wde
and data must be stored in physicad ROM whenever possible.

* Modern operating systems that suppat the sharing of code and data anong
many instances of a program, or among several programs sharing invariant
code and data

The subjed of ROMability therefore has performance aoplicaion to all programs,
where immutable portions of the program can be placed in a shared, readl-only space
On hosted systems, "read-only" is enforced by the memory manager, while in
embedded systems it is enforced by the physical nature of ROM devices.

For embedded programs in whose environment memory is scarce, it is critical that
compilers identify strictly ROMable objeds and allocae ROM, not RAM, area for
them. For hosted systems, the requirement to share ROMable information is not as
critical, but there ae performance alvantages to hosted programs as well, if memory
footprint and the time it takes to load a program can ke gredly reduced. All the
techniques described in this sdion will benefit such programs.

4.1.1 ROMable Objects

Most constant information is ROMable. Obvious candidates for ROMability are
objeds of datic storage duration that are dedared const and have nstant
initializers, but there ae several other significant candidates too.

Objeds which are not dedared const can be modified;, consequently they are not
ROMable. But these objeds may have constant initializers, and those initiali zers may
be ROMable. This paper considers those atities in a program that are obviously
ROMable such as global const objeds, entities that are generated by the compilation
system to support functionality such as switch statements, and also places where
ROMability can ke goplied to intermediate entities which are not so obvious.

Page 73 of 171

Tecdhnical Report on C++ Performance 03-0012N1430

4.1.1.1 User-defined Objeds

Objeds declared const that are initialized with constant expressions are ROMable.
Examples:

An aggregate (81S-18.5.1) object with static storage duration (81S-3.7.1)
whose initializers are all constants:

staticc onsti ntt ab[]={ 1,2, 3};

Objeds of scalar type with external linkage:

A const-qualified objed of scalar type has internal (81S-7.1.5.1) or no
(81S-3.215) linkage and thus can usually be treated as a wmpile-time onstant,
I.e. objed data aeas are not allocaed, even in ROM. For example:

consti ntt ablesize=4 8
doubl et able[tablesize]; // table hass pace for4 8d oubl es

However, if such an objed is used for initialization or assignment of pointer or
reference variables (by explicitly or implicitly having its address taken), it
requires gorage space ad is ROMable. For example:

externc onsti nta=1 ; /le xternl inkage

consti ntb =1; /i nternall inkage

consti nt*c =&b; /lv ariable b shouldb eall ocated
consti ntt bsize =256; //i ti se xpected that tbsize isn ot

//a |locatedatru n-ti me
charc tb[tbsize]

String literals:

An ordinary string literal has the type “aray of n const char " (8§1S-2.13.4),
and so isROMable. A dtring literal used as the initializer of a charader array
is ROMable, but if the variable to be initialized is not a const-qualified array
of char | then the variable being initialized is not ROMable:

constc har*c onsts 1=" abc"; //b oth sl and abc are RQOwabl e
chars 2[] =" def"; [/ s2 isn ot ROwvable

A compiler may achieve further spacesavings by sharing the representation of
string literalsin ROM. For example:

constc har*s

1=" abc"; //o nlyonecopyof abc needs
constc har*s 2="

' abc"; [//t oexist,a ndi t isR O\Vable

Y et further possibilities for saving spaceexist if a string literal is identical to
the trailing portion of a larger string literal. Storage spacefor only the larger
string literal is necessary, as the smaller one can reference the cmmon sub-
string of the larger. For example:

constc har*s 1=" Hell oWorl d"
constc har*s 2=" Worl d";

/IC ouldbeconsideredt obei nplicitlye quiv al entt o:
constc har*s 1=" Hell oWorl d"
constc har*s 2=s 1+6 ;

Page 74 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

4.1.1.2 Compiler-generated Objeds

Jump tables for switch statements:

If a jump table is generated to implement a switch gtatement, the table is
ROMable, since it consists of a fixed number of constants known at compil e-
time.

Virtual function tables:
Virtual function tables of a classare usually** ROMable.
Type identification tables:

When a table is generated to identify RTTI types, the table is usually*
ROMable.

Exception tables:

When exception handling is implemented using static tables, the tables are
usually?® ROMable.

Reference to constants:

If a congtant expresdon is gedfied as the initializer for a const-qualified
reference, atemporary objed is generated (81S-8.5.3).This temporary objed is
ROMable. For example:

/IT hed eclaration:
constd ouble&a=2 .0;

/IM ayb er epresenteda s:
staticc onstd oublet mp=2 .0; // tnp i sR OMble
constd ouble&a=t np;

If a is declared elsewhere & an extern variable, or if its addressis taken, then
gpacemust be allocated for it. If this happens, @ is also ROMable. Otherwise,
the compiler may substitute a dired reference to tmp (more acarately, the
addressof tmp) anywhere @ is used.

%L Eor some systems, virtual function tables may not be ROMableif they are dynamicaly linked from a shared library

%2 Eor some systems, RTTI tables may not be ROMable if they are dynamically linked from a shared library

2 For some systems, exception tables may not be ROMableif they are dynamically linked from a shared library

Page 750f 171

Tecdhnical Report on C++ Performance 03-0012N1430

Initiali zers for aggregate objeds with automatic storage duration:

If all the initializers for an aggregate objed that has automatic storage duration
are ongtant expressions, atemporary objed that has the value of the cnstant
expressons and code that copies the value of the temporary objed to the
aggregate objed may be generated. This temporary objed is ROMable. For
example:
st ructA{
inta ;
intb ;
intc ;
b
voidt est() {
Aa={ 1,2,3};
}

/IM ayb ei nterpreteda s:

voidt est() {
staticc onstAt nmp={ 1,2,3}; // tnp is RQwble
Aa=t np;

}

Thus, the instruction code for initializing the aggregate objed can be replacal
by a simple bitwise wpy, saving both code space ad exeaution time.

Constants creaed during code generation:

Some literals, such as integer literals, floating point literals, and addresses, can
be implemented as either instruction code or data. |If they are represented as
data, then these objeds are ROMable. For example:

voidt est() {
doublea=r ead_sone_val ue();
a+=1.0;

}

/IM ayb ei nterpreteda s:

voidt est() {
staticc onstd oublet np =1.0; // tnp is ROwable

doublea=r ead_sone_val ue();
a+=t np;

Page 76 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

4.1.2 Constructors and ROMable Objects

In general, const objeds of classes with constructors must be dynamically initialized.
However, in some caes compile-time initialization could be performed if satic
analysis of the constructors resulted in constant values being wsed. In this case, the
objea could be ROMable. Similar analysis would need to be performed on the
destructor.

cl assA {
inta ;
publ i c:
Alintv):a (V){ }

éonstAt ab[2]={ 1,2}

Even if an objed is not dedared const | its initialization “pattern” may be ROMable,
and can be bitwise copied to the at¢ual objed when it isinitialized. For example:

cl assA {
inta ;
char*p ;
publ i c:
} AQ)ta (N{p= "H";}

A not _const;

In this case, all objects are initialized to a constant value (i.e. the pair {7, "HI"}).
This constant initial value is ROMable, and the constructor could perform a bitwise
copy of that constant value.

4.2 Hard Real-Time Considerations

For most embedded systems, only a very small part of the software is truly real-time
critical. But for that part of the system, it is important to exadly determine the time it
takes to exeaute a specific piece of software. Unfortunately, this is not an eeasy
analysis to do for modern computer architedures using multiple pipelines and
different types of caches. Nevertheless, for many code sequences it is gill quite
straightforward to cdculate aworg-case analysis.

While it may not be posshle to perform this analysis in the general case, it is possible
for a detailed analysis to be worked out when the details of the specific architedure
are well understood.

This gatement also holds for C++. Here is a short description of several C++ feaures
and their time predictabil ity.

4.2.1 C++ Features for which Accurate Timing Analysis is
Straightforward

4.2.1.1 Templates

As pointed out in detail in 82.5, there is no additional real-time overhea for calling
function templates or member functions of class templates. On the contrary,

Page 77 of 171

Tecdhnical Report on C++ Performance 03-0012N1430

templates often allow for better inlining and therefore reduce the overhead of the
function call.

4.2.1.2 Inheritance

4.2.1.2.1 Single I nheritance

Converting a pointer to a derived class to a pointer to base class* will not introduce
any run-time overhead in most implementations (82.3). If there is an overhea (in
very few implementations), it is a fixed number of machine instructions (typically
one) and its geead can easily be determined with a test program. This is a fixed
overheal; it does not depend on the depth of the derivation.

4.2.1.2.2 Multiple Inheritance

Converting a pointer to a derived class to a pointer to base classmight introduce run-
time overhead (82.3.5). This overhea is a fixed number of machine instructions
(typically one).

4.2.1.2.3 Virtual Inheritance

Converting a pointer to a derived class to a pointer to a virtual base class will
introduce run-time overhead in most implementations (82.3.6). This overhea is
typically a fixed number of machine instructions.

4.2.1.3 Virtual functions

If the static type of an objed can be determined at compile time, Ccalling a virtual
function may be no more expensive than calling a non-virtual member function. If the
type must be dynamically determined at runtime, the overhead will typicdly be a
fixed number of machine instructions (§2.3.3).

4.2.2 C++ Features for which Real-Time Analysis is More Complex

The following feaures are often considered to be prohibitively slow for hard red-time
code sequences. But this is not always true. The run-time overheal of these features
is often quite small, and even in the real-time parts of the program, there may be a
number of CPU cycles available to spend. If the red-time task is complex, a clean
structure that allows for an easier overall timing analysis is often better than hand-
optimized but complicated code — as long as the former is fast enough. The hand-
optimized code might run faster but is in most cases more difficult to analyze
corredly, and the feaures mentioned below often allow for clearer designs.

24Sucha onversonisalso necessary if afunction that isimplemented in abase classis called for a derived class objed.

Page 78 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

4.2.2.1 Dynamic Casts

In most implementations, dynamic_cast<...> from a pointer (or reference) to base
classto a pointer (or reference) to derived class (i.e. a down-cast), will produce an
overheal that is not fixed but depends on the details of the implementation and there
is no general rule to test the worst case.

The same istrue for crosscasts (82.3.8).

As an alternate option to using dynamic_cast s, consider using the typeid operator.
Thisisa cheger way to ched for the target’ s type.

4.2.2.2 Dynamic M emory Allocation

Dynamic memory allocaion has — in typicd implementations — a run-time overhead
that is not easy to analyze In most cases, for the purpose of real-time analysis it is
appropriate to assume dynamic memory allocaion (and also memory deallocation) to
be non-deterministic.

The most obvious way to avoid dynamic memory allocation is to predlocae the
memory — either staticdly at compile- (or more rrectly link-) time or during the
general setup phase of the system. For deferred initialization, preallocae raw
memory and initiali ze it later using new-placement syntax (81S-5.3.4111).

If the real-time de redly needs dynamic memory allocaion, use an implementation
for which all the implementation details are known. The best way to know all the
implementation details is to write a eistom memory allocaion mechanism. This is
easily done in C++ by providing classspecific operator new and delete functions
or by providing an Allocaor template agument to the Standard Library containers.

But in all cases, if dynamic memory allocation is used, it is important to ensure that
memory exhaustion is properly anticipated and handled.

4.2.2.3 Exceptions

Enabling exceptions for compilation may introduce overhead on each function call
(82.4). In general, it is not so difficult to analyze the overhead of exception handling
as long as no exceptions are thrown. Enable exception handling for red-time «iticd
programs only if exceptions are adually used. A complete analysis must always
include the throwing of an exception, and this analysis wil | always be implementation
dependent. On the other hand, the requirement to ad within a deterministic time
might loosen in the cae of an exception (e.g. there is no nead to handle any more
inpu from a devicewhen a connection has broken down).

An overview of alternatives for exception handling is given in 2.4. But as siown
there, all options have their run-time @sts, and throwing exceptions might still be the
best way to ded with exceptional cases. As long as no exceptions are thrown a long
way (i.e. there ae only a few nested function calls between the throw-expression and
the hander), it might even reducerun-time @sts.

Page 79 of 171

Tecdhnical Report on C++ Performance 03-0012N1430

4.2.3 Testing Timing

For those feaures that compile to a fixed number of machine instructions, the number
and nature of these instructions (and therefore an exad worgt-case timing) can be
tested by writing a simple program that includes just this gecific feaure and then
looking at the aeaed code. In general, for those smple @ases, optimization should
not make adifference But, for example, if a virtual function call can be resolved to a
static function call at compile-time, the overhead of the virtual function call will not
show up in the mde. Therefore it is important to ensure that the program really tests
what it neels to ted.

For the more complex cases, testing the timing is not so easy. Compiler optimization
can make abig difference and a simple test case might produce completely different
machine wde than the real production code. It is important to thoroughy know the
details of the specific implementation in order to tes those caes. Given this
information, it is normally possible to write test programs which produce @de from
which the rrect timing information may be derived.

Page800of 171

03-0012N1430 Tecdhnical Report on C++ Performance

5 Hardware Addressng Interface

As C language implementations have matured over the yeas, various vendor-specific
extensions for accesing kesic I/0O hardware registers have been added to address
deficiencies in the language. Today almost al C compilers for freestanding
environments and embedded systems support some method of dired access to
I/Ohardware registers from the C source level. However, these extensions have not
been consistent aadossdialeds. As a growing number of C++ compiler vendors are
now entering the same market, the same 1/0O driver portability problems bemme
apparent for C++.

As a simple portability goal, the driver source code for some given /O hardware
should be portable to all processor architedures where the hardware itself can be
conrected. ldedly, it should be possible to compil e source @de that operates diredly
on /O hardware registers with different compiler implementations for different
platforms and get the same logical behavior at run-time.

Obviously, interfacedefinitions written in the common subset of C and C++ would
have the widest potential audience, since they would be readable by compilers for
both languages. But the alditional abstradion mechanisms of C++, such as classes
and templates, are useful in writing code & the hardware acces layer. They allow the
encapsulation of features into classes, providing type safety along with maximum
efficiency through the use of templates.

Nevertheless it is an important goal to provide an interface that allows device driver
implementers to write code that compiles equally under C and C++ compilers.
Therefore, this report spedfies two interfaces. one using the ammmon subset of C and
C++ and a second wsing modern C++ constructs. Implementers of the common-
subset style interface might use functions or inline functions, or might decide that
function-like maaos or intrinsic functions better serve their objedives.

A proposed interfacefor addressing 1/0 hardware in the C language is described in:
Tednical Report ISO/IEC WDTR 18037

“ Extensions for the programming language C to suppat embedded
processors”

This interfaceis referred to asiohw in this report. It is included in this report for the
convenience of the reader. If the description of iohw in this report differs from the
description in ISO/IEC WDTR 18037 the description there takes precedence iohwis
also used to refer to both the C and C++ interface where they share mmmon
charaderistics. In paralel with that document, the interfaceusing the cmmon subset
of C and C++ iscontained in a header named <iohw.h>

Although the C variant of the iohw interfaceis based on maaos, the C++ language
provides feaures which make it possible to create dficient and flexible
implementations of this interface while maintaining 1/O driver source code
portability. The C++ interfaceis contained in a header named <hardware> | and its
symbols are placal in the namespace std::hardware

Page8lof 171

Tecdhnical Report on C++ Performance 03-0012N1430

The name is deliberately different, as it is the intention that <hardware> provides
similar functionality to <iohw.h > hut through a different interface and
implementation, just as <iostream> provides parallel functionality with <stdio.h>
through different interfaces and implementation. There is no healer <ciohw>
specified, as that name would imply (by analogy with other sandard library headers)
that the C++ interfaces were identical to those in <iohw.h> but placal inside a
namespace Since maaos do not resped hamespace scope, the implication would be
false and mislealing.

Thisreport provides:

e A general introduction and overview to the iohw interface (85.1)

e A presentation of the mmmon-subset interface(85.2)

e A description of the C++ interface(85.2.5)

» Usage guidelines for the C++ interface (8Appendix A:)

e General implementation guidelines for both interfaces (8A.1)

e Implementation guidelines for the C++ interface(8B.1.7)

* Implementation guidelines and example ade for implementing the cmmon-
subset interfaceon top of the C++ interface(8Appendix C:)

5.1 Introduction to I/O Hardware Addressing

The purpose of the iohw aceess functions defined in the <iohw.h> heaer file is to
promote portability of iohw driver source ®de aaoss different exeaition
environments.

5.1.1 Basic Standardization Objectives

A standardization method for basic iohw addressng must be able to fulfill three
requirements at the same time:

* A standardized interface must not prevent compilers from producing machine
code that has no additional overhead compared to code produced by existing
proprietary solutions. This requirement is essential in order to get widespread
acceptance from the embedded programming community.

e The /O driver source code modules should be completely portable to any
procesor system without any modifications to the driver source @de being
required [i.e. the syntax shoud promote 1/O driver source @de portability
across different exeaition environments .

* A standardized interface should provide an “encapsulation” of the underlying
access mechanisms to alow different access methods, different processor
architedures, and different bus systems to be used with the same /O driver
source code [i.e. the standadization method shoud separate the characteris-
tics of the I/O register itself from the characteristics of the underlying
exeation environment (processor architecture, bus gstem, addresses,
alignment, endianness etc.)].

Page82of 171

03-0012N1430 Tecdhnical Report on C++ Performance

5.1.2 Overview and Principles

The iohw access functions creae asmple and platform independent interfacebetween
I/O driver source code and the underlying access methods used when addressing the
hardware registers on a given platform.

The primary purpose of the interfaceis to separate charaderistics which are portable
and spedfic for a given hardware register — for instance, the register bit width — from
charaderistics which are related to a specific execution environment, such as the
hardware register address procesor bus type and endianness device bus size and
endianness address interleave, compiler access method, etc. Use of this sparation
principle enables I/O driver source ®de itself to be portable to al platforms where the
hardware registers can be mwnneded.

In the driver source @de, a hardware register must always be referred to using a
symbolic name. The symbolic name must refer to a complete definition of the acces
method used with the given register. A standardized 1/0 syntax approach credes a
conceptually simple model for hardware registers:

symbalic name for hardware register = complete definition o the accessmethod

When porting the driver source code to a new platform, only the definition of the
access method (definition of the symbolic name) needs to be updated.

5.1.3 The Abstract Model

The standardizaion of basic iohw addressing is based on an abstrad model with three
layers:

The user's portable source de

The user's1/0 register definitions

The vendor's iohw implementation

The top layer contains the driver source @de written by the compiler user. The
source code in this layer is fully portable to any platform where the hardware device
can be wnneded. This code shall only access hardware registers via the standardized
functions described in this sction. Each hardware register must be identified using a
symbolic name.

The bottom layer is the compiler vendor's implementation of iohw. It provides
prototypes for the functions defined in this sedion and spedfies the various acaess
methods supported by the given procesoor and platform architedure (“access
methods’ refers to the various ways of conneding and addressng hardware registers
or hardware devices in the given procesor architedure).

B.1.2 contains me general considerations that should be aldressed when a wmpiler
vendor implements the iohw functionality.

The middle layer contains the user’s gecification of the symbolic hardware register
names used by the source @de in the top layer. This layer associates the symbolic
names with accessspecifications for a spedfic hardware register on the given

Page 83 of 171

Tecdhnical Report on C++ Performance 03-0012N1430

platform. The syntax notation and accessspedfication parameters used in this layer
are specific to the platform architedure and are defined by the compiler vendor in the
iohw header. The user must updikte these hardware register accessspedfications
when the hardware driver source code is ported to a different platform.

B.1.3 proposes a generic C++ syntax for hardware register accessspedfications.
Using a general syntax in this layer may extend portability to include user’s hardware
register specificaions, so it can be used with different compiler implementations for
the same platform.

5.1.3.1 The Module Set

A typicd device driver operates with a minimum of threemodules, one for eat of the
abstraction layers. For example, it is convenient to locate dl hardware register name
definitions in a separate healer file (called "iohw_ta.h” in this example):

1. Devicedriver module

» Thel/O driver source code
» Portable acosscompilers and platforms
5 Includes <iohw.h> gnd"iohw ta.h "

2. Interface header <iohw.h>

» Defines /O functions and acessmethods
» Typically specific for agiven compiler
» Implemented by the compiler vendor

3. "iohw ta.h "

» Defines symbolic hardware register names and their corresponding access
methods

» Specific to the exeaution environment

» Implemented and maintained by the programmer

These might be used as follows (in the cmmmon subset of C and C++):

#i ncl ude <i ohw. h>
#i nclude" i ohw ta. h" /IImyHWregisterd efi nitionsf ort arget

unsi gned ¢ har m ybuf [10] ;
...

io w (MYPORT1, 0 x8); /lwrite singler egister
for(inti=0 i<l 00 +4)
nybuf[i]=i ordbuf (MYPORT2,i); //r ead registera rray

Page 84 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

In C++:

#i ncl ude < har dwar e>

#include" iohw ta. h" //MyHWregisterd efiniti onsf ort arget.
/1 C ontains:
11 Definitionso fM yPort 1T, M yPort 2T, M yPort 3T
11 the value_type for M/Port3Ti sU CharBuf
11 the value_type for M/Port1Tand MyPort2Ti s
11 unsi gned ¢ har

usi ngn anespace s td: : har dwar e;

st ructU Char Buf {
unsi gned ¢ harb uffer[10];
h

unsi gned ¢ har m ybuf [10];

..

MyPort 1T myPort 1; /1d efineHWregi st ero bject
myPort 1 =0 xO08; /lwritesingle register

MyPor t 2T myPor t 2;
for(inti=0 ;i<1l 0;i ++)

nybuf[i]=m yPort2[i]; [//r eadr egister arrayb ytew se
MyPor t 3T myPor t 3;

UGhar Buf m ybuf Bl ock;
mybuf Bl ock =m yPort 3; /lr eadst hewhol e registera rraya to nce

The programmer only sees the charaderistics of the hardware register itself. The
underlying platform, bus architedure, and compiler implementation do not matter
during driver programming. The underlying system hardware may later be changed
without modifications to the hardware device driver source code being necessary.

5.1.4 Hardware Register Characteristics

The principle behind iohw is that al hardware register charaderistics should be
visible to the driver source @de, while all platform specific charaderistics are
encapsulated by the header files and the underlying iohw implementation.

Hardware registers often behave differently from the traditional memory model. They
may be “read-only”, “write-only”, or “read-modify-write”; often READ and WRITE
operations are only allowed oncefor ead event, etc.

All such hardware register specific dcharaderistics should be visible & the driver
source code level and should not be hidden by the iohw implementation.

5.1.5 The Most Basic Hardware Access Operations
The most common operations on hardware registers are READand WRITE,

Bit-set, bit-clea, and bit-invert of individual bits in an iohw register are dso
commonly used operations. Many procesors have speda machine instructions for
effeding these.

Page850f 171

Tecdhnical Report on C++ Performance 03-0012N1430

For the anvenience of the programmer, and in order to promote good compiler
optimization for hit operations, the basic logical operations OR AND, and XORare
defined by iohw in addition to READ and WRITE,

All other arithmetic and logicd operations used by the driver source code can be built
on top of these few basic operations.

5.1.6 The access -specification

The access-spedfications defined in "iohw_ta.h” are used only as parameters in the
functions for defining hardware register access

Editor's Note: Is thisthe corred header name? It's better to be spedfic than to use
the amorphous iohw everywhere.

The access-spedfication parameter represents or references a mmplete description of
how the hardware register should be aldressed in the given hardware platform. It is
an abstrad datatype with a well-defined behavior®.

The specification method and the implementation of access-spedfications are
procesor and platform specific.

In general, an accessspedfication will specify at least the following charaderistics:

* Logical register size (mapping to a datatype)
» Access limitations (read-only, write-only)
* Busaddressfor register

Other accesscharaderistics typically specified via the access-spedfication:

* Processor bus (if more than one)

» Access method (if more than one)

» Hardware register endianness (if register width is larger than the device bus
width)

* Interleave fador for hardware register buffers (if device bus width is smaller
than the procesor bus width)

e User supplied accessdriver functions

The definition of a hardware register objed may or may not require an objed to be
instantiated in memory, depending on how a mpiler vendor has chosen to
implement accessspedfications. For maximum performance, this could be asimple
definition based on compiler-specific address range and type qualifiers, in which case
no objed of an access spedfication type would be needed in data memory.

Seealso Appendix B: for further detail s and implementation considerations.

= Thisuse of an abstract data typeis smilar to the philosophy behind the well-known FILE typein C. Some general properties

for FIL E and streams are defined in the Standard, but the Standard del iberately avoids describing how the underlying file system
should beimplemented.

Page 86 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

5.1.7 The access -base-specification

Often hardware registers are only portable between platforms as a single physical
entity®®. In such cases it is often convenient to make all the hardware register access
spedfication definitions relative to a single accessbase-spedfication common to all
registersin the physicd entity.

When defining one or more registers as based in this way, the access-spedfication for
the individual registers must a least identify the accessbase-spedfication plus a
logical offset relative to it. The properties of the logical offset are given in the context
of the accessbase-spedfication.

The use of based register definitions should be encapsulated in the two lower layers of
the abstrad model for hardware register access and should therefore not be visible to
the user driver source code.

However, if the acessbase initialization is completed at run-time, it must be possible
to define in the user driver code when such initialization should or may take place
The iohw interface defines three functions for initialization, assignment, and eventual
release of acaess bases. The accessbase-spedfications defined in the header
<iohw.h> are used only as parameters in these functions.

5.1.7.1 Combined access-specification and access-base-specification
Characteristics

When based register definitions are used, the hardware register access charaderistics
are given by the cmmbined charaderistics of accessspedfication and access-base-
spedfication. The total acces charaderistics are divided in such a way that
charaderistics given by the hardware register are defined by access-spedfication and
charaderistics related to the processor and platform are defined by the access-base-
spedfication.

With based register definitions, an accessspecification definition will generally
specify at least the following hardware register and hardware device charaderistics:

Logical register size (mapping to a datatype)

Logical offset relative to accessbase-specification

Access limitations (read-only, write-only)

Hardware register endianness (if register width is larger than the device bus
width)

* Interleave fador for hardware register buffers (if device bus width is smaller
than the bus width defined by access-base-specification)

26 For ingtance hardware registersin a chip, an FPGA cell or aplug-in baard

Page 87 of 171

Tecdhnical Report on C++ Performance 03-0012N1430

The access-base-spedfication will, in general, define the following platform related
charaderigtics:

» Busaddressfor accessbhase-spedfication

* Processor bus (if more than one)

» Access method (if more than one)

» Platform specific acessdriver functions (if any)

5.1.7.2 Virtual Addressng

A property of acessbases is that they creae their own virtual addressng range, and
that all hardware register accessmust take placein a context given by the acessbase.

This concept gives a high degree of freedom and flexibility when implementing the
two lower layers of the abstrad model for hardware register access

The acces base @n be asimple pointer, in which case the acess base @ntext is
inherited from the underlying platform, or the accesbase an be implemented by use
of access functions, in which case any virtual access base mntext can be aeaed.

An implementation can elaborate this further, for instance, by enabling wse of nested
access functions. One perspedive of such afeature isthat the iohw interfaceitself can
be used by the device driver programmer to creae access functions, which are then
used as the accss base for accessspedfications in other parts of the user source code.

5.2 The C Interface <i ohw. h>

The header <iohw.h> declares sveral function-like maaos which together create a
datatype-independent interfacefor basic hardware register addressing.

The iohw interface is described here in terms of function-like maaos. An
implementation is allowed to implement the interface by use of inline, template, or
intrinsic functions and still be wnforming, as long as the interfaceseen from the user
sourceremains the same.

5.2.1 Function-Like Macros for Single Register Access
Synopsis

#i ncl ude <i ohw. h>

io rd(a ccess_spec)

io w (a ccess_spec,v al ue)
io or (a ccess_spec,v al ue)
io and(access_spec,v al ue)
io xor (access_spec,v al ue)

Description

These names map an iohw register operation to an underlying (platform specific)
implementation which provides acaess to the hardware register identified hy
access_spec , and perform the basic operations READ WRITE OR AND or XOR as
identified by the function name on this register.

Page 88 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

The data type (the hardware register size) for value parameters and the value returned
by iord is defined by the access_spec definition for the given register. The
function-like magosiowr oo r ioan d andioxor do not return avalue.

It is a requirement that a given hardware register is addressed exadly once during a

READor WRITE gperation and exactly twice?” during the read-modify-write operations
OR AND or XCR,

5.2.2 Function-Like Macros for Register Buffer Access
Synopsis

#i ncl ude <i ohw. h>

io rdbuf (a ccess_spec,
io w buf (a ccess_spec,
io or buf (a ccess_spec,
io andbuf (access_spec,
io xor buf (access_spec,

ndex)

ndex, v al ue)
ndex, v al ue)
ndex, v al ue)
ndex, v al ue)

Description

These names map an iohw register buffer operation to an underlying (platform
specific) implementation which provides access to the hardware register buffer
identified by access_spec | and perform the basic operations READ WRITE, OR ANDor
XORas identified by the function named on this register.

The data type (the hardware register size) for value parameters and the value returned

by iordbuf js defined by the access_spec definition for the given hardware register.
iowrbuf ioorbu f ioandbu f gndioxorbuf donot return avalue.

The index parameter is an off set in the register buffer (or register array) starting from
the hardware register location specified by access_spec | where element O is the first
element locaed a the aldressdefined by access_spec | and element n+1 is locaed at
a higher addressthan element n.

It should be noted that the index parameter is the offset in the hardware register
buffer, not the processor addressoffset. Conversion from alogical index to a physical
address requires that interleave alculations are performed by the underlying
implementation. Thisis discussed further in B.1.2.2.

It is a requirement that a given hardware register is addressed exadly once during a

READor WRITE gperation and exactly twice during the read-modify-write operations
OR AND or XCR,

27 As seen from the device register, this requirement is independent of whether the read-modify-write operation is made by a
single read-modify-write processor instruction or by separate read and write processor instructions.

Page89 of 171

Tecdhnical Report on C++ Performance 03-0012N1430

5.2.3 Function-Like Macros for access-base-specification
Initialization

Synopsis
#i ncl ude <i ohw. h>

io _abs_i ni t(access_base_spec)
io _abs_rel ease(access_base_spec)

Description

io_abs_init maps to an underlying (platform specific) implementation, which
provides any access-base-specification initialization before performing any other
operation on the hardware register (or set of hardware registers) identified by
access_base_spec ., A call to io_abs_init should be placed in the driver source
code =0 that it is invoked exactly once before aty other operations on the related
registers are performed. io_abs_init does not return a value.

io_abs_release maps to an underlying (platform specific) implementation which
releases any resources obtained by a previous call to io_abs_init for the same
accesshase-spedfication. A call to io_abs_release should be placel in the driver
source code S0 it is invoked exadly once after all operations on the related registers
have been completed. io_abs_release does not return a value.

Example

In an implementation for a hosted environment, the ll to io_abs_init is used to
identify the point in an exeaution sequence where the underlying acess method
should obtain, or have obtained, a handle from the operating system. This handle is
used in al following aacess operations on hardware registers based on this access-
base-spedfication. The all to io_abs_release identifies the point in an exeaution
sequence where the handle an be returned to the operating system.

5.2.4 Function-Like Macros for access-base-specification Re-
Mapping

Synopsis
#i ncl ude <i ohw. h>

io _abs_remap(access_base_specd est,a ccess_base_specs rc)

Description

io_abs_remap maps to an underlying (platform spedfic) implementation, which
initializes the acess information of the destination access_base_spec with acaess
information taken from the source access_base_spec ., The two parameters must
have mmpatible access-base-spedfication types. The parameter dest must be an
Ivalue. The parameter src must be anrvalue. io_abs_remap does not return avalue.

io_abs_remap can only be used with systems and implementations where the aldress
can be initialized a run-time. If the src and dest accessbase-spedfications are

Page900of 171

03-0012N1430 Tecdhnical Report on C++ Performance

incompatible, or the src accessbase-spedfication cannot be initialized at run-time, a
compile-time diagnostic is required.

Example

This example illustrates me simple @ses of the underlying semantics for
io_abs_remap

/IS oneaccessb ases
#define AddrA ((uint8_t*)0x23456)

uint8 t* get_os_base(void);

uint8 t* base_a;
uint8 t* base_b;

/I'S onmei nmplenentations pecificoru sers pecifi ca ccessb asef unction
voids et _nmy_base(uint8_t*b ase);

/IE xanpleso fs omeunderlyingf unctionality of io_abs_remap(...)

IIT hef ollowings tatementsc oulde achb et he resultingc odea fter
/le xpansionof io_abs_remap(...)

base_a=A ddrA /1l nitializewi thac onstanta ccessb ase
base_b=g et_os_base(); /1l nitializevi a anaccessh asef unction
base_a=b ase_b; /1l nitializefr omav ariableb ase
set_ny_base(Addr A) ; /1l nitializewi thac onstanta ccessb ase
set_ny_base(get_os_base()); //1 nitializevi a anaccessb asef unction
set_ny_base(base_a); /1l nitializefr omav ariablea ccessb ase
/I llegala ccessb asedefinitionsr esulti n errorsatc onpile-ti ne.
Addr A =b ase_a; /1E rror,l eft operandmustb ean Ivalue
get _os_base()=b ase_b; /1E rror,l eft operandmust bean Ivalue
Example

A typicd use for io_abs_remap and access_base_spec is when a set of driver
functions for a given hardware devicetype ae used with multiple hardware instances
of the same device

Editor's Note: Asuint8_t isn't currently part of Sandad C++, shoud we add a noe
referringto C's gdint.h or a compatible definition? We already have
something likethisin 5.3.2 for the <hardware> interfaces.

#i ncl ude <i ohw. h>
#i nclude" iohw ta.h" /[//M YDEV_CFGand MYDEV_DATAared efi ned
/lr elativet oad ynamic MYDEV_BASE

/IP ortabledriverf unction
uint8 tmy_device_driver(void)

i owr (MYDEV_CFG 0 x33);
returni ord(MYDEV_DATA) ;

}

/I'U sersdrivera pplication
uint8_t di;

uint8_t dz;

Page91of 171

Tecdhnical Report on C++ Performance 03-0012N1430

/IR eadf rombothd evices

io _abs_remap(MYDEV_BASE,D EV1); //S el ectd evicel
dl=m y_device_driver();

io _abs_remap(MYDEV_BASE,D EV2); //S el ectd evic e2
d2=m y_device_driver();

Use of io_abs_remap and accessbase-spedfications often provide a faster
alternative than passing an access_base_spec as a function parameter.

Another advantage of using io_abs_remap s that the driver function itself (for a
device) can be written without any prior knowledge about whether the driver will be
used with only a single device (address defined at compile-time) or with multiple
devices (addresses defined at run-time). This can be seleded later a a higher level.
In both cases the same source code can generate machine ade which has maximum
performance.

5.2.5 Information Required by the Interface User

In order to enable adriver library user to define the accessspedfication and access
base-spedfications for a particular platform, a portable driver library based on the
iohw interface should (in addition to the library source @de) provide & least the
following information:

» All symbolic names for the deviceregisters used by the library
* Device and register type information for all symbolic names:

Logical bit width of the deviceregister

Theregister type — single register or aregister buffer

Bit width of the device data bus

Relative aldress offset of registers in the device (if the device @ntains
more than one register)

Endianness of the device (if the register has a width larger than the device
bus)

e If run-time initialization of dynamic addresses is required, i.e. io_abs_remap
isused by the library

YV VY

Y

5.3 The C++ Interface <har dwar e>

The programming model behind these definitions is described in 5.1.3. The header
<hardware> defines an interface for two layers of that model, the top layer for the
portable source code and the middle layer for the device register definitions. This is
notably different to the C interface described in 5.2.

The header <hardware> declares sveral types, which together provide adata-type-
independent interface for basic iohw addressng.

Page 92 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

Header <har dwar e> synopsis:

namespaces td {
namespace h ar dwar e {
#include" stdint.h" //s ee§5.3.2

structh w base{. ..}

/lr equireda ccesst ypes

tenpl at e < t ypenane Val ueType,
typenane h w_base: : access_male node,
typenanme h w_base: : address_type address,
typenane h w_base: : devi ce_bus devW dt h,
typenanme h w_base: : byte_order endi an,
typenanme h w_base: : processor _busn ati veW dt h>

classmmdi rect _address;

/1] otherss tillmissing]
tenpl ate<typenanea c_type>
cl assr egi ster_access;
} //n anmespace h ar dware
} //n anespaces td

| Editor's Note: Does the "others gill missng” comment till apply?

5.3.1 The Class Template r egi st er _access

Editor's Note: We could use some text here exlaining the class and where it fitsin
the abstraction model. And why we are providing redundar access
methodk. :-)

Synopsis

te npl ate<typenanea c_type>
cl assr egi ster_access

{

private:
structr ef_
{

/1 inplenentation-defined constructor(s)g ohere
operatorv al ue_type()c onst;

voido perator= (value_typev al);

voido perator| =(value_typev al);

voido perator& =(value_typev al);

voido perator™ =(value_typev al);

/1F unction-stylei nterface
val ue_typer ead()c onst;
voidwrite(val ue_typev al);
voido r_wi th(val ue_typev al);
voida nd_wit h(value_typev al);
voidx or_with(value_typev al);

Page 93 of 171

Tecdhnical Report on C++ Performance 03-0012N1430

publ i c:
typedeft ypenanea c_type::value_typev alu e_type;

operatorv al ue_type()c onst;

voido perator= (value_typev al);
voido perator| =(value_typev al);
voido perator& =(value_typev al);
voido perator™ =(value_typev al);

ref_operator[](size_ti ndex);
ref_operator[](ptrdiff_ti ndex);

/IF unction-stylei nterface
val ue_typer ead()c onst;
voidwrite(val ue_typev al);
voido r_wi th(val ue_typev al);
voida nd_wit h(value_typev al);
voidx or_with(value_typev al);

ref_get_buffer_el ement(size_ti ndex);
Description

struct ref_;
* Provides the same overloaded operators as register_access to adlow the
same operations™.

class register_access<...>
* Provides dired accessto hardware registers. This defines the interfacefor the
top layer as described in 5.1.3.

typename ac_type
* The agument to the template-parameter ac_type must be an instantiation of
an accessspecification template type (or a plain class) provided by the
implementation.

ac_type::value_type value_type
* Namesthevalue_type of the access-spedfication.

operator value_type() const
value_type read() const

* Providesreal access to the hardware register.
void operator = (value_type val)
void write(value_type val)
e Writesthevalue_type argument val to the hardware register.
void operator |= (value_type val)
void or_with(value_type val)
* Bitwise ORsthe hardware register with the value_type argument val .
void operator &= (value_type val)
void and_with(value_type val)
e Bitwise ANs the hardware register with the value_type argument val .

28 Note: The name €f _ is here given for ill ustration purposes only. The actual implementation may use a different name.
This name shall not be used drectly by the user.

Page 94 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

void operator "= (value_type val)
void xor_with(value_type val)

* Bitwise XORsthe hardware register with the value_type argument val .

Note: The return types for al assignment operators is void to prevent assignment
chaining that could inadvertently cause considerable harm with device registers.
ref _operator [] (size_t index)

ref operator [] (ptrdiff_t index)
ref get buffer_element(size_t index)

* Returnsthe equivalent of areferenceto the locaion specified by index inside
of the deviceregister. The return value can be used like aregister_access
objed, i.e. it can be written, read, and the bitwise OR AND and XORcan ke
applied to it. The subscript operator is explicitly provided for signed and
unsigned indices®.

5.3.2 Header "stdint.h"

The header <stdinth> is gecified by C99 (IS 98993199), and is not part of the
C++ Standard. Instead, the implementation defined header "stdint.h" included by
<hardware> introduces the fixed size integer types described by <stdinth> into
namquacestd::hardware

No names are introduced into global namespace.

5.3.3 The struct hw base

Editor's Note: We could use some text here exlaining the class and where it fitsin
the abstraction model.

Synopsis

nanespaces td {
nanespace h ardwar e {
structh w_base

{

enum access_node {r andomr ead_write,write,r ead} ;

enumdevi ce_bus {d evice8, devic els6,
devi ce32,d evic e64};
enum byt e_order {msb_l ow,m sb_high}

enum processor_bus{b us8,b usl6, bus32,b us64} ;

/1o nlyi dentifierss houldbepresentt hata res upported
//b yt heunderlyingi nplenmentation -- diagnosticr equired
typedef inplenmentation-defined addre ss_type;

} /in amespace h ar dware
} //n anespaces td

Description

Editor's Note: Shoud we recommend atypical set of enum valuesto seled from?

29 ¢ value_type g any kind of painter, overload resolution can result in an unexpected call to the converson operator,
followed by the selection of the built-in subscript operator rather than the member subscript operator provided. Thisis not an
issue for functions, so the equivalent function 9et_buffer_elemen t jspot overloaded.

Page950of 171

Tecdhnical Report on C++ Performance 03-0012N1430

struct hw_base
* Provides the names for the supported hardware dtharaderistics. Only those
names that are suppated by the hardware shall be present.

enum access_mode
» Definesthe possible modes for accessing a deviceregister.

enum device_bus
» Defines the names for the width of the hardware register device bus as sen
from the processor.

enum byte_order
» Definesthe names for the endiannessof the deviceregister.

enum processor_bus
» Definesthe names for the width of the procesor bus.

address_type
* Isanintegral type specified by the gplicaion to hold a hardware aldress

An implementation may define alditional names and types in hw_base ,

5.3.4 Common Specifications for access-specification Types
typename ValueType
» All access-spedfication template types have a least a ValueType parameter.

The agument for this parameter shall be an Assignable and
CopyConstructible type.

* The aguments for ValueTyp e are not redtricted to integral values. [eg. it
makes perfed sense for ValueType to be doubl e or long double when
accessng anexerna floating-point co-processor. It might even be useful
sometimes to havea user-defined struc t gs ValueType]

e The memory location of an objed of the ValueType argument shall be freely
readable and writeable (as required by the acess operations) by the
implementation of this interface [Note: this requirement esentially disall ows
other hardware registersor types. Also, their value might be changed through
the implementation by dired memory access instead d any (possbly
overloaded) assgnment operators]

* Most of the accessspedfication types have a @mmon set of template-
parameters, which are specified as follows:

hw_base::access_mode mode
» Definesthe acessmode of the deviceregister.

hw_base::device bus devWidth
» Definesthe width of the deviceto be accesd as sen by the processor.

* However, sizeof(ValueType) must be anatural multiple of devwidth

hw_base::byte _order endian
» Defines whether the device dtached to the bus is to be accesed as little-
endian or big-endian.

Page 96 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

hw_base::processor_bus nativeWidth
» Definesthe width of the processor bus.

* All access-spedfication types may have alditional template-parameters
specified by the implementation. The implementation may also define default
arguments for some of the template-parameters. [eg. on segmented
architedures there might be an addtiond segment parameter]

5.3.5 Access Methods

5.3.5.1 TheClassTemplate struct nmm. direct_address

Editor's Note: We @uld use some text here exlaining the class and where it fitsin
the abstraction model.

Synopsis

/It equireda ccesst ypes
te mpl ate < typenane V al ueType,

hw_base: : access_node node,
hw_base: : address_t ype addr ess,
hw_base: : devi ce_bus devW dt h,
hw_base: : byt e_or der endi an,

hw_base: : processor _bus nati veW dth>
st ructm m di rect _address

typedefV al ueTypev al ue_type;

tenpl ate < hw_base: : address_type o t her _addre ss>s tructr ebind

{

typedefm m direct _address<val ue_type,
node,
ot her _addre ss,
devW dt h,
endi an,
nati veW dth > ot her;

h

Description
mm_direct_address
» Definesthe accessspedfication type for deviceregisters for which the aldress
is known at compile-time and the registers are diredly mapped to the memory
bus.

hw_base::address_type address
e The agument address shall be the atual addressof the device register to be
accessed by this accessspecification type.

typedef ValueType value_type
* Holdsthe ValueType template-parameter.

struct rebind<...>::other
* This is a type with the same hardware ctharaderistics but a different device
register address

Page 97 of 171

Tecdhnical Report on C++ Performance 03-0012N1430

Page 98 of 171

03-0012N1430 Tecdhnical Report on C++ Performance

Appendix A: Guidelinesfor Using the
lohw | nterfaces

A.l1 Usage Introduction
The design of the C++ iohw interface follows two lines of separation between:

» Thedefinition of access-spedfications and the device driver code
e What isknown at compile-time and what is only known at run-time

Unfortunately, these two lines of separation are neither orthogonal nor identical; for
example, the base aldress for base/offset addressing is only known at run-time, but
belongs to the access spedfication.

As C++ is a typed language, the differences for the interface ae in the type system,
and therefore the main separation line for the interface definition itself is between
what is datically known at compile-time (which becmes template aguments to
types) and what is only known at run-time (which becomes function arguments or
operator operands to the interface of register_access),

A.2 Using access-specifications

accessspedfications gecify how a given device register can be accesed. As sich,
they are mainly implementation defined entities, as these acess details vary widely
over different platforms. But there ae some aspeds that accessspedfications have in
common:

e Templateswith at least ValueType astemplate-parameter
e Exposing this ValueType argument as typedef value_type

e A class template rebind to provide a simple way to define access
spedfications that differ from an existing one only in a specific aspect
(typically the hardware addresy

Also, on platforms where they are available, the names of some access-spedfication
templates are pre-defined:

o mm_direct_address for memory-mapped addreses that are known at
compile-time.

This has at least five template aguments. ValueType, mode (real, write, €c.),
address devWidth, endianness and nativeWidth. So on some platforms the
user should be aleto define aspecific hardware port like this:

Page 99 of 171

Tecdhnical Report on C++ Performance 03-0012N1430

ty pedefm m di rect _address<ui nt8_t,
hw_base: : read,
0x12345678,
hw_base: : devi ce8,
hw_base: : msb_hi gh,
hw_base: : bus32
..> InPorti;

A smilar accessspedfication template io_direct address exists for
addresses on the I/O bus.

o general_address jsnot actualy defined in the C++ interface, but provided in
the sample implementation. It provides a very general access-spedfication for
al kinds of addressing methods, including different processor busses, multi-
part memory addresses, dynamic base aldresses and user-supplied functions.

As drealy said, these template-parameters are platform dependent and can vary
widely for more exotic platforms. Even the address parameter might vary; for
example, on a segmented addressing architedure there might be two parameters for a
segment and an off set addressinsteal of asingle aldressparameter.

If there alrealy exists a quite daborate type definition ComplexPortA for a specific
deviceregister with lots of template aguments and now another one is required with
the same charaderistics that differsonly in its hardware aldress this can be done with
therebind template:

ty pedef C onpl exPort A: : rebi nd<0x9876>: : ot her Conpl exPort B;

A.2.1 Using access -specifications with Dynamic Information

Some access-spedfications may require alditional information that is not available &
compile-time. For those accessspedfications, the accessspecification template
defines an additional parameter for the type of the dynamic data. The properties of
this type ae defined by the implementation, but the type itself is provided by the user
to allow user-control of the initialization.

For example. an implementation might provide ageneral_address for which the
dynamic data type must provide apublic member function value() with the return
type unsigned long | Then the user can provide a orresponding class

st ruct D ynAddr essPort DA
DynAddressPort DA():v al (gl obal Base+0x120) {}

unsi gned! ongv al ue()c onst{ /s omecompli catedc al cul ation
/Ib ased on thec urrentm odeo f
/1t heprocessor

}
unsi gned! ongv al;
ty’/ pedefg eneral _addr ess<ui nt 32_t,

hw_base: : random
DynAddr essPort DA> Port DA t;

Here, the initialization of the dynamic datais provided by some global variable.

Page 1000f 171

03-0012N1430 Tecdhnical Report on C++ Performance

In a different case, the wnstructor might require an argument. Therefore some
initialization code must provide that argument. But the mechanics of the initialization
are always left to the user to choose the best fitting method.

A.3 Hardware Access

All hardware accss is provided through the class template register_access | For
accessspedfications that require no dynamic information the respedive
register_access objeds contain no data and therefore ae optimized completely out
of existence by most compilers. A typical usage might be:

/Id efineda ccess-specificationswithValueType=u int8_t:

1l I nPort, O utPorta nd Control Port
re gi ster_access<InPort > i p;
re gi st er_access<Qut Port > op;

re gi ster_access<Control Port>c tl _p;

unint8_tt nmp=i p; /lr eadf roml nPort, uses

/lr egister_access::operatorv alue_type();
op =0 x12; //writet oOutPort, uses

/lr egister_access: :operator=(val ue_type);
ctl_p| =0 x34,; /ls etb its5,4a nd 2 inControl Port

As the register_access objea is empty, there is no real neal to define these
objeds, but it is also possible to use temporary objeds creaed on the fly. The
example above would then become:

/Id efineda ccess-specificationswithValueType=u int8_t:

1l I nPort, O utPorta nd Control Port
ty pedefr egi ster_access<|nPort > i p;
ty pedefr egi ster_access<Qut Port > op;

ty pedefr egi ster_access<Control Port>c tl _p;

uintg8_tt mp=i p(); //r eadf romlnPort, uses

/lr egister_access::operatorv alue_type();
op() = 0x12; //writet oOutPort, uses

/lr egister_access: :operator=(val ue_type);
ctl_p()| =0x34; /ls etb its5,4a nd 2 inControl Port

But this is a rather unnatural syntax and is generally not necessary as compilers are
usually smart enough to optimize avay the objeds from the first example.

Page 1010f 171

Tecdhnical Report on C++ Performance 03-0012N1430

A.3.1 Indexed Access

register_access allows not only for acces to single registers, but also for register
blocks. The ValueType parameter of the accessspedfication denotes in this case the
type of a single register and the aldressis the base address(index 0). The registersin
the block can then be addressed through the subscript operator:

/la ssuner egisterb lockPortBufferwithr andomaccess

re gi ster_access<Port Buffer>p ort Buf;
uint8 tb uf[sz];

port Buf [0] & =0 x03;
port Buf[1] = sz-2;

for(inti =2;i! =sz;+ +)
buf[i]=p ortBuf[i];

If a full register block is always to be accesd, a respedive ValueType can hbe
defined:
structB uffer32{u int8_td ata[32];} ;
ty pedefi o_direct_address<Buffer 32,
hw_base: : random
0x35800,
...> XYBIl ock;
re gi st er _access<XYBl ock>b | ockBuf;
Buf f er 32t npBl ock;

tmpBl ock=b | ockBuf; //r eadwholeb |lockat once

The binary layout of the ValueType must match the register block, which is normally
only guaranteed for PODs. If the register block has a mmplex layout (e.g. mix of
different datatypes), the ValueType can be a orrespondingly complex struct

A.3.2 Initialization of r egi st er _access

For datic accessspedfications that are fully specified a compile-time
register_access provides only a default constructor (in these cases there is nothing
to construct). But if the access-spedfication contains dynamic data, this must be
initialized at run-time. For those cases, register_access provides a constructor that
takes the dynamic data part of the access-spedfication as parameter. How this
dynamic type is initialized is under control of the user, as explained above. So,
regarding the examples from above, the initialization can either be:

re gi ster_access<Port DA t>p ort DA=D ynAddr ess Port DA() ;

or
re gi ster_access<PortDB t>p ort DB=D ynAddr ess Port DB(port DBCO fset) ;

Page 1020f 171

03-0012N1430 Tecdhnical Report on C++ Performance

Appendix B: Implementing the iohw
|nterfaces

B.1 General Implementation Considerations

B.1.1 Purpose

iohw defines a standardized function syntax for basic hardware aldressing. The
interface @n either be provided by a library vendor or by the compiler vendor. If it is
provided by the compiler vendor, it can contain special “compiler magic” that may be
necessary to access pecial hardware with special addressng needs (or it might just
provide better performance).

While astandardized syntax for basic hardware aldressing provides a simple, easy-to-
use method for a programmer to write portable and hardware-platform-independent
driver code, the iohw header itself may require caeful consideration to achieve an
efficient implementation.

This dion gives sme guidelines for implementers on how to implement iohw in a
relatively straightforward manner given a specific processor and bus architedure.

B.1.1.1 Recmmended Steps
Briefly, the reeommended steps for implementing the iohw headers are:

» Get an overview of all the possible and relevant ways the hardware register is
typically conneded with the given bus hardware achitectures, and get an
overview of the basic software methods typically used to address sich
hardware registers.

» Define anumber of functions, maaos and access-spedfications which support
the relevant hardware accesmethods for the intended compiler market.

* Provide away to seled the right accessfunction at compile-time and generate
the right machine mde based on the accessspecification type or the access
spedfication value.

B.1.1.2 Compiler Considerations

In pradice an implementation will often require that very different machine wde is
generated for different hardware acces cases. Furthermore, with some processor
architeaures, hardware register accesswill require the generation of special machine
instructions not typically used when generating code for the traditional C or C++
memory model.

Seledion between different code generation alternatives must be determined solely
from the access-spedfication declaration for ead hardware register. Whenever
possible, this acess method seledion should be implemented such that it may be

Page 1030f 171

Tecdhnical Report on C++ Performance 03-0012N1430

determined entirely at compile-time in order to avoid any run-time or machine mde
overhea.

For a compiler vendor, selection between code generation alternatives can always be
implemented by supporting different intrinsic access-spedfication types and
keywords designed specially for the given processor architedure, in addition to the
Standard types and keywords defined by the language.

However, with a mnforming C++ compiler, an efficient, al-round implementation of
both the C and C++ interface headers can usually be achieved using the C++ template
functionality (see also 85.2 and 8B.1.3). A template-based solution alows the
number of compiler specific intrinsic hardware acces types or intrinsic hardware
access functions to be minimized or even removed completely, depending on the
procesor architedure.

For compilers not supporting templates (such as C compilers) other implementation
methods must be used. In any case, at least the most basic iohw functionality can be
implemented efficiently using a mixture of maaos, inline functions and intrinsic types
or functions.

For many architedures, fully fedured, zero-overhead implementations of iohw can be
adhieved wsing templates. An approach is discussed in 85.2.5. Nevertheless fully
feaured iohw implementations for a number of architedures will usually require
dired compiler support.

B.1.2 Overview of Hardware Device Connection Options

The various ways of conneding an external device's register to procesor hardware
are determined primarily by combinations of the following three hardware
charaderigtics:

» The bit width of the logical device register
» The bit width of the data-bus of the device
* The hit width of the procesor-bus

B.1.2.1 Multi-addressng and Device Register Endianness

If the width of the logicd deviceregister is greaer than the width of the device data
bus, a hardware acess operation will require multiple @nseaitive aldressng
operations.

The device register endianness information describes whether the most significant
byte (MSB) or the least significant byte (LSB) byte of the logical 1/0O register is
located at the lowest procesor bus address

[Note: while this dion ill ustrates architedures that use 8-bit bytes and word widths

that are factorable by 8, it is nat intended to imply that these are the only possble
architedures,]

Page 1040f 171

03-0012N1430 Tecdhnical Report on C++ Performance

[The device register endianressis nat couded to the endianress of the underlying
processor hardware architedure.]

TableB-1: Logical 1/0 register / 1/0O device addressng overview>°

Device buswidth

Logical)])] . . .)
register width 8-bit device bus 16-bit device bus 32-bit device bus 64-bit device bus
LSB-MSB MSB-LSB LSB-MSB MSB-LSB LSB-MSB MSB-LSB LSB-MSB MSB-LSB

8-bit register Direct n‘a n‘a n‘a

16-bit register | r8{0-1} rg{ 1-0} Direct n/a n/a

32-bit register | r8{0-3} r8{3-0} | ri6{0-1} | r16{1-0} Direct n/a

64-bit register | r8{0-7} | r8{7-0} | r16{0-3} | ri6{3-0} | r30-1} | r32{1-0} Direct

(For byte-aligned address ranges)

B.1.2.2 Address Interleave

If the size of the device data bus is less than the size of the processor data bus, buffer
register addressing will require the use of addressinterleave

For example, if the procesor architedure has a byte-aligned addressing range with a
32-bit processor data bus, and an 8-bit device is conneded to the 32-bit data bus, then
three aljacent registersin the device will have the processor addresss.

<addr+0 >,< addr+4 > < addr+8 >

This can also be written as

<addr+ interleave*0> < addr+ interleave*1> <addr+ interleave*2>

where interleave = 4.

Table B-2: Interleave overview: (busto businterleave reationship)

Processor buswidth
Device buswidth
8-bit bus 16-bit bus 32-bit bus 64-bit bus
8-bit device bus interleave 1 interleave 2 interleave 4 interleave 8
16-bit device bus n/a interleave 2 interleave 4 interleave 8
32-bit device bus n/a n/a interleave 4 interleave 8
64-bit device bus n/a n/a n/a interleave 8

(For byte-aligned address ranges)

30 This table describes some mmmon bus and register widths for 1/0 devices. A given hardware platform may use other register
and tuswidths.

Page 1050f 171

Tecdhnical Report on C++ Performance 03-0012N1430

B.1.2.3 Device Connedion Overview

A combination of the two tables above shows all relevant cases for how device
registers can be mwnneded to a given procesor hardware bus:

TableB-3: Interleave between adjacent 1/O registersin buffer

Devicebus Processor data buswidth
Register No. | Wdth=8 | Width=16 | Width=32 | Width=64
width LSB
Wdth M8 Oper-
ations. sizel size2 size4 size8
8-hit 8-hit n/a 1 1 2 4 8
LSB 2 2 4 8 16
. 8-hit
16-bit MSB 2 2 4 8 16
16-hit n/a 1 n/a 2 4 8
LSB 4 4 8 16 32
8-hit
MSB 4 4 8 16 32
32-bit LSB 2 na 4 8 16
16-hit
MB 2 n/a 4 8 16
32-hit n/a 1 n/a n/a 4 8
MSB 8 8 16 32 64
8-hit
LSB 8 8 16 32 64
LSB 4 n‘a 8 16 32
] 16-hit
64-bit MSB 4 na 8 16 32
LSB 2 n/a n/a 8 16
32-bit
MSB 2 n/a n/a 8 16
64-hit n/a 1 n/a n/a n/a 8

(For byte-aligned address ranges)

B.1.2.4

The interleave distance between two logically adjacent registers in a device register
array can be alculated from®*:

Generic Buffer i ndex

* Thesizeof thelogical register in bytes
* The processor data bus width in bytes
* Thedevice data bus width in bytes

1 For systems with byte-aligned addressng.

Page 1060f 171

03-0012N1430 Tecdhnical Report on C++ Performance

Conversion from register index to addressoffset can be alculated using the following
general formula:

Address_of fset=i ndex*
si zeof (I ogical _|Oregister)*
si zeof (p rocessor_data_bus)/
si zeof (d evi ce_data_bus)

Asaumptions:
* Bytesare 8-bitswide
» Addressrangeis byte-aligned
» Databuswidths are awhole number of bytes
e The width of the logical_IO_register is greder than or equal to the width

B.1.3

of the device_data_bus

The width of the device_data_bus s less than or equal to the width of the
processor_data_bus

Implementing access-specifications for Different Device
Addressing Methods

A procesor may have more than one aldressing range®. For ead procesor
addressing range an implementer should consider the following typical addressing
methods:

Addressis defined at compile-time:

The aldressisa mnstant. Thisisthe simplest case and also the most common
case with smaller architedures.

Base address initialized at run-time:

Variable base-address + constant-offset i.e. the accessspecification must
contain an addresspair (address of base register + offset of addresy.

The user-defined base-address is normally initialized at run-time (by some
platform-dependent part of the program). This also enables a set of driver
functions to be used with multiple instances of the same devicetype.

I ndexed bus addressing:

Also called orthogond or pseudo-bus addressing. This is a @mmon way to
conrect alarge number of deviceregistersto a bus, while still occupying only
afew addresses in the processor address pace

Thisis how it works: first the index-address(or pseudo-addresy of the device
register is written to an address bus register locaed a a given procesor
address Then the data read/write operation on the pseudo-bus is done via the
following procesor address i.e. the access-spedfication must contain an
address pair (the processor-address of the indexed bus, and the pseudo-bus
address (or index) of the device register itself). Whenever possible @omic

32 Procesors with a single addressing range use only memory mapped /0.

Page 1070f 171

Tecdhnical Report on C++ Performance 03-0012N1430

operations should be gplied to indexed bus addressing in order to prevent an
interrupt occurring between setting upthe aldressand the data operation

This acess method also makes it particularly easy for a user to conned
common devices that have a multiplexed addresddata bus to a processor
platform with non-multiplexed busses, using a minimum amount of glue logic.
The driver source code for such a device is then automatically made portable
to both types of bus architecure.

* Access via user-defined access driver functions;

These ae typicdly used with larger platforms and with small single-chip
procesrs (e.g. to emulate an external bus). In this case, the access
spedfication must contain pointers or references to accessfunctions.

The accss driver solution makes it possible to connect a given device driver source
library to any kind of platform hardware and platform software using the gpropriate
platform-spedfic interface functions.

In general, an implementation should always support the simplest addressing case.
Whether it is the constant-address or base-address method that is used will depend on
the procesor architedure. Apart from this, an implementer is free to add any
additional cases required to satisfy a given domain.

Because of the different numbers of parameters required and the parameter ranges
used in an access-spedfication, the C++ interfacerequires the definition of different
accessspedficationtemplates for ead of the different addressing methods.

For the C-style interface it is often convenient for the implementer of the iohw middle
layer to provide definitions for ead of the different addressing methods using access
spedfication templates also, therefore implementing the C interface (8Appendix C:)
on top of the C++ interface. This allows the implementer to share a common
implementation between the C and C++ interfaces, while also providing gedaer type
safety than the maao-based pure C implementation can provide.

B.1.3.1 Bus Connedion Parameters

The possible device register to bus connedions can be completely spedfied using
only two parameters:

* A bus parameter, which specifies the accss relationships between the device
data bus and the processor data bus

« A multi-addressng and endian parameter, which specifies the acces
relationships between the logical device register and the device data bus

Page 1080f 171

03-0012N1430 Tecdhnical Report on C++ Performance

For example, a possible definition of general device register connedion types might
be:

st ructh w_base

{

/1.

enumdevi ce_bus {d evice8=1 , devicel6=2 ,
device32=4 ,d evice64=8}

enum byt e_or der {m sb_l ow,m sb_hi gh};

enum processor_bus{b us8=1 ,b usl6=2, bus32=4 ,b us64=8}
/1O nlyi dentifierss houldb epresentt hat ares upportedbyt he
/1u nderlyingi nplementati on!

h

For another example, an implementation for a given procesor architecdure may only
support a subset of the device register connedion types. Possible device register
conrections with the processor H8/300H (supporting only an 8-bit and a 16-bit
procesor data bus):

st ructh w_base

{

. ..
enumdevi ce_bus {d evice8=1 ,d evicel6 =2},
enum byt e_or der {m sb_|l ow,m sb_hi gh};

enum processor_bus{b us8=1 ,b usl6=2 1},

B.1.3.2 Detedion of Read / Write Violations in Device Registers
The access-spedfications can specify a limitation parameter, which makes it possible
to deted illegal use of adeviceregister at compile-time.

The minimal parameter set for aread / write limitation specification would be:

» Defined as Read-Modify-Write register (behaves like aRAM cell)

» Defined as Read and Write register (read value may be different from write
value)

» Defined as Write-Only register

* Defined as Read-Only register

TableB-4: Allowed operations on different device register types:

iowr iord loor ioand ioxor

Read-Modify-Write rmw_e Yes Yes Yes Yes Yes
Read-and-Write rw_e Yes Yes No No No
Write-Only wo_e Yes No No No No
Read-Only ro_e No Yes No No No

The “not-allowed” cases should generate some kind of error message a& compile-time.
With a template implementation of <iohw.h> ' the cmpiler will typically diagnose
that no matching function template can be found for the “not-allowed” cases.

Page 1090f 171

Tecdhnical Report on C++ Performance 03-0012N1430

For example:

st ructh w_base

1. ..
enumaccess_node {r andomr ead_wite,wr it e,r ead};

h

/A ccesss pecificationt enplatef ord irectly addressedregisterson
/It hel /Obus:
te npl at e < typename _ Val ueType,

hw_base: : access_node node,

hw_base: : address_type address,

hw_base: : devi ce_bus devW dt h,

hw_base: : byt e_or der endi an,

hw_base: : processor_busn ati veW dt h>
cl assi o_direct_address{. ..} ;

/I access-specificationsf romthemiddlel ayer:
ty pedefi o_direct_address<ui nt 32_t,
hw_base: :wite,
0x358,
hw_base: : devi cel6,
hw_base: : msb_hi gh,
hw_base: : bus32>PortO_t;
ty pedefi o_direct_address<ui nt 32_t,
hw_base: : read,
0x372,
hw_base: : devi cel6,
hw_base: : msb_hi gh,
hw_base: : bus32>Portl _t;
ty pedefi o_direct_address<ui nt 32_t,
hw_base: : random
0x38c,
hw_base: : devi cel6,
hw_base: : msb_hi gh,
hw_base: : bus32>Portl Ot;

/IO bjectd efinitionsf orC ++:
Port Ot out Port;

Portl _t i nPor t;

Portl Ot inCQutPort;

/I'T opl ayerC ++c ode:
ui nt 32_tm yval;

myval = inPort; /1o k
myval +=i nCut Port; /1o k
out Por t = nyval; /1o k
in Qut Port= nyval ; /1o k
myval =outPort; /le rror,c onpile-ti mediagnostic
in Port =myval ; /le rror,c onpile-ti mediagnostic

/IN ULL-pointerd efinitionsf orCi nterface:
PortOt* CQutPort =0;
Portl_t* InPort =0;
Port1 O t*l nQutPort=0 ;

Page 1100f 171

03-0012N1430 Tecdhnical Report on C++ Performance

/I'T opl ayerCc ode
ui nt 32_tm yval;

myal = iord(InPort); /1o k

mwal+ =i ord(InQutPort); //o k

io w (Qut Port, nyval); /1o k

io wr (1 nQut Port, 0x45); /1o k

myal = iord(QutPort); /le rror,c onpile-ti mediagnosti c

io wr (I nPort, 0x55); /le rror,c onpile-ti mediagnostic
B.1.3.3 | mplementation for Different Procesor Busses

An implementation shall define & least one acces method for eat processor
addressing range. If the processor architedure has multiple different addressing
ranges (i.e. it requires different sets of machine instructions for the different busses),
each addressing range should have its own set of access-spedfications.

For example, on the 80x86 family, an implementation must define & least two sets of
access methods, one for the memory-mapped range, and another for the I/O-Port
mapped range:

/ID irecta ddressf ormenorymappedr egi sters
te npl at e < typename _ Val ueType,
hw_base: : access_node node,
hw_base: : address_type address,

hw_base: : devi ce_bus devW dt h,

hw_base: : byt e_or der endi an,

hw_base: : processor_busn ati veW dt h>
cl assmmdirect_address{. ..} ;

/ID irecta ddressf orr egistersonl /Obus
te npl at e < typename _ Val ueType,
hw_base: : access_node node,
hw_base: : address_type address,

hw_base: : devi ce_bus devW dt h,
hw_base: : byt e_or der endi an,
hw_base: : processor_busn ati veW dt h>
cl assi o_direct_address{. ..} ;
B.1.34 | mplementation for Different AccessM ethods

If several different access methods are supported for a given address range, then an
accessspedfication must exist for ead acessmethod.

For example:

st ructh w_base

{
. ..
/ID ifferenta ddresst ypes
typedefu int32_ta ddress_t; / /M enory mappeda ddressr ange
typedefu int8 t sub_address_t; //S ub addresso ni ndexedb us
typedefu int16_ti o_address_t; /1U ser devicedrivera ddress
typedefu int8 t bit_pos_t; //B it positioni nr egister

h

Page1110f 171

Tecdhnical Report on C++ Performance 03-0012N1430

/ID irecta ddressf ormenorymappedr egi sters
te npl at e < typename _ Val ueType,
hw_base: : access_node node,
hw_base: : address_type address,

hw_base: : devi ce_bus devW dt h,

hw_base: : byt e_or der endi an,

hw_base: : processor_busn ati veW dt h>
cl assmmdirect_address{. ..} ;

IIAl oto fmethodsc anbedonewithag eneral tenplate:
te npl at e < typename _ Val ueType,
hw_base: : access_node node,

typename _ Addr essType, /U DTwi thi npl enentationd efined
/ls emantic s
t ypenane _BusToggl e = hw _base: : data_bus,
hw_base: : devi ce_bus devW dt h = hw_base: : devi ce32,
hw_base: : byt e_or der endi an = hw_base: : nsb_hi gh,
hw_base: : processor_busn ati veWdth = hw _base: : bus32>
cl assg eneral _address{. ..} ;

IIF ort hedifferentc asesr espectiveAddressTypesa red efined:
/IB ase a ddressi ng:
st ructb ase_address_hol der

base_address_hol der (hw_base: : address_t* base,
hw_base: : address_t off set);

h

/I'l ndexeda ddressing:
st ructi ndexed_address_hol der

i ndexed_addr ess_hol der (hw_base: : address_t address,
hw _base:: sub_t i ndex);

h

/I'S inglebita ddressing:
st ructb it_address_hol der

{

bi t _addr ess_hol der (hw_base: : address_ta ddre ss,
hw_base:: bit_pos_ti ndex);

h

/If orau ser-suppliedf unctionan own class canb es pecified

B.1.3.5 Optimization Posgbilities for Typical | mplementations
Pre-calculation of Constant Expressions

A high performance compiler would resolve all constant expressions at compil e-time.
Using inline functions, both interleave fadors and constant buffer indices would be
folded into the addressvalue(s) used in the machine cde.

Therefore, the following two /O write statements would result in exadly the same
machine mde:

io wr (PORT1, 0x33);
io wr buf (PORTL,0 ,0 x33);

Page1120f 171

03-0012N1430 Tecdhnical Report on C++ Performance

An implementation can take advantage of this, because the number of hardware
register access functions that have to be implemented can be reduced with o
efficiency penalty using simple delegation, using inline functions or maaos sich as.

#definei ow (access_spec,val) iow buf(access_spec,0 ,(val))

or function templates such as:

te npl ate < cl assa ccess_spec>
inlinevoidi ow (typenanea ccess_spec::valu e_typev al)

{
}

Multi-Addressng and Endianness

i owr buf <access_spec>(0,v al);

Typical candidates for platform dependent optimizaions are iohw functions for the
multi-addressing cases (logical device register width > device bus width) where the
width of the device data bus matches the width of the processor data bus, for
example, the combinations of:

* (devicel6hor devicel6l) and bwl6
* (device32hor device32) and bw32

In these cases, multi-byte access can often use data types that are diredly supported
by the procesor for ether the LSB or MSB endianness functions. The other
endianness functions can often be implemented efficiently using one load or store
operation, plus one or more register swap operations.

B.1.4 Atomic Operation

It is a requirement of the iohw implementation that in each iohw function a given
(partial®®) deviceregister is addressed exacly once during a READor a WRITE gperation
and exadly twiceduring a read-modify-write operation.

It is recoommended that ead iohw function in an iohw implementation, be
implemented such that the device acess operation bemmes atomic whenever
possible. However, atomic operation is not guaranteed to be portable acossplatforms
for the logicd-write operations (i.e. the OR AND, and XORoperations) or for multi-
addressing cases. The reason for this is simply that many procesor architedures do
not have the instruction set feaures required for asauring atomic operation.

B.1.5 Read-Modify-Write Operations and Multi-Addressing

On processor architedures where the modifying operations (OR ANDand XOR can not
be realized as single instruction operations, an implementation shall provide an
accessspedfication that guarantees a complete read-modify-write realization for the
modifying operations.

33 A 32-hit logical register in a device with an 8-bit data bus contains4 partial 1/0 registers.

Page 1130f 171

Tecdhnical Report on C++ Performance 03-0012N1430

The rationale for this redtriction is to allow iohw to use the lowest common
denominator of multi-addressing hardware implementations in order to support the
widest possible range of iohw register implementations.

For instance, more alvanced multi-addressing device register implementations often
take a snapshot of the whole logical device register when the first partial register is
being real, so that data will be stable and consistent during the whole read operation.
Similarly, write registers are often “double-buffered”, so that a consistent data set is
presented to the internal logic a the time when the acessoperation is completed by
the last partial write.

Such hardware implementations often require that ead acessoperation be cmpleted
before the next accessoperation is initiated.

B.1.6 Initialization

With resped to the standardization process it isimportant to make aclear distinction
between hardware (device) related initialization, and platform related initialization.
Typically, threetypes of initialization are related to deviceregister operation:

» hardware (device) initialization
* accessspedficationinitialization
e deviceseledor initiali zation®*

Here only accessspedfication initializetion and device seledor initialization are
relevant for the specification of iohw:

* hardwareinitialization: This is a natural part of a hardware driver, and
should always be cnsidered part of the device driver application itself. This
initialization is done using the standard functions for basic iohw addressing.
Hardware initialization is therefore not atopic for the standardization process

» access-specification initialization: This concerns the initialization and
definition of the access_spec objeds themselves.

For many accessspedfications, there is no run-time initialization recessary.
However, for some acces methods, some run-time initialization is required.

using the iohw C-style interface, the function:

io _abs_init(access_base_spec)
can be used as a portable way to specify in the source @de where and when
such initialization should take place

The iohw C++ interfaceprovides the cnstructor

te mpl ate < typenanei nitType>
regi ster_access: :regi ster_access(initType);

with an implementation defined initType for the same purpose.

341t for ingance the acces method is implemented as (Pase_addres s . constant_offset then "device selector
initialization" refersto assgnment of the base_addres s ygye,

Page1140f 171

03-0012N1430 Tecdhnical Report on C++ Performance

» devicesdector initialization: This is used when, for instance, the same
devicedriver code needs to service multiple devices of the same type.

A common possible solution isto define multiple accessspedfication objeds,
one for eadt of the devices, and then have the accessspedfication passd to
the driver functions from the alling function.

The iohw C-style interface provides another solution — the use access
spedfication copying, and accessspecifications with dynamic acces
information:

io _abs_remap(access_base_specd est,a ccess_base_specs rc)

In C++, this is most easily accomplished by providing a function template
with the access spedfication as template agument. For accessspedfications
with no run-time information this requires no data transfer (i.e. no function
parameters). For accessspedfications with dynamic information, this
dynamic information must be passed as function parameters. rebind in the
accessspedfication provides a portable way to get an accessspedfication that
differs from a formerly defined access-spedficationin only one parameter.

With most freestanding environments and embedded systems, the platform hardware
is well defined, so al accessspecifications for device registers used by the program
can be ompletely defined at compile-time. For such platforms, standardized access
spedfication initialization is not an issue.

With larger processor systems, device hardware is often allocated dynamicdly at run-
time. Here the accessspedfication information can only be partly defined at
compile-time. Some platform dependent part of the software must be initialized at
run-time.

When designing the access_spec objeds, the or compiler or library implementer
must therefore make a clear distinction between static information and dynamic
information; i.e. what can be defined and initialized at compile-time, and what must
be initialized at run-time.

Depending on the implementation method, and depending on whether the
access_spec objeds neal to contain dynamic information, the access_spec objeds
may or may not require instantiation in data memory. Better exeaution performance
can usually be achieved if more of the information is gatic.

B.1.7 Intrinsic Features for I/O Hardware Access

The implementation of iohw acassrequire for many platforms use of special machine
instructions not otherwise used with the normal C/C++ memory model. It is
recommended that the compiler vendor provide the necessary intrinsics for operating
on any special addressing range supported by the processor.

Page 1150f 171

Tecdhnical Report on C++ Performance 03-0012N1430

In C++ special machine instructions can ke inserted inline using the asm dedaration.
However when using asm in connedion with hardware register access intrinsic
functionality is often ill required in order to enable easy load of symbolic named
variables to procesor registers and to handle return values from asm operations.

An iohw implementation should completely encapsulate any intrinsic functionality.

B.2 Implementation Guidelines for the C++ Interface

There ae two main design alternatives in implementing register_access for the
different accessspecifications:

» Using the accessspedfications as full-fledged traits classes that contain the
information for register_access to behave acordingly (this isthe gproach
chosen in the sample implementation).

 Using the accessspedfications as mere labels and specidizing
register_access for ead of these accessspecifications (this is a useful
approach if there ae very few commonalities between the different acces
specifications).
In any case, caefully implemented specializations of helper classes used in
register_access can provide resulting code that only contains the necessary
hardware acess $atements and produces absolutely no overheal.

The ultimate hardware acces gatements typically will be redized either as inline
asembler or as compiler intrinsics. But this is hidden in the implementation; the user
does not seethem.

B.2.1 Annotated Sample Implementation

As the hardware healer belongs in some way to the implementation of a (non-
standard) part of the C++ library and a user of that may placeany macros before this
header, the header itself should only use symbols reserved to the implementation, i.e.
names beginning with an underscore. Right now, this is not completely the cae but
will be cleaned out in the next revision.

Page 1160f 171

03-0012N1430 Tecdhnical Report on C++ Performance

B.2.1.1 Common Definitions— st ruct hw_base

In this sample implementation the accessspedfication holds all necessary address
information and provides them to the register_access implementation. To produce
as few overheals as possible in cases where the aldressinformation is known at run-
time, no object data is produced. To acdhieve this, this implementation generally uses
typedef s where the real address information is kept in an enum value. For this, a
small helper struct _Int2Type is used (the typedef _ul s purely to save some
typing):

ty pedefu nsigned!l ong_ ul;

/I'h elperc lassf ors avingi ntegralv aluesas types
st ruct_ Int2Type

{

enumconstants /1T echniqueu sesan enumtog roupc onstants

{

value_=v al

ulv alue()c onst{r eturnv alue;}

h

As the implementation has to deal with value types of unknown size this
implementation uses internally unsigned integer of an appropriate size For that
purpose, another helper template is defined that provides that type:

/la ndt ocreateani ntegralt ypef orag iven sizeof

template< _uls ize>struct_ uint_type;

tenmplate< >s truct_ uint_type<l>{t ypedefui nt8_t ui_type;};

template< >s truct_ uint_type<2>{t ypedefui ntl1l6 _tu i _type;};
tenmplate< >s truct_ uint_type<4>{t ypedefui nt32 tu i_type;};

#i fdefU | NT64_NMAX
tenmplate< >s truct_ uint_type<8>{t ypedefui nt64 _tu i _type;};
#endi f

And _EmptyType s a simple placeholder that can be used anywhere where atype
template-parameter is needed that is not useful for this particular instantiation:

/la ndanenptyhelperc lassf ord efaultD ynamicDat a
st ruct_ EnptyType{ };

hw_base defines all the mnstants that are necessary in the accessspecifications. Of
coursg, this is highly dependant on the specific hardware, and only those that are used
in this implementation are shown here. In general, there ae two dfferent ways to
define mnstants: the standard |OStreams library defines constants as gatic. This
alows for easier implementation, but has sme space and possibly run-time
overheads. For performance reasons, the enum gpproach is chosen here, where all
constant values are defined as enumerates. This has the alditional advantage that they
can be used as type-safe template value parameters in the accessspecification
templates.

Page1170f 171

Tecdhnical Report on C++ Performance 03-0012N1430

According to the interface spedfication, an implementation can define alditional
members in hw_base | This implementation defines two tagging types data_bus and
io_bus for use accessspedfications:

/It hedefinitionso fa ccess_types'p aranmeter types
st ructh w_base

{

enum access_node {r andomr ead _wite, write,r ead};

enumdevi ce_bus {d evice8 =1,d evicel6=2 ,
device32=4 ,d evice64=8}
enum byt e_order {msb_l ow,m sb_hi gh};

enumprocessor_bus{b us8=1 ,b usl6=2, bus32=4 ,b us64=8};

/1o nlyi dentifierss houldb epresentt hat ares upportedby
/1t heunderlyingi nplenentation!(Diagnosticr equired.)

typedef _ ula ddress_type;

/ls pecializationt ypesf ord ifferenti mgde nmentationsf or
/1d ifferentb ust ypes

enumdata_bus{. ..} ;
enumi o_bus {. ..}
h
_hative_endian is a helper to optimize behavior for the byte ordering of the

underlying processor:
ty pedef _ | nt 2Type<hw_base: : nsb_hi gh>_ nati ve_endi an;

B.2.1.2 | mplementation for access-specifications

For this implementation a fairly simple aldressing scheme is assumed, but on any
implementation, all addressinformation should be asmall bounded set that fits into a
respedive class Here, a helper template to hold the information necessary to
calculate the aldress offset is defined. In this implementation all access
spedfications contain the same aldress information, but they require different
operations for different busses. Therefore, the _Addressinfo classcontains a marker
_BusTag that differentiates the diff erent busses:
II'h elpert enplatet oholdt hei nfon ecessary toc alculatet he

/la ddresso ffset
te mpl ate < _ul_ val ueSi ze,

hw_base: : devi ce_bus _devi ceW dth,
hw_base: : processor _bus _ procBusW dt h,
cl ass _Addr essHold er T,
cl ass _Toggl e>

st ruct _ Addr essl nfo

{

enumconstants /1T echniqueu sesan enumtog roupc onstants
{

registerSize= val ueSi ze,

_devWdth = deviceWdth,

nativeWdth = procBusW dth

3
typedef _ AddressHol der T _ Addr essHol der;
typedef _ Toggl e _BusTag;

Page 1180f 171

03-0012N1430 Tecdhnical Report on C++ Performance

In general, alot of different accessspedfication types are possble. But for any given
implementation only a small set makes ®nse, and only that small set should be
provided. This implementation only provides two accessspedfications for dired
address (mm_direct_address for memory mapped registers as pecified in the
interface description, io_direct_address for registers on a separate 1/0 bus) and
one quite general accessspecification general_address to provide auser function to
calculate the aldress This general_address js used for simple dynamic addressing
and segmented addressing by providing fix_address_holder and
segmented_address_holder . Both accessspedfications are templates with
template-parameters for the value type and all relevant hardware parameters required
for the rrect accessing of deviceregisters on asimple platform.

As both dired addresstypes are essentially the same and differ only in the associated
bus, a cmmon bese class _direct_address is provided. The adua access
spedfications are derived from this base class and just specify the respedive
_BusToggle . The dired accessspedfications have all necessary information at
compile-time, so it doesn’'t contain any run-time data but provides everything as types
or enumerates (a typicd traits class). Some alditional types (dynamic_data and

_BaseAddressHolder) are provided as empty types to provide aconsistent interface
for mm_direct_address gnd general_address

/Ic omondirecta ddressf ora ddressk nownat conpile-tine
te npl at e < typenane _ Val ueType,

hw_base: : access_node node,

hw_base: : address_type address,

hw_base: : devi ce_bus devW dt h,
hw_base: : byt e_or der endi an,
hw_base: : processor _busn ativeW dt h,
t ypenane _BusToggl e>

cl ass_ direct_address

{

publ i c:
typedef _ Val ueTypev al ue_t ype;
typedef _ EnptyTyped ynani c_dat a;
enumconstants

{
b

tenpl at e < hw_base: : address_type o t her _addre ss>
structr ebind

{

access_node =m ode

typedef _ direct_address<_Val ueType,
node,
ot her _addr ess,
devW dt h,
endi an,
nati veW dt h,
_BusToggl e> oth er;

3
typedef _ EnptyType _ dynDat aHol der;

Page 1190f 171

Tecdhnical Report on C++ Performance 03-0012N1430

//w edon'tw antt os pendanys pace,s o alla rgunentsares aved
/la st ypes
typedef _ I nt 2Type<addr ess>_ BaseAddr essHold er;
typedef _ I nt 2Type<endi an> devi ce_endi an;
typedef _ Addressl nfo<si zeof (_Val ueType),
devW dt h,
nati veW dt h,
_BaseAddr essHol der,
_BusToggl e> _AddressT;

h
/Id irecta ddressf ormenorymappedr egi sters
te npl at e < t ypenane _Val ueType,

hw_base: : access_node node,
hw_base: : address_type address,
hw_base: : devi ce_bus devW dt h,
hw_base: : byt e_or der endi an,
hw_base: : processor_busn ati veW dt h>
cl assmmdirect_address
:p ublic_ direct_address<_ Val ueType, m ode, address,d evWdth,
endi an,n ativeWidt h,h w_base:: data_bus>
{
h

/Id irecta ddressf orr egistersonl /Obus

te npl at e < typename _ Val ueType,
hw_base: : access_node mode,
hw_base: : address_t ype a ddr ess,
hw_base: : devi ce_busd evW dt h,
hw_base: : byt e_or dere ndi an,
hw_base: : processor_busn ati veW dt h>

cl assi o_direct_address

:p ublic_ direct_address< Val ueType, m ode, address,d evWdth,
endi an,n ativeWidt h,h w_base::io_bus>

Page 1200f 171

03-0012N1430 Tecdhnical Report on C++ Performance

The general_address accessspecification template uses an additional template-
parameter _AddressType that has to provide aconst member function value()
The return value of this function is used as the address For the user’s convenience
two types fix_address_holder and segmented_address_holder are provided that
can be used for simple caes. Also, the template-parameter _BusToggle can be
direaly provided by the user:

/Id ynanmica ddressf orm enorymappedr egi sters anda ddresso nly
/I'k nownatr un-tine

te npl at e < t ypenane _Val ueType,
hw_base: : access_node node,
t ypenane _Addr essType,
t ypenane _BusToggl e = hw _base: : data_bus,
hw_base: : devi ce_bus devW dt h = hw_base: : devi ce32,
hw_base: : byt e_or der endi an = hw_base: : nsb_hi gh,

hw_base: : processor _busn ativeWdth
cl assg eneral _address

hw_base: : bus32>

{
publ i c:
typedef _ Val ueType val ue_type;
typedef _ AddressType d ynam c_dat a;
enumconstants
{
access_node =m ode
3
typedef _ AddressType _ BaseAddr essHol der;
typedef _ | nt 2Type<endi an>d evi ce_endi an;
typedef _ Addressl nf o<si zeof (_Val ueType),
devW dt h,
nati veW dt h,
_BaseAddr essHol der,
_BusToggl e>__ AddressT;
b
The fix_address_holder serves as AddressType for when the acces is memory-

mapped but the addressis known only at run-time:

st ructf ix_address_hol der

{
explicitf ix_address_holder(_ula ddr): value_(addr){}
ulv alue()c onst{r eturnv alue;}
ulv alue;

b

Page1210f 171

Tecdhnical Report on C++ Performance 03-0012N1430

The segmented address_holder serves as AddressType for general_address

when the acessis memory mapped but the aldressis known only at run-time and is
composed from a segment and offset address [Note: this implementation is probaldy
too simple and is only provided to ill ustrate an AddressType with two constructor
parameters):

st ructs egnent ed_address_hol der

{
explicits egnented_address_hol der(unsi gned shorts egnent,
unsi gned shorto ffset)
:v alue_(segnment< <16+0 ffset){ } // muchsinplified
ulv alue()c onst{r eturnv alue;}
ulv alue;

B.2.1.3 Actual Access Implementation

The acces to the deviceregister values is divided into two parts; one group of helper
classs (including _hwRead and _hwOp) does the a¢ua register access while another
helper class _AccessHelper does the necessary adaptation between the device
register value and the internal program (processor) value. This separation might not
be possible or useful for all access-spedfications (e.g. where the compiler provides
combined intrinsics for both operations at once). Inthat case just the _AccessHelper
needs to be specialized in an appropriate way.

The helper classes _hwOp and _hwRead effedively provide the functions that are
eventually exeauted (not redly cdled, as they are inline) when a device register is
accessed. They typicaly use some assembler or compiler intrinsics different for all
accessspedfication types, and this way, all implementation specific functionality can
be provided in one place They have no implementation for the general case, but must
be spedalized for al bus types that have different access operations (data_bus and
io_bus in this example implementation) and the _hwOp additionally for all binary
operators:
/I'h elperc |assesf ora Ilp rovidedo perations tob es pecialized

/lo n _inplTag
te mpl ate < typenane _ Ret Type,t ypenane _ i npl Tag>s truct_ hwRead;

/I'h elperc lassf ora |Ip rovidedb inaryo perati ons

enum _binops{_ wite_op,_ or_op,_and_op,_x or_op}
te mpl ate<typenanei nt_type, _ binops,t ypenanme _inpl Tag>s truct_ hwOp;

Page 1220f 171

03-0012N1430

Tecdhnical Report on C++ Performance

For the memory-mapped data_bus the accssis like anormal memory access and the
only thing isto do the usual int -to-pointer cast (including a volatile

the optimizer from removing the acces):

/I nplementationf or hw_base::data_bus
te mpl at e < typenane _ Ret Type>

st ruct_ hwRead<_Ret Type, h w_base: : data_bus>

{
static_ RetTyper (_ulc onst& _ addr)
{
return* const_cast< RetTypevolatile *>
(reinterpret_cast<_RetType* >(_addr));
}
b

/lah elperf unctiont oavoidhavingt owrite thes ame

/lu glyc astf ore acho p:
te npl ate<typenanei nt_type, _ bi nops>
st ruct_ hwQp_dat a;

te mpl ate<typenanei nt_type>
st ruct_ hwQp_data<int_type, _ wite_op>
{

staticv oidf (int_typevolatile&lhs,i

{I hs=r hs;}
b
te nmpl ate<typenanei nt_type>
st ruct_ hwQp_data<int_type, _ or_op>
{

staticv oidf (int_typevolatile&lhs,i

{I hs| =r hs; }
b
te mpl ate< typenanei nt_type>
st ruct_ hwQp_dat a<i nt _type, _ and_op>
{

staticv oidf (int_typevolatile&lhs,i

{I hs&=r hs; }
b
te nmpl ate<typenanei nt_type>
st ruct_ hwQp_dat a<i nt _type, _ xor_op>
{

staticv oidf (int_typevolatile&lhs,i

{I hs® =r hs; }
b

nt _typer hs)

nt _typer hs)

nt _typer hs)

nt _typer hs)

cast to prevent

/It hisdoest hec astingn ecessaryf or hw base::data_bus and

/Id elegatesf urtherf or _op:

te npl ate<typenanei nt_type, _ bi nops_ op>

st ruct_ hwQp<i nt _type, _ op,h w_base: :data_bus>

{
staticv oidf (_ul_ addr,i nt_typer hs)
_hwOp_dat a<i nt _type, _ op>::f(
const _cast<int_typevolatile >
(reinterpret_cast<int_type* >(_addr)),r
}
b

hs);

Page 1230f 171

Tecdhnical Report on C++ Performance 03-0012N1430

For theio_bus case, thisimplementation assumes some compiler intrinsicsi_io_ Xx:

/I nplementationf or hw _base::io_bus
te mpl at e < typenane _ Ret Type>
st ruct_ hwRead<_Ret Type,h w_base::io_bus>
{
static_ RetTyper (_ulc onst& _ addr)
{r eturni _io_rd(_addr);}
h
te mpl ate<typenanei nt_type>
st ruct_ hwQp<int _type, wite_op,h w_base::io bus>
{
staticv oidf (_ul_ addr,i nt_typer hs)
{i _io_w(_addr,r hs);}
h
te mpl ate<typenanei nt_type>
st ruct_ hwQp<int _type, or_op,h w_ base::io_bus>
{
staticv oidf (_ul_ addr,i nt_typer hs)
{i _io_or(_addr,r hs);}
h
te mpl ate<typenanei nt_type>
st ruct_ hwQp<int _type, _ and_op,h w_base::io_bus>
{
staticv oidf (_ul_ addr,i nt_typer hs)
{i _io_and(_addr,r hs); }
h
te mpl ate<typenanei nt_type>
st ruct_ hwQp<int _type, _ xor_op,h w_base::io_bus>
{
staticv oidf (_ul_ addr,i nt_typer hs)
{i _io_xor(_addr,r hs); }

h

As the alculation of the adual address is used in quite anumber of places, it is
provided here @& a helper function that takes the type with the adual address
information as template-parameter (this will normally be some instantiation of
_Addressinfo), The function used here is only valid where the device bus width is
an exad multiple of the procesor bus width:
/lah elperf unctionf ort heactuala ddress cal cul ation
te mpl ate < cl ass _ Addressl nfoT>
in line_ul_ addrCal ¢(
ptrdiff _t i dx,
typenane _ Addr essl nf oT: : _Addr essHol derc onst & a ddr)

{
returna ddr. val ue()
+i dx
* AddresslnfoT:: _registerSiz e
* AddresslnfoT:: _nativeWdth
|/ _ AddresslnfoT::_devWidt h;
}

Page 1240f 171

03-0012N1430

_AccessHelper

Tecdhnical Report on C++ Performance

implements the alaptation between the register value and the

program value, including endian conversion and bus widths mapping. Again, there is
no implementation for the general case; all supported cases must be provided hy
Specializaions:

/lah
It

elperc lasst oprovideallu seful(part ial)s pecializations
or register_access

te npl at e < typenane _ Val ueType,

_ul devEndi an,
cl ass _Addr essl nf oT>

st ruct_ AccessHel per

{

h

static_ Val ueType _ read(
_ulb asel dx,
typenane _ Addr essl nf oT:: _AddressHol derc onst&);
tenpl ate < _bi nopsf uncti on>
staticv oid_ op(_Val ueTypev al,
_ul basel dx,
typenane _ Addr essl nf oT: :_ Addr essHol der c onst &);

/In odefinitionoft hef unctionsf ort heg eneralc ase:

1
1

allv alidc asesmustb eprovideda s(part ial)s pecializations

In the simplest case where no endian conversion is necessary and the device bus and
processor bus have the same width, just forward to the _hwRead and _hwOp helpers:
/II'h ereas pecializationwhere deviceWdth mac hes nativeWdth

/la nd Val ueType
te npl at e < typenane _ Val ueType,

cl ass _Addr essHol der,
cl ass _i mpl Toggl e>

st ruct_ AccessHel per < Val ueType,

_native_endi an: : val ue_,

_Addr essl nf o<si zeof (_Val ueType),
hw_base: : devi ce_bus(si zeof (_Val ueType)),
hw_base: : processor _bus(si zeof (_Val ueType)),
_Addr essHol der,
_impl Toggl e> >

typedef _ Addressl nf o<si zeof (_Val ueType),
hw_base: : devi ce_bus(si zeof (_Val ueType)),
hw_base: : processor _bus(si zeof (_Val ueType)),
_Addr essHol der,
_impl Toggl e> Addre ssT;
static_ ValueType _read(_ulb asel dx,_ Addre ssHol derc onst& addr)
{ /1t he _inpl Toggle argunents elects thec orrectf unction
return_ hwRead<_Val ueType, _ i npl Toggl e>: : r(
_addr Cal c<_Addr essT>(basel dx,a ddr));
}
tenpl ate < _binopsf uncti on>
staticv oi d_ op(_Val ueType val,
_ul basel dx,
_AddressHol derc onst &addr)

_hwOp<_Val ueType, f unction, _ inpl Toggle >::f(
_addr Cal c<_AddressT>(basel dx,a ddr),v al);

Page 1250f 171

Tecdhnical Report on C++ Performance 03-0012N1430

Another quite simple cae is where the endiannessis the same and the value_size s
an exad multiple of the devicewidth. In other cases (e.g. when the deviceregister is
12 hts and the value 16 hts) some padding is necessary. But here, a smple for loop
(that is easily unrolled by the optimizer) does the job:

te npl at e < typenane _ Val ueType,

cl ass _Addr essl nf oT>

st ruct_ AccessHel per < Val ueType,

_native_endi an: : val ue_,
_Addr essl nf oT>

{
typedeft ypenane _ Addressl nfoT:: _AddressHol der _ Addr essHol der;
enumconstants
{
wordCount= AddresslnfoT:: _registerSize
/ _ AddresslnfoT::_devWidth,
_step = _AddresslnfoT:: _nativeWidth
3
typedeft ypename _ ui nt _type<_ AddressinfoT: _devWdth>::ui _type
reg_t;
structb uf _t
{
reg_tv al ues[_wordCount];
3
static_ ValueType _read(_ulb aseldx,_ Addre ssHol derc onst& addr)
buf _tb uffer;
for(_uli dx=0;i dx! =_wordCount;++ id x)
{ /lu sesn ewstyl ec asts
buf fer.val ues[idx]=_ hwRead<reg_t,
typenane _ Addressin foT:: _BusTag>::r(
_addr Cal c<_Addre ssl nf oT>(basel dx, a ddr)
+i dx
*_ step);
return* ((_Val ueType*)buffer. val ues);
}
tenpl ate < _binopsf uncti on>
staticv oi d_ op(_Val ueType val,
_ul basel dx,
_AddressHol derc onst &addr)
{
for(_uli dx=0;i dx! =_wordCount;++ id x)
{
_hwOp<reg_t,
functi on,
typenane _ Addr essl nf oT:: _BusTag>:: f(
_addr Cal c<_Addressl nfoT> (basel dx,a ddr)
+i dx*_ step,
reinterpret_cast<reg_t *>(val)[id x]);
}
}
b

Page 1260f 171

03-0012N1430 Tecdhnical Report on C++ Performance

B.2.1.4 The Interfacer €gi st er _access

_IndexHolder s a helper class to hold the index for the return value of the subscript
operator of register_access

te mpl at e < t ypenane T>
st ruct _ | ndexHol der

{
IndexHol der (Tconst& v):v alue(v){}
Tv alue_;
Tvalue()c onst{r eturnv alue_;}
h
The adual interface for register_access is realized by the class template
register_access | As register_access provides the full interface for single

registers, plus a subscript operator that returns an object that again provides the full
register interface this common interface is sparated into a common base class
template _RAInterface | This in turn uses a helper class _RAImpl to forward the
operations to the wrrect instantiation of _AccessHelper

_RAImpl jsjust a helper to save alot of typing for all the template aguments®™:

te mpl ate< cl ass _ AcType,c | ass_ AddressHol der, typenane _ | ndexType>
cl ass _ RAI npl

{

publ i c:
typedeft ypenane _ AcType::val ue_typev alu e_type;
staticv al ue_type _read(_AddressHol derco nst & _addr,

_I ndexType c onst& _idx)
{
return_ AccessHel per <val ue_t ype,
_AcType: : devi ce_endi an: : val ue_,
typenane _ AcType:: _AddressT>
:: _read(_idx.v alue(),_ addr);
}

tenpl ate < _bi nopsf uncti on>
staticv oid_ op(_AddressHol derc onst & _addr,

_IndexType c onst & _id x,
val ue_t ype _val)
{
_AccessHel per <val ue_type,
_AcType: : devi ce_endi an: :v al ue_,
typenane _ AcType:: _AddressT>
;. _op<function>(_val,_ idx.value(),_ addr);
}

3 It would not need to be a separate dassif typedef-templates were dlowed.

Page 1270f 171

Tecdhnical Report on C++ Performance 03-0012N1430

_RAlinterface provides the mmmon interface for single register access classes as
well as for the return types of the subscript operator of base register accessclasses. It
just forwards all the interface functions to _RAImpl :

te mpl ate< cl ass _ AcType,c | ass_ AddressHol der, typenane _ | ndexType>
cl ass _ RAInterface

{

publ i c:
typedeft ypenane _ AcType::val ue_type val ue_type;
typedef _ RAI npl <_AcType, _ AddressHol der, _| ndexType>_ | npl;

RAInterface(): addr(),_ idx(){}

explicit_ RAInterface(typename _ AcType::d ynam c_datac onst& _d)
_addr(_d),_ idx(){ }

_RAInterface(_AddressHol derc onst& _a, | ndexTypec onst& i)
_addr(_a),_ idx(_i){ }

operatorv al ue_type()c onst

{
return_ Inpl:: _read(_addr,_ idx);

val ue_typer ead()c onst

return_ Inpl:: _read(_addr,_ idx);
}

voido perator=(value_typev al)

_lmpl::tenplate_op< wite_op>(_addr, _idx,v al);
}

voido perator| =(value_typev al)

{
}

voido perator& =(val ue_typev al)

lmpl::tenplate op<_or_op>(_addr, i dx,v al);

lmpl::tenplate op<_and_op>(_addr, _id x,v al);
}

voido perator® =(val ue_typev al)

{
}

lmpl::tenplate op<_xor_op>(_addr, _idx,v al);

pr ot ect ed:
const _ AddressHol der _ addr;
const _ | ndexType _idx;
b
register_access is the final class provided for the user. As there is a major

performance diff erence between types for which everything is known at compile time
(no runtime aldress computations). and types with some dynamic data where the
adual address can only computed a run-time, the register_access template mmes
in two versions:

e ageneral template for all cases, and
» agpecialization for accesstypes with static dataonly.

Page 1280f 171

03-0012N1430 Tecdhnical Report on C++ Performance

The adual interfaceis taken from _RAInterface | but as this is not intended to be a
pullic base class private inheritance and using-dedarations are used.

/It hes econd tenpl ate-paraneter isonlyt o provideat ag

/If orp artials pecializationf orn on-dynanic data

te mpl ate < cl ass _ AcType,

class_ DynData=t ypenane _ AcType: dynani c_dat a>
cl assr egi ster_access
:p rivate_ RAl nterface<_AcType,

typenane _ AcType: :_ BaseAddr essHol der,
_Int2Type<0>>

typedeft ypenane _ AcType:: BaseAddressHol der _ Addr essHol der;
typedef _ RAlI nterface< AcType,
_Addr essHol der,
_I ndexHol der<_ul >> _RefT,;
typedef _ RAI nterface< AcType,
typenane _ AcType: : _BaseAddr essHol der,
_Int2Type<0>> _ Base;
usi ng _ Base:: _addr; /1t hiss houldn ot ben ecessary,b uti tw ont
//c onpilewithout it

publ i c:
explicitr egister_access(typenane _ AcType: dynam c_dat ac onst&d)
_ RAInterface< AcType,
typenane _ AcType: : _BaseAddr essHol der,
_Int2Type<0>> (d) {}

usi ngt ypenane _ Base::val ue_type;
usi ng _ Base: : operatorv al ue_type;
usi ng _ Base: : read;

usi ng _ Base: : operator= ;

usi ng _ Base: : operator|

usi ng _ Base: : operator &
usi ng _ Base: : operator”

_RefToperator[]J(size_ti ndex)c onst
return_ Ref T(_addr,i ndex);

}

_RefToperator[J(ptrdiff_ti ndex)c onst

return_ Ref T(_addr,i ndex);
b

For the static specialization, the _AddressHolder knows all necessary data in the type
and contains no red objed data.

/I's pecializationf orn odynam cd ata
te mpl ate< cl ass _ AcType>
cl assr egi ster_access<_AcType, _ EnptyType>
:p rivate _ RAl nterface<_AcType,
typenane _ AcType: . BaseAddr essHol der,
_Int 2Type<0>>

typedeft ypenane _ AcType:: BaseAddressHol der _ Addr essHol der;
typedef _ RAI nterface< AcType,

_Addr essHol der,

_I ndexHol der<_ul >> _RefT,;

Page 1290f 171

Tecdhnical Report on C++ Performance 03-0012N1430

typedef _ RAl nt erface<_AcType,
_Addr essHol der,
_Int2Type<0>> _ Base;

publ i c:
1 typedef _ AcType _ AccessType; /1f or Cinterfaceo nly

regi ster_access(){ }

usi ngt ypenane _ Base::val ue_type;
usi ng _ Base: :operatorv al ue_type;
usi ng _ Base: : read,;

usi ng _ Base: : operator=
usi ng _ Base: : operator|

usi ng _ Base: :operatoré&
usi ng _ Base: : operator”

’

’

_RefToperator[](size_ti ndex)c onst

~~

return_ Ref T(_AddressHol der(),i ndex);

—

_RefToperator[]J(ptrdiff_ti ndex)c onst

return_ Ref T(_AddressHol der(),i ndex);

Page 1300f 171

03-0012N1430 Tecdhnical Report on C++ Performance

Appendix C: ImplementingtheC
|nterfacein Terms of the
C++ Interface

The implementation of the basic C register accessinterface on top is pretty straight-
forward. As the aeation of unnecessary real objeds should be avoided, all
register_access arguments are given by pointer. As this pointer is never de-
referenced when all neaessary acaess data is in the type (static acess method), a
(properly typed) null pointer can be given in that case.

For accessspedfications with dynamic data, a red objed must be aeaed (and
properly initialized) in the middle layer, and a pointer to that object given to the
interface functions.

The interfacefunctions themselves are implemented as inline function templates, not
function-like maaos as gecified in the C interface This leeway is given to the
implementer in the C interface

/IP ossiblei nplementationf or <iohw h>
#i ncl ude < har dwar e>

usi ngn anespaces td: : hardwar e;

te npl ate< typenaner eg_access>
inlinet ypenaner eg_access::value_typei ord(r eg_access*r eg)

returns tatic_cast<typenaner eg_access::v al ue_type>(*reqg);

}

te npl ate< typenaner eg_access>

inlinev oidi ow(reg_access* reg,
typenaner eg_access::value_type value)

{

}
te npl ate < typenanmer eg_access>

inlinev oidi oor(reg_access* reg,
typenaner eg_access::value_type value)
{

}

te npl ate< typenaner eg_access>

inlinev oidi oand(reg_access* reg,
typenaner eg_access: :val ue_ty pev al ue)

{

}

*reg=v al ue;

*reg| =v al ue;

*reg & =v al ue;

Page 1310f 171

Tecdhnical Report on C++ Performance 03-0012N1430

te npl ate < typenanmer eg_access>
inlinev oidi oxor(reg_access* reg,
typenanmer eg_access: :val ue_ty pev al ue)

}

te npl ate < typenanmer eg_access>
inlinet ypenaner eg_access: :value_typei ordbuf(reg_access* reg,
unsi gnedi nti ndex)

*reg” =v al ue;

return(*reg)[index];

}

te npl ate < typenanmer eg_access>

inlinev oidi ow buf(reg_access* reg,
unsi gnedi nt i ndex,
typenanmer eg_access::valu e_type val ue)

(*reg)[index]=v alue;

te npl ate < typenanmer eg_access>

inlinev oidi oorbuf(reg_access* reg,
unsi gnedi nt i ndex,
typenaner eg_access::valu e_type val ue)

(*reg)[index]| =v alue;
te npl ate < typenanmer eg_access>
inlinev oidi oandbuf (reg_access* reg,
unsi gnedi nt i ndex,
typenanmer eg_access::val ue_typev al ue)
(*reg)[index]& =v al ue;
te npl ate < typenanmer eg_access>
inlinev oidi oxorbuf (reg_access* reg,
unsi gnedi nt i ndex,

typenaner eg_access::val ue_typev al ue)

(*reg)[index]™ =v al ue;

Page 1320f 171

03-0012N1430 Tecdhnical Report on C++ Performance

Appendix D: Timing Code

D.1 Measuring the Overhead of Class Operations
Thisisthe sample program discussed in 2.3.2 and following.

/*
Si npl e/ nai ve measurenentst ogivear ough ideao ft her elative
costo ff acilitiesr elatedt o OOP.
Thisc ouldb ef ooled/foiledbyc | evero ptimizersa ndby
cachee ffects.
Runatl eastt hreet inest oensuret hat resultsarer epeatable.
Test s:
virtualf unction
gl obalf unctionc alledi ndirectly
nonvi rtualm enberf unction
gl obalf unction
i nl'i nemenberf unction
nmacro
1stb rancho fM |
2ndb rancho fM |
callt hroughvirtualb ase
callo fv irtualb asef unction
dynami cc ast
two-1eveld ynam cc ast
typei d()
callt hroughp ointert omenber
cal | -by-reference
cal | - by-val ue
passa sp ointert of unction
passa sf unctiono bject
noty et:
co-variantr eturn
Thec osto ft hel oopi sn otm easurableat thisp recision:
seei nlinet ests
Byd efaultd o1 000000i terationst oc out
1sto ptionala rgument:n unbero fi teratio ns
2ndo ptionala rgunment:t argetf ilen ame
*/

/I intb ody(inti){r eturni *(i+1)*(i+2); }

Page 1330f 171

Tecdhnical Report on C++ Performance 03-0012N1430

cl ass X {
intx ;
statici nts t;
publ i c:
virtualv oidf (inta);
voidg (inta);
staticv oidh (inta);
voidk (inti){x +=i;} /1i nline

h

st ruct S{
intx ;
b

intg ob=0;

externv oidf (S*p ,i nta);
externvoidg (S*p ,i nta);
externv oidh (inta);

ty pedefv oid(*PF)(S*p ,i nta);
PFp[10]={g.f}

/li nlinevoidk (S*p,i){p ->x+=i;}
#defineK(p,i) ((p)->x+=(i))

structT{
constc har*s ;
doubl e t;

T(constc har*s s,d oublet t):s (ss),t (tt{ }
TO):s (0),t (0){

h

st ructA{
intx ;
virtualv oidf (int)=0 ;
voidg (int);

st ructB{
intx Xx;
virtualv oidf f(int)=0;
voidg g(int);

structC:A ,B {

voidf (int);
voidf f(int);
b
structC C:A ,B{
voidf (int);
voidf f(int);
b

voidA::g(inti) {x +=i
voidB::gg(inti) {x x+ =i
voidC::f(inti) {x +=i
voidC::ff(inti) {x x+ =i
voidCC:f(inti) {x +=i
voidCC :ff(inti){x x+ =i

e N N g g

Page 1340f 171

03-0012N1430 Tecdhnical Report on C++ Performance

te nplate<classT,c lassT2>i nlineT*c ast(T* p, T 2*q)

gl ob++;
returnd ynami c_cast <T*>(q);
}
structC 2:v irtualA{ //n ote:v irtualb ase
h
structC 3:v irtualA {
h
structD:C 2,C 3{ //n ote:v irtualb ase
voidf (int);
h
voidD::f(inti) {x +=i; }
st ruct P {
intx ;
inty ;
h

voidby ref(P&a){a .x++a .y++ }
voidby val(Pa) {a .x++a .y++ }

te npl ate<classF ,c lassV>i nlinevoidoper(F f,Vvv al){f (val); }

structF O {
voido perator()(inti){g lob+=i; }
h

#i nclude<stdlib.h> //Whynot< cstdlib> ?
#i ncl ude < i ostream>

#i ncl ude < f streanr

#i nclude < tine. h> /IWhynot< ctine> ?
#i ncl ude < vect or>

#i ncl ude < t ypei nf o>

usi ngn anespaces td;

te nplate<classT >i nlineT*t i(T*p)

{

if(typeid(p)= =t ypeid(int*))

p++;

returnp;
}
intmain(inta rgc,c har*a rgv[])
{

inti ; /1l oopv ariableheref ort hebe nefito fn on-conform ng

/1c onpilers

inth=(1l<a rgc)?a toi(argv[1l]):1 0000000; //n umbero f
/i terations

Page 1350f 171

Tecdhnical Report on C++ Performance

of streamt ar get;

ostreanfo p=& cout;

if(2<a rge){ /lp laceoutputi nfile
target.open(argv[2]);
op=& target;

}

ostream&out=* op;

/1o utputc omrandf ord ocunentation
for(i=0 ;i<a rgc;+ +i)

out< <argvl[i]< < :
out< <e ndl;

X*p x=n ewX;
X X
S*p s=n ewsS;
S s;

vector<T>v ;

clock_tt=c lock();

if(t==clock_t(-1)) {
cerr< <" sorry,n oc lock"< <e ndl
exit(1l);

for(i=0 ;i<n ;i ++4)
px->f (1);
v. push_back(T("virtualp x->f(1)

t=c lock();
for(i=0 ;i<n ;i ++4)
p[1] (ps, 1);
v. push_back(T("ptr-to-fctp [1] (ps, 1)

t=c lock();
for(i=0 ;i<n ;i ++4)
x. f(1);
v. push_back(T("virtualx .f(1)

t=c lock();
for(i=0 ;i<n ;i ++4)
p[1] (&, 1);
v. push_back(T("ptr-to-fctp [1] (&s, 1)

t=c lock();

for(i=0 ;i<n ;i +4+)
px->g(1);

v. push_back(T(" memberp x->g(1)

t=c lock();

for(i=0 ;i<n ;i ++4)
g(ps,1)

v. push_back(T("gl obalg (ps, 1)

t=c lock();
for(i=0 ;i<n ;i ++4)

x. g(1);
v. push_back(T(" menberx . g(1)

Page 1360f 171

I ock()

I ock()

I ock()

I ock()

I ock()

I ock()

I ock()

03-0012N1430

03-0012N1430

t=c lock();

for(i=0 ;i<n
9(&s,1);

v. push_back(T("

t=c lock();

for(i=0 ;i<n
X :h(1);

v. push_back(T("

t=c lock();

for(i=0 ;i<n
h(1);

v. push_back(T("

t=c lock();

for(i=0 ;i<n
px->k(1);

v. push_back(T("

t=c lock();

for(i=0 ;i<n
K(ps,1)

v. push_back(T("

t=c lock();

for(i=0 ;i<n
X. k(1);

v. push_back(T("

t=c lock();

for(i=0 ;i<n
K(&s,1)

v. push_back(T("

t=c lock();

for(i=0 ;i<n
pc->g(i);

v. push_back(T("

t=c lock();

for(i=0 ;i<n
pc->gg(i);

v. push_back(T("

t=c lock();

for(i=0 ;i<n
pa->f (i);

v. push_back(T("

t=c lock();

for(i=0 ;i<n
pb->ff (i);

v. push_back(T("

Tecdhnical Report on C++ Performance

g1 ++)
gl obalg (&s,1)
g1 ++)
staticX::h(1)
g1 ++)
gl obalh (1)
g1 ++)
inlinep x->k(1)
g1 ++)
macro K (ps, 1)
g1 ++)
inlinex.k(1)
g1 ++)

macro K (&s, 1)

g1 ++)

basel menberp c->g(i)
g1 ++)

base2 menberp c->gg(i)
g1 ++)

baselvirtualp a->f(i)
g1 ++)

base2v irtualp b->ff(i)

(¢}

(¢}

(¢}

(¢}

(¢}

(¢}

(¢}

(¢}

lock() - t));
lock() - t));
lock() - t));
lock() - t));
lock() - t));
lock() - t));
lock() - t));
lock() - t));
lock() - t));
lock() - t));
lock() - t));

Page 1370f 171

Tecdhnical Report on C++ Performance

t=c lock();
for(i=0 ;i<n ;i ++4)
cast(pa,p c¢);

v. push_back(T("baseld own-castc ast(pa, pc)

t=c lock();
for(i=0 ;i<n ;i ++4)
cast (pb,p c¢);

v. push_back(T("base2 d own-castc ast (pb, pc)

t=c lock();
for(i=0 ;i<n ;i ++4)
cast(pc,p a);

v. push_back(T("baselu p-castc ast(pc, pa)

t=c lock();
for(i=0 ;i<n ;i ++4)
cast (pc,p b);

v. push_back(T("base2u p-castc ast(pc, pb)

t=c lock();
for(i=0 ;i<n ;i ++4)
cast (pb,p a);

v. push_back(T("base2c ross-castc ast(pb,pa)"

CC*p cc=n ewCC;
pa=p cc;
pb=p cc;

t=c lock();
for(i=0 ;i<n ;i ++4)
cast(pa,p cc);

v. push_back(T("baseld own-cast2c ast(pa,pcc)"”,c

t=c lock();
for(i=0 ;i<n ;i ++4)
cast (pb,p cc);
v. push_back(T("base2 d own- cast

t=c lock();
for(i=0 ;i<n ;i ++4)
cast (pcc,p a);

v. push_back(T("baselu p-castc ast(pcc, pa)

t=c lock();
for(i=0 ;i<n ;i ++4)
cast (pcc,p b);

v. push_back(T("base2u p-cast 2 c ast (pcc, pb)

t=c lock();
for(i=0 ;i<n ;i ++4)
cast (pb,p a);

v. push_back(T("base2c ross-cast2c ast(pa, pb)",c

t=c lock();
for(i=0 ;i<n ;i ++4)
cast(pa,p b);

v. push_back(T("baselc ross-cast2c ast(pb, pa)",c

Page 1380f 171

cast(pb,pcc)”,c

03-0012N1430

lock()-t 1))
lock()-t 1))
lock()-t 1))
lock()-t 1))
lock()-t 1))
lock()-t 1))
lock()-t 1))
lock()-t 1))
lock()-t 1))
lock()-t 1))
lock()-t 1))

03-0012N1430 Tecdhnical Report on C++ Performance

Dp d=n ewD;

pa=p d;
t=c lock();
for(i=0 ;i<n ;i ++4)
pd->g(i); _
v. push_back(T("vbase menberp d->gg(i) ",c lock() - t));
t=c lock();
for(i=0 ;i<n ;i ++4)
pa->f (i);
v. push_back(T("vbasev irtualp a->f (i) ",c lock() - t));
t=c lock();
for(i=0 ;i<n ;i ++4)

cast(pa,p d);
v. push_back(T("vbase d own-castc ast(pa,pd) ",c lock()-t));

t=c lock();
for(i=0 ;i<n ;i ++4)
cast(pd,p a);
v. push_back(T("vbase u p-castc ast(pd, pa) ",c lock()-t));

t=c lock();
for(i=0 ;i<n ;i ++4)
ti (pa);
v. push_back(T("vbaset ypei d(pa) ",c lock() - t));

t=c lock();
for(i=0 ;i<n ;i ++4)
ti (pd);
v. push_back(T("vbaset ypei d(pd) ",c lock() - t));

void(A:*p nf)(int)=& A :f; [lvi rt ual

t=c lock();
for(i=0 ;i<n ;i ++4)
(pa->*pnf) (i);
v. push_back(T("pnfv irtual(pa->*pnf) (i) ",c lock() - t));

pnf=& A :g; //no n virtual

t=c lock();
for(i=0 ;i<n ;i ++4)
(pa->*pnf) (i); _
v. push_back(T("pnf(pa->*pnf) (i) ",c lock() - t));

Ppp;

t=c lock();
for(i=0 ;i<n ;i ++4)
by_ref (pp);
v. push_back(T("cal Ib y_ref (pp) ",c lock() - t));

t=c lock();
for(i=0 ;i<n ;i ++4)

by_val (pp);
v. push_back(T("cal Ib y_val (pp) ",c lock() - t));

Page 1390f 171

Tecdhnical Report on C++ Performance 03-0012N1430

}

int

FOf ct;
t=c lock();
for(i=0 ;i<n ;i ++4)

oper(h,g | ob);
v. push_back(T("callp tr-to-fcto per(h,glob)",c lock() - t));

t=c lock();
for(i=0 ;i<n ;i ++4)
oper(fct,g | ob);
v. push_back(T("cal If ct-objo per(fct,glob) ",c lock() - t));

if(clock()==clock_t(-1)) {
cerr< <" sorry,c locko verflow'< <endl;
exit(2);

out< <e ndl;
for(i=0 ;i <v.size();i ++)
out< <v[i].s<<": \t"
<<v [i].t*(doubl e(1000000)/n)/CLOCKS PER SEC
<<"m s"< <end|

if(argc<2){ /li fo utputi sg oing toc out
cout< <" pressanyc haractert of inis h"< <e ndl;
char c;
cin >>c; /1t op lacateWindows consol e mode
}
returnO; /l's hutu pnonconpliant conpilers
X :st=0;
voidX::f(inta) {x +=a;}
voidX::g(inta) {x +=a;}
voidX::h(inta) {s t+ =a;}

voidf (S*p,i nta){

p
voidg (S*p ,i nta){p ->x+=a;}
{g

voidh (inta)

Page 1400f 171

03-0012N1430 Tecdhnical Report on C++ Performance

D.2 Measuring Template Overheads
Thisisthe sample mde discussed in 2.5.1.

2
Testp rogramtogivear oughmeasureof" temgateb | oat."

Ift hemacro" DI FFERENT"i sd efinedatc onpil e tinme,t his
programcreatesal ist<T*>f orl 00different typeso fT.

Otherwi se,i tc reates1 00i nstanceso fal ist ofas ingle

poi ntert ype.

A capablec onpilerwillr ecogniset hatt hebi naryr epresentation
of| ist<T*>i st hesamef ora |llTa ndi tn eed retainonlya
singlec opyo ft hei nstantiationc odei nt he program

#i nclude< i st>

cl ass xO;
cl ass x1;
cl ass x2;
cl ass x3;
cl ass x4;
cl ass x5;
cl ass x6;
cl ass x7;
cl ass x8;
cl ass x9;
cl assx 10;
cl assx 11;
cl assx 12;
cl assx 13;
cl assx 14;
cl assx 15;
cl assx 16;
cl assx 17;
cl assx 18;
cl assx 19;
cl assx 20;
cl assx 21;
cl assx 22;
cl assx 23;
cl assx 24;
cl ass x 25;
cl assx 26;
cl assx 27;
cl assx 28;
cl assx 29;
cl ass x 30;
cl assx 31;
cl assx 32;
cl assx 33;
cl ass x 34;
cl ass x 35;
cl ass x 36;
cl assx 37;
cl assx 38;
cl assx 39;
cl ass x 40;
cl assx 41;
cl assx 42;
cl assx 43;

Page 1410f 171

Tecdhnical Report on C++ Performance 03-0012N1430

cl assx 44;
cl ass x 45;
cl ass x 46;
cl assx 47;
cl assx 48;
cl assx 49;
cl assx 50;
cl assx 51;
cl assx 52;
cl assx 53;
cl ass x 54;
cl ass x 55;
cl ass x 56;
cl assx 57;
cl assx 58;
cl assx 59;
cl assx 60;
cl assx 61;
cl assx 62;
cl assx 63;
cl assx 64;
cl ass x 65;
cl assx 66;
cl assx 67;
cl assx 68;
cl assx 69;
cl assx 70;
cl assx 71;
cl assx 72;
cl assx 73;
cl assx 74;
cl assx 75;
cl assx 76;
cl assx 77;
cl assx 78;
cl assx 79;
cl ass x 80;
cl assx 81;
cl assx 82;
cl assx 83;
cl ass x 84;
cl ass x 85;
cl ass x 86;
cl assx 87;
cl assx 88;
cl assx 89;
cl assx 90;
cl assx 91;
cl assx 92;
cl assx 93;
cl ass x 94;
cl assx 95;
cl ass x 96;
cl assx 97;
cl assx 98;
cl assx 99;

in tm ai n()
#i fd efinedDIFFERENT //c reatel1 00| istsof differentp ointert ypes
std::list<x0*> vO0;

std::list<x1*> vli,
std::list<x2*> v2;

Page 1420f 171

03-0012N1430 Tecdhnical Report on C++ Performance

std::list<x3*> v3;

std::list<x4*> v4,

std::list<x5*> vb5;

std::list<x6*> V6;

std::list<x7*> v7,

std::list<x8*> v8§;

std::list<x9*> v9;

std::list<x10*>v 10;
std::list<x11*>v 11;
std::list<x12*>v 12;
std::list<x13*>v 13;
std::list<x14*>v 14;
std::list<x15*>v 15;
std::list<x16*>v 16;
std::list<x17*>v 17,
std::list<x18*>v 18;
std::list<x19*>v 19;
std::list<x20*>v 20;
std::list<x21*>v 21;
std::list<x22*>v 22;
std::list<x23*>v 23;
std::list<x24*>v 24;
std::list<x25*>v 25;
std::list<x26*>v 26;
std::list<x27*>v 27,
std::list<x28*>v 28;
std::list<x29*>v 29;
std::list<x30*>v 30;
std::list<x31*>v 31;
std::list<x32*>v 32;
std::list<x33*>v 33;
std::list<x34*>v 34;
std::list<x35*>v 35;
std::list<x36*>v 36;
std::list<x37*>v 37,
std::list<x38*>v 38;
std::list<x39*>v 39;
std::list<x40*>v 40;
std::list<x41*>v 41,
std::list<x42*>v 42;
std::list<x43*>v 43;
std::list<x44*>v 44;
std::list<x45*>v 45;
std::list<x46*>v 46;
std::list<x47*>v 47,
std::list<x48*>v 48;
std::list<x49*>v 49;
std::list<x50*>v 50;
std::list<x51*>v 51;
std::list<x52*>v 52;
std::list<x53*>v 53;
std::list<xb4*>v 54;
std::list<x55*>v 55;
std::list<x56*>v 56;
std::list<x57*>v 57,
std::list<x58*>v 58;
std::list<x59*>v 59;
std::list<x60*>v 60;
std::list<x6l*>v 61;
std::list<x62*>v 62;
std::list<x63*>v 63;
std::list<x64*>v 64;
std::list<x65*>v 65;

Page 1430f 171

Tecdhnical Report on C++ Performance 03-0012N1430

std::list<x66*>v 66;
std::list<x67*>v 67,
std::list<x68*>v 68;
std::list<x69*>v 69;
std::list<x70*>v 70;
std::list<x71*>v 71,
std::list<x72*>v 72;
std::list<x73*>v 73;
std::list<x74*>v 74;
std::list<x75*>v 75;
std::list<x76*>v 76;
std::list<x77*>v 77,
std::list<x78*>v 78;
std::list<x79*>v 79;
std::list<x80*>v 80;
std::list<x81*>v 81,
std::list<x82*>v 82;
std::list<x83*>v 83;
std::list<x84*>v 84;
std::list<x85*>v 85;
std::list<x86*>v 86;
std::list<x87*>v 87,
std::list<x88*>v 88;
std::list<x89*>v 89;
std::list<x90*>v 90;
std::list<x91*>v 91;
std::list<x92*>v 92;
std::list<x93*>v 93;
std::list<x94*>v 94;
std::list<x95*>v 95;
std::list<x96*>v 96;
std::list<x97*>v 97,
std::list<x98*>v 98;
std::list<x99*>v 99;
#el se //c reatel 00i nstanceso f a singlel ist<T*>t ype
std::list<x0*> vO;
std::list<x0*> vli,
std::list<x0*> v2;
std::list<x0*> v3;
std::list<x0*> v4,
std::list<x0*> vb5;
std::list<x0*> v6;
std::list<x0*> v7,
std::list<x0*> v8§;
std::list<x0*> v9;
std::list<x0*>v 10;
std::list<x0*>v 11,
std::list<x0*>v 12;
std::list<x0*>v 13;
std::list<x0*>v 14,
std::list<x0*>v 15;
std::list<x0*>v 16;
std::list<x0*>v 17,
std::list<x0*>v 18;
std::list<x0*>v 19;
std::list<x0*>v 20;
std::list<x0*>v 21;
std::list<x0*>v 22;
std::list<x0*>v 23;
std::list<x0*>v 24,
std::list<x0*>v 25;
std::list<x0*>v 26;

Page 1440f 171

03-0012N1430 Tecdhnical Report on C++ Performance

std::list<x0*>v 27,
std::list<x0*>v 28;
std::list<x0*>v 29;
std::list<x0*>v 30;
std::list<x0*>v 31;
std::list<x0*>v 32;
std::list<x0*>v 33;
std::list<x0*>v 34,
std::list<x0*>v 35;
std::list<x0*>v 36;
std::list<x0*>v 37,
std::list<x0*>v 38;
std::list<x0*>v 39;
std::list<x0*>v 40;
std::list<x0*>v 41,
std::list<x0*>v 42,
std::list<x0*>v 43;
std::list<x0*>v 44,
std::list<x0*>v 45;
std::list<x0*>v 46;
std::list<x0*>v 47,
std::list<x0*>v 48;
std::list<x0*>v 49;
std::list<x0*>v 50;
std::list<x0*>v 51;
std::list<x0*>v 52;
std::list<x0*>v 53;
std::list<x0*>v 54,
std::list<x0*>v 55;
std::list<x0*>v 56;
std::list<x0*>v 57,
std::list<x0*>v 58;
std::list<x0*>v 59;
std::list<x0*>v 60;
std::list<x0*>v 61,
std::list<x0*>v 62
std::list<x0*>v 63;
std::list<x0*>v 64,
std::list<x0*>v 65;
std::list<x0*>v 66;
std::list<x0*>v 67,
std::list<x0*>v 68;
std::list<x0*>v 69;
std::list<x0*>v 70;
std::list<x0*>v 71,
std::list<x0*>v 72;
std::list<x0*>v 73;
std::list<x0*>v 74,
std::list<x0*>v 75;
std::list<x0*>v 76;
std::list<x0*>v 77,
std::list<x0*>v 78;
std::list<x0*>v 79;
std::list<x0*>v 80;
std::list<x0*>v 81,
std::list<x0*>v 82
std::list<x0*>v 83;
std::list<x0*>v 84,
std::list<x0*>v 85;
std::list<x0*>v 86;
std::list<x0*>v 87,
std::list<x0*>v 88;
std::list<x0*>v 89;

Page 1450f 171

Tecdhnical Report on C++ Performance 03-0012N1430

std::list<x0*>v 90;
std::list<x0*>v 91,
std::list<x0*>v 92;
std::list<x0*>v 93;
std::list<x0*>v 94,
std::list<x0*>v 95;
std::list<x0*>v 96;
std::list<x0*>v 97,
std::list<x0*>v 98;
std::list<x0*>v 99;
#endi f
returnoO ;

}

Page 1460f 171

03-0012N1430 Tecdhnical Report on C++ Performance

D.3 The Stepanov Abstraction Penalty Benchmark
Thisisthe sample wmde discussed in 2.3.1.

/* KAl's version of Stepanov Benchmark -- Version 1.2

Version 1.2 -- removed some special code for GNU systems that
GNU complained about without -O

To verify how efficiently C++ (and in particular STL) is compiled by
the present day compilers, | composed a little benchmark. It outputs
13 numbers. In the ideal world these numbers should be the same. In
the real world, however, ...

The final number printed by the benchmark is a geometric mean of the
performance degradation factors of individual tests. It claims to
represent the factor by which you will be punished by your

compiler if you attempt to use C++ data abstraction features. | call

this number "Abstraction Penalty."

As with any benchmark it is hard to prove such a claim; some people
told me that it does not represent typical C++ usage. It is, however,

a noteworthy fact that majority of the people who so object are
responsible for C++ compilers with disproportionatly large Abstraction
Penalty.

The structure of the benchmark is really quite simple. It adds 2000
doubles in an array 25000 times. It does it in 13 different ways that
introduce more and more abstract ways of doing it:

0 - uses simple Fortran-like for loop.

1- 12 use STL style accumulate template function with plus function object.
1,3,5,7,9, 11 use doubles.

2,4,6, 8,10, 12 use Double - double wrapped in a class.

1, 2 - use regular pointers.

3, 4 - use pointers wrapped in a class.

5, 6 - use pointers wrapped in a reverse-iterator adaptor.

7, 8 - use wrapped pointers wrapped in a reverse-iterator adaptor.

9, 10 - use pointers wrapped in a reverse-iterator adaptor wrapped in a

reverse-iterator adaptor.
11, 12 - use wrapped pointers wrapped in a reverse-iterator adaptor wrapped in a
reverse-iterator adaptor.

All the operators on Double and different pointer-like classes are

declared inline. The only thing that is really measured is the penalty for data
abstraction. While templates are used, they do not cause any performance degradation.
They are used only to simplify the code.

Since many of you are interested in the C++ performance issues, |
decided to post the benchmark here. | would appreciate if you run it
and (if possible) send me the results indicating what you have
compiled it with (CPU, clock rate, compiler, optimization level). It

is self contained and written so that it could be compiled even with
those compilers that at present cannot compile STL at all.

It takes a fairly long time to run - on a really slow machine it might take a full

hour. (For those of you who want to run it faster - give it a command line argument
that specifies the number of

iterations. The default is 25000, but it gives an accurate predictions even with 500
or a thousand.)

Alex Stepanov
stepanov@mti.sgi.com

*

Page 1470f 171

Tecdhnical Report on C++ Performance

#include <stddef.h>
#include <stdio.h>
#include <time.h>
#include <math.h>
#include <stdlib.h>

template <class T>
inline int operator!=(const T& X, const T& y) {
return I(x ==y);

}

struct Double {
double value;
Double() {}
Double(const double& x) : value(x) {}
operator double() { return value; }

k

inline Double operator+(const Double& x, const Double& y) {

return Double(x.value + y.value);

}

struct double_pointer {
double* current;
double_pointer() {}
double_pointer(double* x) : current(x) {}
double& operator*() const { return *current; }
double_pointer& operator++() {
++current;
return *this;

double_pointer operator++(int) {
double_pointer tmp = *this;
++*this;
return tmp;

double_pointer& operator--() {
--current;
return *this;

}

double_pointer operator--(int) {
double_ pointer tmp = *this;
--*this;
return tmp;

inline int operator==(const double_pointer& X,

const double_pointer& y) {

return x.current == y.current;

}

struct Double_pointer {

Double* current;

Double_pointer() {}

Double_pointer(Double* x) : current(x) {}

Double& operator*() const { return *current; }

Double_pointer& operator++() {
++current;
return *this;

}

Double_pointer operator++(int) {
Double_pointer tmp = *this;

++*this;
return tmp;
}
Double_pointeré& operator--() {
--current;
return *this;
}

Page 1480f 171

03-0012N1430

03-0012N1430 Tecdhnical Report on C++ Performance

Double_pointer operator--(int) {
Double_pointer tmp = *this;
--*this;
return tmp;

inline int operator==(const Double_pointer& x,
const Double_pointer& y) {
return x.current == y.current;

}

template <class RandomAccesslterator, class T>
struct reverse_iterator {
RandomAccesslterator current;
reverse_iterator(RandomAccesslterator x) : current(x) {}
T& operator*() const {
RandomAccesslterator tmp = current;
return *(--tmp);

reverse_iterator<RandomAccesslterator, T>& operator++() {
--current;
return *this;
}
reverse_iterator<RandomAccesslterator, T> operator++(int) {
reverse_iterator<RandomAccesslterator, T> tmp = *this;

++*this;
return tmp;
}
reverse_iterator<RandomAccesslterator, T>& operator--() {
++current;
return *this;
}

reverse_iterator<RandomAccesslterator, T> operator--(int) {
reverse_iterator<RandomAccesslterator, T> tmp = *this;

-*this ;
return tmp;
}
h
template <class RandomAccesslterator, class T>
inline

int operator==(const reverse_iterator<RandomAccesslterator, T>& X,
const reverse_iterator<RandomAccessliterator, T>& y) {
return x.current == y.current;

}

struct {
double operator()(const double& x, const double& y) {
return x +vy;

Double operator()(const Double& x, const Double& y) {
return x +vy;
}

} plus;

template <class Iterator, class Number>

Number accumulate(lterator first, Iterator last, Number result) {
while (first != last) result = plus(result, *first++);
return result;

}

int iterations = 25000;
#define SIZE 2000

int current_test = 0;

double result_times[20];

Page 1490f 171

Tecdhnical Report on C++ Performance 03-0012N1430

void summarize() {
printf("\ntest ~ absolute additions ratio with\n");
printf("number time per second testO\n\n");
int i
double millions = (double(SIZE) * iterations)/1000000.;
for (i = 0; i < current_test; ++i)
printf("%2i %5.2fsec %5.2fM %.2f\n",
I
resul t_timesi],
millions/result_times]i],
result_timesli}/result_times[0]);
double gmean_times = 0.;
double total_absolute_times = 0.; // sam added 12/05/95
double gmean_rate = 0.;
double gmean_ratio = 0.;
for (i = 0; i < current_test; ++i) {
total_absolute_times += result_timesJi]; // sam added 12/05/95
gmean_times += log(result_times[i]);
gmean_rate += log(millions/result_timesli]);
gmean_ratio += log(result_times[i)/result_times[0]);

}
printf('mean: %5.2fsec %5.2fM %.2f\n",
exp(gmean_times/current_test),
exp(gmean_rate/current_test),
exp(gmean_ratio/current_test));
printf("\nTotal absolute time: %.2f sec\n",total_absolute_times);//sam added 12/05/95
printf("\nAbstraction Penalty: %.2f\n\n", exp(gmean_ratio/current_test));

clock_t start_time, end_time;
inline void start_timer() { start_time = clock(); }

inline double timer() {

end_time = clock();

return (end_time - start_time)/double(CLOCKS_PER_SEC);
}

const double init_value = 3.;

double data[SIZE];
Double Data[SIZE];

inline void check(double result) {
if (result != SIZE * init_value) printf("test %i failed\n", current_test);
}

void testO(double* first, double* last) {
start_timer();
for(inti = 0; i < iterations; ++i) {
double result = 0;
for (int n = 0; n < last - first; ++n) result += first[n];
check(result);

result_times[current_test++] = timer();

}

template <class Iterator, class T>
void test(lIterator first, Iterator last, T zero) {
int i
start_timer();
for(i = 0; i < iterations; ++i)
check(double(accumulate(first, last, zero)));
result_times[current_test++] = timer();

}

template <class Iterator, class T>

Page 1500f 171

03-0012N1430

void fill(Iterator first, Iterator last, T value) {
while (first != last) *first++ = value;
}

doubled =0.;

Double D =0.;

typedef double* dp;

dp dpb = data;

dp dpe = data + SIZE;

typedef Double* Dp;

Dp Dpb = Data;

Dp Dpe = Data + SIZE;

typedef double_pointer dP;

dP dPb(dpb);

dP dPe(dpe);

typedef Double_pointer DP;

DP DPb(Dpb);

DP DPe(Dpe);

typedef reverse_iterator<dp, double> rdp;
rdp rdpb(dpe);

rdp rdpe(dpb);

typedef reverse_iterator<Dp, Double> rDp;
rDp rDpb(Dpe);

rDp rDpe(Dpb);

typedef reverse_iterator<dP, double> rdP;
rdP rdPb(dPe);

rdP rdPe(dPb);

typedef reverse_iterator<DP, Double> rDP;
rDP rDPb(DPe);

rDP rDPe(DPDb);

typedef reverse_iterator<rdp, double> rrdp;
rrdp rrdpb(rdpe);

rrdp rrdpe(rdpb);

typedef reverse_iterator<rDp, Double> rrDp;
rrDp rrDpb(rDpe);

rrDp rrDpe(rDpb);

typedef reverse_iterator<rdP, double> rrdP;
rrdP rrdPb(rdPe);

rrdP rrdPe(rdPb);

typedef reverse_iterator<rDP, Double> rrDP;
rrDP rrDPb(rDPe);

rrDP rrDPe(rDPb);

int main(int argv, char** argc) {
if (argv > 1) iterations = atoi(argc[1]);
fill(dpb, dpe, double(init_value));
fill(Dpb, Dpe, Double(init_value));
testO(dpb, dpe);
test(dpb, dpe, d);
test(Dpb, Dpe, D);
test(dPb, dPe, d);
test(DPb, DPe, D);
test(rdpb, rdpe, d);
test(rDpb, rDpe, D);
test(rdPb, rdPe, d);
test(rDPb, rDPe, D);
test(rrdpb, rrdpe, d);
test(rrDpb, rrDpe, D);
test(rrdPb, rrdPe, d);
test(rrDPb, rrDPe, D);
summarize();
return O;

Tecdhnical Report on C++ Performance

Page 151 0f 171

Tecdhnical Report on C++ Performance 03-0012N1430

D.4 Comparing Function Objects to Function Pointers

2.6 mentions that optimizers work better with function objeds than function pointers.
This program attempts to measure any benefit.

I
/I This is a program to measure the relative efficiency of gsort vs std::sort
/I 'and of function objects vs function pointers.

"

/I Optional Arguments: number of iterations to repeat
" size of array of doubles to sort

" name of output file

"

/I'In all cases, an array of doubles is filled with random numbers.
/I This array is sorted in ascending order, then the same random numbers are
/I reloaded into the array and sorted again. Repeat ad libitum.

"

"

/l What is measured:

/I These measurements operate on an array of doubles

/I 1. Using gsort + user-defined comparison function to sort array
/I 2. Using std::sort + a function pointer (not a function object)

/I 3. Using std::sort + user-defined function object, out-of-line code
/I 4. Using std::sort + user-defined function object, inline code

/I'5. Using std::sort + std::less

/I 6. Using std::sort + native operator <

"

/I These measurements operate on an std::vector of doubles

"

/I'7. Using std::sort + std::less,

/I 8. Using std::sort + native operator <,

" and a vector instead of a primitive array
/I 9. Using std::sort + function pointer from test 2
"

"

/I Since gsort's comparison function must return int (less than 0, O, greater than 0)
/I 'and std::sort's must return a bool, it is not possible to test them with each
/I other's comparator.

I
/I struct to hold identifier and elapsed time
struct T {

const char* s;

double t;

T(const char* ss, double tt) : s(ss), t(tt) {}
T0 :s(0), t(0) {}

I -=-mmem- helper functions
/I gsort passes void * arguments to its comparison function,
/I which must return negative, 0, or positive value

int

less_than_function1(const void * Ihs, const void * rhs)

{
int retcode = 0;
if(*(const double *) Ihs < *(const double *) rhs) retcode = -1;
if(*(const double *) Ihs > *(const double *) rhs) retcode = 1,
return retcode;

}

/I std::sort, on the other hand, needs a comparator that returns true or false
bool

less_than_function2(const double Ihs, const double rhs))

if(Ins < rhs)) return true;
else return false;

Page 1520f 171

03-0012N1430 Tecdhnical Report on C++ Performance

/I the comparison operator in the following functor is defined out of line
struct less_than_functor

bool operator()(const double& Ihs, const double& rhs) const;

k

bool
less_than_functor::operator()(const double& lhs, const double& rhs) const

return(Ihs < rhs? true : false);

}

/I the comparison operator in the following functor is defined inline
struct inline_less_than_functor

bool operator()(const double& Ihs, const double& rhs) const

return(Ihs < rhs? true : false);

1
#include <vector>
#include <functional>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <ctime>
#include <stdlib.h>

using namespace std;

int main(int argc, char* argv([])

int i
int iterations = (1 < argc) ? atoi(argv[1]) : 1000000; // number of

int tablesize = (2 < argc) ? atoi(argv[2]) : 1000000; // size of
Il array

ofstream target;

ostream* op = &cout;

if (3 < argc) { // place output in file
target.open(argv[3]);
op = ⌖

ostreamé& out = *op;

/I output command for documentation:
for (i=0; i< argc; ++i)

out << argv[i] <<"";
out << endl;

vector<T>v; /I holds elapsed time of the tests

/I seed the random number generator
srand(clock());

clock_t t = clock();

if (t == clock_t(-1))

{

cerr << "sorry, no clock" << endl;
exit(1);

Page 1530f 171

Tecdhnical Report on C++ Performance 03-0012N1430

I/l initialize the table to sort. we use the same table for all tests,

/l'in case one randomly-generated table might require more work than
/I another to sort

double * master_table = new double[tablesize];

for(int n = 0; n < tablesize; ++n)

{
master_table[n] = static_cast<double>(rand());
}
double * table = new double[tablesize]; /I working copy

/I here is where the timing starts

/I TEST 1: gsort with a C-style comparison function
copy(master_table, master_table+tablesize, table);
t = clock();

for (i = 0; i < iterations; ++i)

gsort(table, tablesize, sizeof(double), less_than_functionl);
copy(master_table, master_table+tablesize, table);

v.push_back(T("gsort array with comparison functionl ", clock() - t));

/ITEST 2: std::sort with function pointer
copy(master_table, master_table+tablesize, table);
t = clock();

for (i = 0; i < iterations; ++i)

sort(table, table + tablesize, less_than_function2);
copy(master_table, master_table+tablesize, table);

v.push_back(T("sort array with function pointer ", clock() - t));

/I TEST 3: std::sort with out-of-line functor
copy(master_table, master_table+tablesize, table);
t = clock();

for (i = 0; i < iterations; ++i)

sort(table, table + tablesize, less_than_functor());
copy(master_table, master_table+tablesize, table);

v.push_back(T("sort array with user-supplied functor ", clock() - t));

/I TEST 4: std::sort with inline functor
copy(master_table, master_table+tablesize, table);
t = clock();

for (i = 0; i < iterations; ++i)

sort(table, table + tablesize, inline_less_than_functor());
copy(master_table, master_table+tablesize, table);

v.push_back(T("sort array with user-supplied inline functor ", clock() - t));

/ITEST 5: std::sort with std::<less> functor

copy(master_table, master_table+tablesize, table);
t = clock();

for (i = 0; i < iterations; ++i)

sort(table, table + tablesize, less<double>());
copy(master_table, master_table+tablesize, table);

v.push_back(T("sort array with standard functor ", clock() - t));
/ITEST 6: std::sort using native operator <

copy(master_table, master_table+tablesize, table);

t = clock();

for (i = 0; i < iterations; ++i)

sort(table, table + tablesize);
copy(master_table, master_table+tablesize, table);

Page 1540f 171

03-0012N1430 Tecdhnical Report on C++ Performance

v.push_back(T("sort array with native < operator ", clock() - t));

/ITEST 7: std::sort with std::less functor,
/I on a vector rather than primitive array
vector<double> v_table(master_table, master_table+tablesize);

t = clock();
for (i = 0; i < iterations; ++i)
{

sort(v_table.begin(), v_table.end(), less<double>());
copy(master_table, master_table+tablesize, v_table.begin());

v.push_back(T("sort vector with standard functor ", clock() - t));
/ITEST 8: std::sort vector using native operator <

v_table.assign(master_table, master_table+tablesize);

t = clock();

for (i = 0; i < iterations; ++i)

sort(v_table.begin(), v_table.end());
copy(master_table, master_table+tablesize, v_table.begin());

v.push_back(T("sort vector with native < operator ", clock() - t));

/ITEST 9: std::sort vector using function pointer from test 2
v_table.assign(master_table, master_table+tablesize);

t = clock();
for (i = 0; i < iterations; ++i)
{

sort(v_table.begin(), v_table.end(), less_than_function2);
copy(master_table, master_table+tablesize, v_table.begin());

v.push_back(T("sort vector with function pointer ", clock() - t));

if (clock() == clock_t(-1))
{

cerr << "sorry, clock overflow" <<endl;
exit(2);
}

/I output results
out << endl;
for (i = 0; i<v.size(); i++)
out << V[i].s << " :\t"
<< V[i].t /CLOCKS_PER_SEC
<< " seconds" << endl;
delete[] table;
return O;

Page 1550f 171

Tecdhnical Report on C++ Performance 03-0012N1430

D.5 Measuring the Cost of Synchronized 1/0O

2.6 discusses using sync_with_stdio(false) to improve I/O performance This
program attempts to measure any benefit.
/*

Test program to
(1) compare the performance of classic iostreams,
standard iostreams, and C-style stdio for output, and
(2) test any overhead of sync_with_stdio(true). Standard
iostreams by default are synchronized with stdio streams;
the opposite was true of classic iostreams.

optional command line argument:
- how many numbers to output (default 1,000,000)

When compiling, define CLASSIC or STDIO to enable
those options; otherwise the default is to use
standard iostreams.
*/

#include <vector>
#include <ctime>

#if defined (STDIO)
#include <stdio.h>
#elif defined (CLASSIC)
#include <iostream.h>
#else
#include <iostream> /I use standard iostreams
#endif

using namespace std;

I
/I struct to hold identifier and elapsed time
struct T {

const char* s;

double t;

T(const char* ss, double tt) : s(ss), t(tt) {}
T0 :s(0). t(0) {}

int main (int argc, char *argv[])
{
constint n = (1 < argc) ? atoi(argv[1]) : 1000000; // number of
/I iterations
inti; /l'loop variable

vector<T>v; /I holds elapsed time of the tests

#if defined (CLASSIC)

/I non-synchronized /O is the default

#else

cout.sync_with_stdio (false); /I must be called before any output
#endif

/I seed the random number generator
srand(clock());

clock_tt = clock();

if (t == clock_t(-1))

{
#if defined(STDIO)

fprintf(stderr, "sorry, no clock\n");
#else

Page 1560f 171

03-0012N1430 Tecdhnical Report on C++ Performance

cerr << "sorry, no clock" << endl;
#endif
exit(1);

#if defined(STDIO)
t = clock();
for (i=0;i!=n; ++i)

printf ("%d ", i);

}

v.push_back(T("output integers to stdio ", clock() - t));
t = clock();

for (i=0;i!=n; ++i)

printf ("%x ", i);
v.push_back(T("output hex integers to stdio ", clock() - t));
if (clock() == clock_t(-1))
fprintf (stderr, "sorry, clock overflow\n");

exit(2);

/I output results
fprintf (stderr, "\n");
for (i = 0; i<v.size(); i++)
fprintf(stderr, "%s :\t%f seconds\n", v[i].s, V[i].t /CLOCKS_PER_SEC);

#else
t = clock();
for (i=0;i!=n; ++i)
{
cout<<i<<'t
v.push_back(T("output integers to cout (sync = false) ", clock() - t));
cout << hex;
t = clock();
for (i=0;i!=n; ++i)
{

cout<<i<<'t
v.push_back(T("output hex integers to cout (sync = false) ", clock() - t));

#if defined (CLASSIC)

cout.sync_with_stdio(); /I synchronize -- no argument needed
#else

cout.sync_with_stdio (true);

#endif

cout << dec;
t = clock();
for (i=0;i!=n; ++i)
{
cout<<i<<'t
v.push_back(T("output integers to cout (sync = true) ", clock() - t));
cout << hex;
t = clock();
for (i=0;i!=n; ++i)
{
cout<<i<<'t

v.push_back(T("output hex integers to cout (sync = true) ", clock() - t));

if (clock() == clock_t(-1))

Page 157 of 171

Tecdhnical Report on C++ Performance

cerr << "sorry, clock overflow" <<endl;
exit(2);

/I output results
cerr << endl;
for (i = 0; i<v.size(); i++)
cerr << v[i].s << " :\t"
<< V[i].t /CLOCKS_PER_SEC
<< " seconds" << endl;
#endif

return O;

Page 1580f 171

03-0012N1430

03-0012N1430 Tecdhnical Report on C++ Performance

Appendix E: Bibliography

These references may serve & a starting point for finding more information about
programming for performance

| [BIBREF-1] Bentley, Jon Louis

Writing Efficient Programs
Prentice-Hall, Inc., 1982

Unfortunately out of print, but a dassic caalogue of tedniques that can be
used to optimize the space and time consumed by an application (often by
trading one resourceto minimize use of the other). Because this book predates
the pubic release of C++, code examples are given in Pascd.

“T he rules that we will study increase dficiency by making changes to a
program that often deaease program clarity, moddarity, and robustness
When this coding style is apgied indiscriminately throughou a large system
(asit often has been), it usually increases efficiency dightly but leads to late
software that is full of bugs and impossble to maintain. For these reasons,
techniques at this levé have erned the name of "hacks'.... But writing
efficient code need na remain the domain of hackes. The purpose of this
bodkisto present work at thisleve as a set of engineeing techniques.”

[BIBREF-2] Bulka, Dov, and David Mayhew

Efficient C++: Performance Programming Tedniques
Addison-Wesley, 2000

Contains many spedfic low-level techniques for improving time performance,
with measurements to illustrate their effectiveness.

"If used properly, C++ can yield software systems exhibiting nd just
acceptable performance, but superior software performance”

| [BIBREF-3] C++ ABI Group
C++ ABI for Itanium (Draft)
http://www.codesourcery.com/cxx-abi/abi.html

Although this document contains processor-specific material for the Itanium
64-bit Application Binary Interface, it is intended as a generic spedfication, to
be usable by C++ implementations on a variety of architedures. It discusses
implementation details of virtual table layout, exception handling support

Page 1590f 171

Tecdhnical Report on C++ Performance 03-0012N1430

structures, Run-Time Type Information, name mangling, stack unwinding, and
template instantiation.

I [BIBREF-4] Cusumano, Michael A., and David B. Y offie

What Netscape Learned from CrossPlatform Software Development
Communications of the ACM, October 1999

Faster run-time performance brings commercial advantage, sometimes enough
to outweigh other considerations such as portability and maintainability (an
argument also advanced in the Bulka-Mayhew book [BIBREF-2]).

| [BIBREF-5] de Dinechin, Christophe
C++ Exception Handling
|EEE Concurrency, October-December 2000

| [BIBREF-6] Embedded C++ Technicad Committee
Embedded C++ Language Spedfication, Rationale, & Programming Guidelines

http://www.caravan.net/ec2plus

EC++ is a subset of Standard C++ that excludes ome significant feaures of
the C++ programming language, including:

exception handling (EH)

run-time type identification (RTTI)
templates

multiple inheritance (M1)
namespaces

| [BIBREF-7] Glass Robert L

Software Runaways. Lesons L earned from M assve Software Projed Failures
PrenticeHall PTR, 1998

Written from a management perspedive rather than a technical one, this book
makes the point that a major reason why some software projeds have been
classified as massive failures is for failing to meet their requirements for
performance.

“ Of all the techndogy problems noted earlier, the most dominart one in our
own findings in this bodk is that performanceis a frequent cause of failure. A
fairly large number of our runaway projects were real-time in naure, and it
was not uncomnon to find that the projed could na achieve the resporse

Page 1600f 171

03-0012N1430 Tecdhnical Report on C++ Performance

times andor functionad performance times demanded by the origina
requirements.”

| [BIBREF-8] Gorlen, Keith, et al.

Data Abstraction and Objed Oriented Programming in C++
NIH 1990

Based on the Smalltalk model of objed orientation, the “NIH Class Library”
also known as the “OO0OPS Library” was one of the ealiest Objed Oriented
libraries for C++. As there were no "standard" classes in the ealy days of
C++, and because the NIHCL was freely usable having been funded by the US
Government, it had a lot of influence on design styles in C++ in subsequent
yeas.

| [BIBREF-9] Henrikson, Mats, and Erik Nyquist.

Industrial Strength C++: Rules and Recommendations
PrenticeHall PTR, 1997

Coding standards for C++, with some discussion on performance apeds that
influenced them.

| [BIBREF-10] Hewlett-Packard Corp.

CXperf User's Guide
http://docs.hp.com/hpux/onlinedocs/B6323-96001/B6323-96001.html
This guide describes the CXperf Performance Analyzer, an interadive run-
time performance analysis tool for programs compiled with HP ANSI C (c89),
ANSI C++ (aCC), Fortran 90 (f90), and HP Parallel 32-bit Fortran 77 (f77)

compilers. This guide helps you prepare your programs for profiling, run the
programs, and analyzethe resulting performance data.

Vendors of development tools often provide guidance on programming for
maximum performance This is one of such documents available.

Page 1610f 171

Tecdhnical Report on C++ Performance 03-0012N1430

| [BIBREF-11] Knuth, Donald E.

The Art of Computer Programming, Volume 1, Reissued 3rd Edition
Addison-Wesley

Fundamental Algorithms [1997
Semi-numerical Algorithms [1999
Sorting and Seaching [1999

The definitive work on issues of algorithmic efficiency.

| [BIBREF-12] Koenig, A., and B. Stroustrup

Exception Handling for C++ (revised)
Procealings of the 1990Usenix C++ Conference, pp149176, San Francisco, April
1990

This paper discusses the two approades to low-overheal exception handling.

I [BIBREF-13] Koenig, Andrew, and BarbaraE. Moo

Performance: Myths, M easurements, and Morals
The Journal of Objed-Oriented Programming

Part 1. Myths [Oct ‘99
Part 2. Even Easy Measurements Are Hard [Nov/Dec*'99
Part 3: Quadratic Behavior Will Get You If You Dont Watch Out [Jan ‘00|
Part 4. How Might We Speead Up a Simple Program [Feb *0Q]
Part 5: How Not to Measure Exeaution Time [Mar/Apr ‘00|
Part 6: Useful Measurements—Finally [May ‘0Q]
Part 7: Detailed Measurements of a Small Program [Jun *0Q]
Part 8: Experimentsin Optimization [Jul/Aug ‘00Q]
Part 9: Optimizaions and Anomalies [Sep ‘00|
Part 10: Morals [Oct ‘0Q]

Becaise of the interadion of many fadors, measuring the run-time
performance of a program can be surprisingly difficult.

“The most important way to oltain good pmrformance is to use good
algorithms.”

Page 1620f 171

03-0012N1430 Tedhnical Report on C++ Performance

| [BIBREF-14] Lajoie, Joseé

" Exception Handling: Behind the Scenes.”
(Included in C++ Gems, edited by Stanley B. Lippman)
SIGS Reference Library, 1996

A brief overview of the C++ language feaures which support exception
handling, and of the underlying mechanisms necessary to suppat these
feaures.

| [BIBREF-15 Lakos, John

L arge-Scale C++ Software Design
Addison-Wesley, 1996

Scalability is the main focus of this book, but scaling upto large systems
inevitably requires performance issues to be aldresseed. This book predates
the extensive use of templates in the Standard Library.

| [BIBREF-16 Levine, JohnR.

Linkers& Loaders
Morgan Kaufmann Publishers, 2000

This book explains the mechanisms which enable static and dynamic linking
to create exeautable programs from multiple translation units.

| [BIBREF-17] Lippman, Stan
Insidethe C++ Objed M odel

Explains typicd implementations and overheads of various C++ language
feaures, such as multiple inheritance and virtual functions. A good in-depth
look at the internals of typical implementations.

I [BIBREF-18] Liu, Yanhong A., and Gustavo Gomez

Automatic Accurate Cost-Bound Analysis for High-Level Languages
|[EEE Transadions on Computers, Vol. 50, No. 12, Decanber 2001

This paper describes a language-independent approach to assigning cost
parameters to various language cngtructs, then through satic analysis and
transformations automaticadly calculating the st bounds of whole programs.
Example programs in this article ae written in a subset of Scheme, not C++.
The aticle discusses how to obtain cost bounds in terms of costs of language
primitives, though it does not redly discuss how to obtain such costs.

Page 1630f 171

Tecdhnical Report on C++ Performance 03-0012N1430

However, it includes a list of references to ather resources discussing how to
perform respedive measurements for different hardware achitedures and
programming languages.

“It is particularly important for many apgications, such as real-time systems
and embedded systems, to be able to predict accurate time bound and space
bounds automatically and efficiently and it is particularly desirable to be able
to doso for high-leve languages.”

| [BIBREF-19] Meyers, Scott

Effedive C++: 50 Spedfic Waysto Improve Your Programsand Design
Seoond Edition, Addison-Wesley, 1997.

More Effedive C++: 35 New Waysto Improve Your Programs and Designs
Addison-Wesley, 1995

Effedive STL: 50 Spedfic Waysto Improve Your Use of the Standard Template

Library
Addison-Wesley, 2001

In keeping with the philosophy of the Standard Library, this book carefully
documents the performance implications of different choices in design and

coding, such as whether to use std:map:operator] or
std::map::insert

“The fact that function pointer parameters inhibit inlining explains an
observation that longtime C programmners often find hard to believe C++'s
sort virtually always embarrasses C's dsort when it comes to speed. Sue,
C++ has function ard class templates to instantiate and funny-looking
operator() functions to invoke while C makes a simple function call, but all
that C++ "overhead" is absorbed duing compilation... It's easy to verify that
when comparing function objeds andreal functions as algorithm parameters,
there'san alstraction bonus.”

| [BIBREF-20] Mitchell, Mark

Type-Based Alias Analysis
Dr. Dobbs' Journal, October 200Q

Some techniques for writing source @de that is easier for a compiler to
optimize
“ Although C++ is often criticized as being too dow for high-performance

apdications, ... C++ can actually enalde compil ers to create ade that is even
faster thanthe C equivalent.”

Page 1640f 171

03-0012N1430 Tecdhnical Report on C++ Performance

| [BIBREF-21] Moss, Darren G.
Embedded Systems Conference Procealings

Efficient C/C++ Coding Techniques

Boston, 2001
http://www.esconline.com/db_area/01boston/304.pdf

The objedive of this entire treatment is to determine if the speed and size
disadvantages of C/C++ <can b2 minimized for a range of
compiler/microprocesor platforms. This gudy resoundy says. yes. The
asembly output of comnon C/C++ constructs demonstrate that the crred
seledion d coding techniques does guide the cmpiler to produce dficient
code.

I [BIBREF-22] Musser, David R., Gillmer J. Derge, and Atul Saini

STL T utorial and Reference Guide, Seand Edition: C++ Programming with the
Standard TemplateLibrary
Addison-Wesley, 2001

Among the tutorial material and example wde is a chapter describing a class
framework for timing generic algorithms.

| [BIBREF-23 Noble, James, and Charles Weir

Small M emory Software: Patternsfor Systemswith Limited M emory
Addison-Wesley, 2001

A book of design patterns illustrating a number of strategies for coping with
memory congtraints.

“But what is snall memory software? Memory size, like riches or beauty, is
always relative Whether a paticular amourt of memory is snall or large
depends on the requirements the software shoud med, on the underlying
software and hadware architedure, and onmuch else. A weather-calculation
program on avast computer may be just as constrained by memory limits as a
word-procesor running on amobile phore, or an embedded apgication on a
smart card. Therefore:

Small memory software is any software that doesn’t have as much memory as
you'd likd”

Page 1650f 171

Tecdhnical Report on C++ Performance 03-0012N1430

| [BIBREF-24 Prechelt, Lutz

Technical Opinion: Comparing Java . C/C++ Efficiency Differences to
Interper sonal Differences
Communications of the ACM, October 1999

This article compares the memory footprint and run-time performance of 40
implementations of the same program, written in C++, C, and Java. The
difference between individual programmers was more significant than the
diff erence between languages.

“The importance of an efficient tednical infrastructure (such as
languag/compiler, operating system, or even hadware) is often vastly
overestimated compared to the importance of a good pogram design and &
eoonamical programming style.”

| [BIBREF-25] Quiroz, César A.
Embedded Systems Conference Procealings

Using C++ Efficiently In Embedded Applicaions

San Jose, CA, Nov. 1998
http://esconline.com/db_area/98fall/pdf/401.pdf

| [BIBREF-26] Saks Dan

C++ Theory and Practice
C/C++ Users Jburnal

Standard C++ as aHigh-Level Language? [Nov ‘99
Replacing Charader Arrays with Strings, Part 1 [Jan ‘00|
Replacing Charader Arrays with Strings, Part 2 [Feb ‘0]

These aticles are part of a series on migrating a C program to use the greater
abstraction and encapsulation available in C++. The run-time and exeautable
size ae measured as more C++ feaures are alded, such as Standard strings,
|OStreams, and containers.

“ A seamingly small change in a string dgorithm [such as reserving space for
string dda, or erasing the data as an addtional preliminary step,] might
producea surprisingly large dhange in program exeation time.”

The anclusion is that you should "program at the highest level of abstraction
that you can afford”.

Page 1660f 171

03-0012N1430 Tecdhnical Report on C++ Performance

| [BIBREF-27] Saks Dan

Embedded Systems Conference ProcealingsReducing Run-Time Overhead in
C++ Programs

San Francisco, March 2002
http://www.esconline.com/db_area/02sf/405.pdf

Representing and Manipulating Hardware in Standard C and C++

San Francisco, March 2002
http://www.esconline.com/db_area/02sf/465.pdf

Programming Pointers

Embedded Systems Programming
Placing Datainto ROM [May 199§
Placing Datainto ROM with Standard C [Nov. 1998]
Static vs. Dynamic Initializaion [Dec 1999
Ensuring Static Initialization in C++ [March 1999

| [BIBREF-28] Schilling, Jonathan

Optimizing Away C++ Exception Handling
ACM SIGPLAN Notices, August 1998

This article discusses ways to measure the overheal, if any, of the exception
handling mechanisms. A common implementation of EH incurs no run-time
penalty unless an exception is adually thrown, but a a cost of greaer satic
data space ad some interference with compiler optimizations. By identifying
sedions of code in which exceptions cannot possbly be thrown, these @sts
can be reduced.

“T his optimization produces modest but useful gains on some exsting C++
code, but produces very significant size and speed gans on code that uses
empty exc@tion spedfications, avoiding otherwise serious performance
losses.”

| [BIBREF-29] Stepanov, Alex

Page 1670f 171

Tecdhnical Report on C++ Performance 03-0012N1430

The Standard Template Library

Byte Magazine, October 1995 also at
http://www.byte.com/art/9510/sec12/art3.htm

The originator of the Standard Template Library discusses the emphasis on
efficiency which motivated its design.

[H]ow do you know that a generic algorithm is efficient? An algorithm is
called relativey dficient if it's as efficient as a nongeneric veasion written
in the same languag, andit's called alsolutely efficient if it's as efficient as a
nongeneric assembly language vesion.

For many yers, | tried to achieve relative efficiency in more advanced
languages (e.g., Ada ard Scheme) but failed. My generic vesions of even
simple algorithms were not able to compete with bult-in primitives. But in
C++ | was finally able to na only accomplish relative efficiency but come
vey dose to the more ambitious god of absolute dficiency. To verify this, |
spent courtless hous looking & the assembly code generated by different
compilers on dfferent architedures.

| foundthat efficiency and generality were nat mutually exdusive In fact,
quite the revese is true. If a comporent is not efficient enough it usualy
means that it's not abstract enough This is becuse dficiency and
abstractnessboth require a clean, orthogona design.

| [BIBREF-30] Stroustrup, Bjarne

The C++ Programming Language, Spedal 3" Edition
Addison-Wesley, 2000

This definitive work from the language’s author has been extensively revised
to present Standard C++.

| [BIBREF-31] Stroustrup, Bjarne

The Design and Evolution of C++
Addison-Wesley, 1994

The aedor of C++ discuses the design objedives that shaped the
development of the language, especially the need for efficiency.

“T he immediate cause for the inclusion of inline functions ... was a projed
that couldn't afford function call overhead for some dasses involved in

Page 1680f 171

03-0012N1430 Tecdhnical Report on C++ Performance

real-time processing. For classesto be useful in that apgication, crossng the
protedion barier hadto befree [..]

Over the yars, considerations alongthese lines grew into the C++ rule that it
was nat sufficient to provide a feature, it hadto be provided in an affordable
form. Most definitely, affordable was sen as meaning "affordade on
hardware cmnon among dvdopers’ as oppoed to "affordade to
researchers with high-end equipment” or "affordade in a coupe of years
when hardware will be cheaper.”

| [BIBREF-32] Stroustrup, Bjarne

Learning Standard C++ asa New Language
C/C++ Users Dburnal, May 1999

http://www.research.att.com/~bs/papers.html
http://www.research.att.com/~bs/cuj_code.html

This paper compares a few examples of simple C++ programs written in a
modern style using the standard library to traditional C-style solutions. It
argues briefly that lesons from these simple examples are relevant to large
programs. More generally, it argues for a use of C++ as a higher-level
language that relies on abstradion to provide elegance without loss of
efficiency compared to lower-level styles.

“1 was appdled to find examples where my test programs ran twice as fast in
the C++ style cmpared to the C style on ore system and ony half asfast on
anaher. ... Better-optimized libraries may be the easiest way to improve both
the percadved and atual performance of Standard C++. Compiler
implementers work hard to eliminate minor performance penalties compared
with ather compilers. | conjedure that the scope for improvementsis larger in
the standad library implementations.”

| [BIBREF-33 Sutter, Herb

Exceptional C++
Addison-Wesley, 2000

This book includes a long discussion on minimizing compile-time
dependencies using compiler firewalls (the PIMPL idiom), and how to
compensate for the spaceand run-time ansequences.

Page 1690f 171

Tecdhnical Report on C++ Performance 03-0012N1430

I [BIBREF-34] Tribolet, Chuck, and John Palmer

Embedded Systems Conference Procealings
available on CD from http://www.esconline.com

Embedded C and C++ Compiler Evaluation Methodology

Fall 1999
http://www.esconline.com/db_area/99fall/443.pdf

Be aggessve abou trying compiler options. The compilers each have many
options, and it is important to arrive at the best set of the options for each
compiler.... A thoroughtweaking o compiler options will frequently generate
an improvement on the order of 30% over an initial decent set of options. If
theinitial set istruly abysmal, the improvement could be in excessof 100%.

| [BIBREF-35 Veldhuizen, Todd

Five coompilation models for C++ templates
Procealings of the 2000Workshop on C++ Template Programming

http://www.oonumerics.org/tmpw00

This paper describes a work in progress on a new C++ compiler. Type
analysis is removed from the compiler and replaced with a type system library,
which istreated as ©urce code by the compiler.

“By making simple changes to the behavior of the partial ewvaluator, a wide
range of compilation models is achievel, each with a dstinct trade-off of
compile-time, code size, and exeaition speal. ... This approach may solve
seveal serious problems in compiling C++: it achieves sparate compil ation
of templates, allows template @de to be distributed in binary form by
deferring template instantiation until run-time, and reduces the wde bloat
asociated with templates.”

| [BIBREF-36 Vollmann, Detlef

Exception Handling Alternatives
Published by ACCU — Overload, Issues 30 and 31 (February 1999

http://www.accu.org/c++sig/public/Overload.html
http://www.vollmann.ch/en/pubs/cpp-excpt-alt.html

This article shows $me pros and cons of the C++ exception handling
mechanism and outlines sveral possible alternative gproacdes.

Page 1700f 171

03-0012N1430 Tecdhnical Report on C++ Performance

| [BIBREF-37] Williams, Stephen

Embedded Programming with C++
Originally published in the Proceadings of the Third USENIX Conference on Objed-
Oriented Tedhnologies and Systems, 1997

http://www.usenix.org/publications/library/proceedings\
/coots97/williams.html

Describes experience in programming board-level components in C++,
including a library of minimal run-time support functions portable to any
board.

“We to this day face people telling ws that C++ generates inefficient code that
cannd possbly be practical for embedded systems where speal matters. The
criticismthat C++ leads to bad exeaitable ade is ridiculous, but at the same
time accurate. Poor style or hahts can in fact lead to awful results. On the
other hand a skilled C++ programmer can write programs that match or
exced the qudity of equivalent C programs written by egudly skilled C
programirers.

The devdopment cyde of embedded software does not easily lend itself to the
trial-and-error style of programming and @buggng, so a stubban C++
compil er that catches as many arors as possble at compil e-time significantly
reduces the dependence on run-time debuggng, exeaitable run-time suppat
and compil e/downloadtest cydes.

This saves untold hous at the test bench, not to mention strain on PROM
sockds.”

| [BIBREF-3§]

Page1710f 171

