Doc No: SC22/WG21/N1469

J16/03-0052

Dat e: 03/ 25/ 2003

Proj ect: JTC1. 22. 32

Reply to: Dani el F. Gutson
dani el gut son@wotmai |l . com

I nline Constants

1. The Problem

Constants occupy space during the their life, even if they are intended to be
used tenporary in assignments or as paraneters.

Moreover, if they are going to be used in few places and/or few tines
(esporadically), which doesn"t justify their co-existance with other objects
whi ch existance is required nore frequently, or don"t need to hold a “state’,
just be used and discarded (typically POD types).

-Why is the probleminportant?

Because of unefficient nmenory usage, and [as consecuence] when avoi ded, other
sol utions (mentioned below) carry undesired consequences, neutralizing strong
C++ | anguage features and priniples.

Over head.

-Whom does it affect?
Embedded community, |ow resources system programming

-What are the consequences of not addressing it?
Forces constant objects -under the circunstances nmentioned above- to stee
resources to other program el enents (constants or not).

-How are peopl e addressi ng, or working around, the problemtoday?
When avoi ded, people use the “#define” or the “enumi idions, or inline functions
returning a val ue.
a) The problem of using the #define preprocessor directive is:

* may have no type information

* has no scope validation

* may prevent optinizations as far as the conpiler ignores that the sane
[logical] concept is referred

(because the original information was |ost during preprocessing)

b) The problem of using the "enumi idiomis

* only integral types can be used

* “enum essence is referred to type-safety and sel f-docunmentati on rather
than their “nuneric” inplenentation fact

(it"s used the fact that they are represented (inplenmented) with

nunbers rather than the concept of having enunerated el ements)

* “enum groups el enents under a conmon design and | ogi cal assertion
Constants nmight not be related at all, so no |ogical grouping is needed, which
m ght lead to confusion while reading.

c) by placing the value inside a function, a conceptual violation is nmade as far
as the value is ‘hidden’ inside the inplenentation (despite it might be
‘visible’ by the fact of being inlined). Additionally, readability is decreased
and codi ng overhead occurs.

Many conpiler inplenentations already performa ‘instantiation on demand’ for

gl obal variables, but the behavior is not the proposed in this paper (as far as
they are not determnistically ‘discardable’).

Thi s paper proposes a STANDARD and warranted way of declaring constants that
deterministically will not occupy space unless referenced.

This is extrenely inportant when progranm ng enbedded systens with hard space
restrictions, in which an exact ampunt of nenory usage is determ ned by design

-Wich of the categories that we're interested in addressing does this fit into?
The major initial categories are:

* inmprove support for systens programming (performance, scoping)

* features from other |anguages (would be the C++ version of the Cs “#define")
* renove enbarrassnents (refer to the enum i di om argunent above)

2. The Proposa
Enable the “inline” nodifier for constants definition, neaning that the
instantiation will occur on-demand whenever the constant is referred.

2.1 Basic Cases

Typi cal POD types:
/[lin a header file
nanmespace MyConstants

{
inline const float
Pl = 3.1415926,
E = 2.78;
inline const char* MY_NAME = "Daniel";
inline const unsigned int MAX_RETRIES = 3;
inline const size_t HEAP_SIZE = 512;
inline const unsigned char NBITS = 1
}
f(Pl); /1 Pl is tenporal

2.2 Advanced Cases
User-defined types and objects.

inline const Myl nt Wapper nyFive(5);
inline const Direction Up(0,1), Down(O,-1), Left(-1,0), Right(1,0);

nove(Up); // Up is constructed and [m ght be] destroyed after the function cal

3. Interactions and I nplenmentability
3.1 Interactions
a) The address of an inline constant may not be constant. The foll ow ng
represents an unspecified behavi or
bool result = (&Pl == &PIl);

simlar to the address of literals and tenporal objects.

b) References should not be allowed to be constant inlined.
inline const MyObject& myConst (obj); /'l error

c) inline constant class attributes should not occupy space, behaving as static
constants when used.

The result of a sizeof operator applied to an object containing one or nore

i nline constants shoul d not be

affected by them
The difference with a static const attribute, is that such attribute is
[conceptual | y] allocated during the programlife,
while inline constants are tenporally allocated on-demand.
Therefore, static and inline const should not be conmbined in class decl arati ons:
class A{
static inline const int x = 1; !/l error
}s

c.1l) static and inline constants in a function-scope should al so be avoi ded, as
far as they are a semantic contradiction

d) the declaration of inline constants do not occupy space, as far as it
baheaves just as declaratory, allowing to
pl ace (define) themin the header files, without “extern” declaration

3.2 Inplenentability

-This feature does not affect conpatibility due to its [current] syntactic

i ndefinition.

-inline constant decl arations of objects using non-default constructors should
be considered as a

“future construction”, that is, how the object will be constructed tenporally.
-Additionally, those non-default constructions shall only allow literals or
constant paraneters.

-inline constants should be solved during conpilation, not |inkage, therefore
t hey shoul d be defined

prior to be used (that” s why the header file is a good place to define them.

