
 Doc No: SC22/WG21/N1465

 J16/03-0048

 Date: 01-Apr-2003

 Project: JTC1.22.32

 Reply to: Daniel Gutson

 danielgutson@hotmail.com

CONSTANT INHERITANCE

1. The problem

Differentiating the interface of a class in “const” and “non-const” methods, there is no
way of inheriting only from the “const” part, that is, an “is a [read only]…” relationship.
However, it is possible in other relationships such as containment and aggregation (as a
“const member” and “const ref/ptr to” respectively).

- Why is the problem important?
Inheriting publicly from a base class “appends” (publish) all its attributes and methods,
making them accessible to third-users (according to visibility attributes), including const
and non-const methods.
If a class “wants” (from design) to provide the read-only part of another, and treat its
attributes as read-only too, it has to contain it and provide projectors and wrappers for
each attribute and methods (respectively) controlling and adding const modifiers. If, -as
often- the base class changes and evolves, the derived class has to be updated
representing a maintenance overhead.

Suppose class Base has “m” const methods, and “a” attributes. If class Der needs to
mimic the “is a read-only Base” relationship through const containment, Der will have to
have “m” forwarding methods and “a” getters. Additionally, upcasting is not automatic
unless Der implements a “const Base&” casting operator, and optionally, a & operator
returning a “const Base*” pointer.

This feature fits in the following subset of categories:

* improve support for systems programming: eliminates coding and maintenance
overheads, and allows inheritance in a situation not currently available.
* improve support for library building: this feature is specially useful for access control
of third-party users (the base class, the subclass, and a user class), as well as self-
documentation of design- intentions, which could be eclipsed by workarounds.
* remove embarrassments: there’s no need of additional code and special mechanisms but
inheritance and upcasting.

2. The proposal

Enable the “const” keyword in the base class list.

 2.1. Basic Example

 class DbAccess
 {
 public:
 //modifying/editing section
 void removeClient(size_t ID);
 virtual void removeAll();
 size_t addClient(const char* name);
 void updateClient(size_t ID, const char* name);

 // Querying section:
 virtual size_t getMemoryUsage(void) const;
 size_t getClientsCount() const;
 const char* getClientName(size_t ID) const;
 const_ClientIterator getClientsIterator () const;
 };

 class SuperQuerier: public const DbAccess
 {
 public:
 size_t countClientsThruWildcard (
 const char* wildcard) const;

 const_ClientsIterator getClientsThruWildcard(
 const char* wildcard) const;

 size_t registerSelectQuery(SelectQuery * qry);
 const_ClientsIterator runSelectQuery(size_t qryID);
 void deRegisterAllQueries(void);
 void deRegisterSelectQuery(size_t qryID);
 virtual void removeAll(void);
 virtual size_t getMemoryUsage(void) const;
 private:
 size_t _myUsedMemory;
 };

 2.2 Advanced Cases

default operator = becomes unavailable when inheriting a const class:

 SuperQuerier s1,s2;
 s1.registerSelectQuery(q1);
 s1.registerSelectQuery(q1);

 // copy all registered queries to S2
 s2 = s1; //error: operator = not available (same as
containing const attributes)
 f(DbAccess&);
 f(s1); //error: receives a non-const, violating
upcasting

 g(const DbAccess* p)
 {

 SuperQuerier* s = dynamic_cast< SuperQuerier* > (p);
 }

void SuperQuerier: deRegisterAllQueries (void)
{
 removeAll (); /*error: not accessible since
 DbAccess::removeAll is non-const*/
}

void SuperQuerier::removeAll(void)
{
 DbAccess::removeAll (); //error: same as above
 DeRegisterAllQueries(); //ok (if above is corrected)
}

size_t SuperQuerier: getMemoryUsage() const
{
 return DbAccess::getMemoryUsage() + _myUsedMemory;
 //ok
}

3. Interactions and Implementability

3.1. Interactions

- the derived class becomes “const” when upcasted to a const-inherited base
class

- methods of the derived class as well as non-member methods can only
invoke const methods of the (const-inherited) base class.

- attributes of the (const-inh.) base class are constant (read-only) for the
derived class, and other derived class’ users (external or third- level sub
classes).

- virtual non-const methods of the derived class can override virtual non-
const of the (const- inh) base class, but cannot invoke them (supermessage)

- The above mentioned interactions also apply to pointers to members
- dynamic_cast from a const upcasted derived class pointer to the derived

class would act also as a const_cast (returning non-const pointer to Der)

3.2. Implementability
- backguard compatibility is not impacted as far as the proposed syntax is

currently invalid
- this feature enhances static checking of the compilation phase, basically in

the following situations:
§ upcasting checkings
§ dynamic casting
§ attributes access checkings
§ const methods invoking checkings
§ assignments

4. Acknowledgements

 Thanks to Philippe Mori for his vital feedback.

