Doc No: SC22/WG21/N1465
J16/03-0048

Date: 01-Apr-2003

Project: JTC1.22.32

Reply to: Daniel Gutson

danielgutson@hotmail.com

CONSTANT INHERITANCE

1. Theproblem

Differentiating the interface of a classin “const” and “non-const” methods, there is no
way of inheriting only from the “const” part, that is, an “isa[read only]...” relationship.
However, it is possible in other relationships such as containment and aggregation (as a
“const member” and “const ref/ptr to” respectively).

- Why is the problem important?
Inheriting publicly from a base class “appends’ (publish) all its attributes and methods,
making them accessible to third-users (according to visibility attributes), including const
and non-const methods.
If aclass “wants’” (from design) to provide the read-only part of another, and treat its
attributes as read-only too, it has to contain it and provide projectors and wrappers for
each attribute and methods (respectively) controlling and adding const modifiers. If, -as
oftent the base class changes and evolves, the derived class has to be updated
representing a maintenance overhead.

Suppose class Base has “m” const methods, and “a’ attributes. If class Der needs to
mimic the “is aread-only Base” relationship through const containment, Der will have to
have “m” forwarding methods and “&’ getters. Additionally, upcasting is not automatic
unless Der implements a“const Base&” casting operator, and optionally, a & operator
returning a “const Base*” pointer.

This feature fits in the following subset of categories:

* improve support for systems programming: eliminates coding and maintenance
overheads, and allows inheritance in a situation not currently available.

* improve support for library building: this feature is specially useful for access control

of third-party users (the base class, the subclass, and a user class), as well as self-
documentation of design-intentions, which could be eclipsed by workarounds

* remove embarrassments:. there’ s no need of additional code and special mechanisms but
inheritance and upcasting.

2. The proposal

Enable the “const” keyword in the base class list.

2.1. Basic Example

cl ass DbAccess

{
public:
// modi fying/editing section
void renoveClient(size t ID);
virtual void renmoveAll();
size_t addCient(const char* nane);
voi d updateCient(size_t ID, const char* nane);
/1 Querying section:
virtual size_t getMenoryUsage(void) const;
size_t getClientsCount() const;
const char* getClientNane(size_t ID) const;
const _Clientlterator getClientslterator () const;
b
cl ass Super Querier: public const DbAccess
{
public:

size_t countClientsThruWldcard (
const char* wildcard) const;

const _Clientslterator getClientsThruW |l dcard(
const char* wildcard) const;

size_t registerSelectQery(SelectQery * qry);
const _Clientslterator runSel ect Query(size_t qrylD);
voi d deRegi ster Al |l Queri es(void);
voi d deRegi ster Sel ect Query(size_t qrylD);
virtual void renoveAll (void);
virtual size_t getMenoryUsage(void) const;
private:
size_t _nyUsedMenory;
b

2.2 Advanced Cases

default operator = becomes unavailable when inheriting a const class:

Super Querier sj, Sy
s1. regi ster Sel ect Query(qi);
si. regi sterSel ect Query(qi);

/1 copy all registered queries to S;

S, = s1; [/lerror: operator = not available (sanme as
contai ning const attributes)

f (DbAccess&) ;

f(sy; /lerror: receives a non-const, violating
upcasti ng

g(const DbAccess* p)
{

Super Querier* s = dynam c_cast< SuperQuerier* > (p);

}

voi d SuperQuerier: deRegisterAll Queries (void)
{

removeAll (); /*error: not accessible since
DbAccess::removeAll is non-const*/

}

voi d SuperQuerier::renoveAll (void)

{

DbAccess::removeAll (); //error: sane as above
DeRegi ster Al | Queries(); //ok (if above is corrected)
}

Size_t SuperQuerier: getMenoryUsage() const

{
return DbAccess::get MenoryUsage() + _nyUsedMenory;

/1 ok
}

3. Interactions and | mplementability

3.1. Interactions

- the derived class becomes “const” when upcasted to a const-inherited base
class

- methods of the derived class as well as non-member methods can only
invoke const methods of the (const-inherited) base class.

- attributes of the (const-inh.) base class are constant (read-only) for the
derived class, and other derived class users (externa or third-level sub
classes).

- virtual nonconst methods of the derived class can override virtual non
const of the (const-inh) base class, but cannot invoke them (supermessage)

- The above mentioned interactions also apply to pointers to members

- dynamic_cast from a const upcasted derived class pointer to the derived
classwould act also as a const_cast (returning non-const pointer to Der)

3.2. Implementability
- backguard compatibility is not impacted as far as the proposed syntax is
currently invalid
- thisfeature enhances static checking of the compilation phase, basically in
the following situations:
= upcasting checkings
= dynamic casting
= attributes access checkings
= const methods invoking checkings
= assignments

4. Acknowledgements

Thanks to Philippe Mori for his vital feedback.

