
 Doc No: SC22/WG21/N1470

 J16/03-0053
 Date: 04/02/2003
 Project: JTC1.22.32
 Reply to: Daniel F. Gutson
 danielgutson@hotmail.com

Enum Type checking for SWITCH statements

1. The Problem
When performing SWITCH statements on enum variables, labels may have any
integral literal, without checking whether the value belongs or not to the enum
elements (therefore allowing -maybe- unintended unreachable code).
Moreover, this represents a weakness in the type system, as far as the type
information is lost in the SWITCH statement as it performs a cast to integral
type.

Why is the problem important?
Given a SWITCH receiving an enum variable, three situations on the case labels
can be found:
 a) (trivial): a label is an enum element
 b) a label is a literal or constant with the same value of an enum element
 c) a label is a literal or constant which value does not match with any
enum element.

In case b), if the enum is modified, such places (situation b) have to be
updated, requiring additional maintenance effort (performing a search of every
SWITCH using the enum, which is hard to find as far as SWITCH may receive a
variable whose declaration can be in other scopes).
Additionally, if any of such places is not updated, a situation c) is reached,
representing error prone code.
Finally, the reader is forced to check the value of the constant for finding it
in the enum definition, representing additional effort (and therefore less
readability due to the redundance).

A situation c) may come from an error occurred in a violation of the process
mentioned in b). There is no standard way of detecting these situations
(unreachable code due to unupdated cas labels on enums), despite many compilers
provide warning mechanisms.

Enums are importants both in the sense of self-documentation, and in type-
checking (safety) . Both aspects are impacted in the lack of checking of the
case labels.

Whom does it affect?
 Large/legacy code, maintained by many people.

What are the consequences of not addressing it?
Current lack of checking allows:
 -code redundance
 -maintenance overhead (therefore decrease of maintainability)
 -error prone code
 -coding errors due to confusion (cases could have the value of another
enum)

How are people addressing, or working around, the problem today?

 There is no way of ensuring (force) that the case labels are of the type
of the enum.

Which of the categories that we're interested in addressing does this fit into?
* improve support for systems programming: type system is enhanced (or at least
coherent with the type-spirit of enums), augmenting safety.

* remove embarrassments: redundant values are detected and candidates to be
eliminated; unreachable code is detected and (forced to be) either corrected or
eliminated.

2. The Proposal
 When the SWITCH receives an enum type, require case labels to be enum
elements of such enum.

2.1 Basic Cases

enum Greatings
{
 Hello,
 Goodbye,
 SeeYou
};

const int X = SeeYou;

void f(Greatings g)
{
 switch(g)
 {
 case Hello: //ok
 break;
 case X: //error
 break;
 case 3: //error
 break;
 case Goodbye: //ok
 break;
 }
}

2.2 Advanced Cases

Enum checking is disabled when casted to int. Example:
 switch((int)g)
 {
 case Hello: //ok
 break;
 case X: //ok
 break;
 ...
 }

3. Interactions and Implementability
3.1 Interactions
This proposal may break -intentionally- existing code.
Errors could be classified according to situations b) and c) mentioned above.

In situation b), the change is straight forward: replace the literal or constant
by the enum element.
In situation c), the unreachable code should be analyzed, and this type of
errors will help to discover possible bugs, being an opportunity to inspect
these situations.
As mentioned above, the feature can be easily (quickly) disabled by explicit
casting to ´int´ the SWITCH parameter.
By this, the intention to have ´unreachable´ code is explicited in the code (as
the cast is explicited), serving as a documentation factor (and a llowing
warning disablement according to the compiler implementation).

3.2 Implementability
 The compiler should perform type-checking for each case label.

