Doc No: SC22/WG21/N1470

J16/03-0053

Dat e: 04/ 02/ 2003

Proj ect: JTC1. 22. 32

Reply to: Dani el F. Gutson
dani el gut son@wotmai |l . com

Enum Type checking for SWTCH statenents

1. The Problem

VWhen perform ng SWTCH statenents on enum vari abl es, |abels may have any
integral literal, w thout checking whether the value belongs or not to the enum
el ements (therefore allow ng -nmaybe- unintended unreachabl e code).

Moreover, this represents a weakness in the type system as far as the type
information is lost in the SWTCH statenent as it perfornms a cast to integra

type.

Why is the probleminportant?
G ven a SWTCH receiving an enum variable, three situations on the case |abels
can be found:
a) (trivial): a label is an enum el enent
b) a label is a literal or constant with the sanme val ue of an enum el enent
c) a label is aliteral or constant which val ue does not match with any
enum el enent .

In case b), if the enumis nodified, such places (situation b) have to be

updat ed, requiring additional maintenance effort (performng a search of every
SW TCH using the enum which is hard to find as far as SWTCH may receive a
vari abl e whose decl aration can be in other scopes).

Additionally, if any of such places is not updated, a situation c) is reached,
representing error prone code.

Finally, the reader is forced to check the value of the constant for finding it
in the enumdefinition, representing additional effort (and therefore |ess
readability due to the redundance).

A situation c) may cone froman error occurred in a violation of the process
mentioned in b). There is no standard way of detecting these situations
(unreachabl e code due to unupdated cas | abels on enuns), despite many conpilers
provi de warni ng mechani sns.

Enuns are inportants both in the sense of self-docunentation, and in type-
checking (safety) . Both aspects are inpacted in the | ack of checking of the
case | abel s.

Whom does it affect?
Large/l egacy code, nmintained by many peopl e.

VWhat are the consequences of not addressing it?
Current |ack of checking allows:
-code redundance
- mai nt enance overhead (therefore decrease of nmaintainability)
-error prone code
-coding errors due to confusion (cases could have the val ue of another

enumn

How are peopl e addressing, or working around, the problemtoday?



There is no way of ensuring (force) that the case | abels are of the type
of the enum

Whi ch of the categories that we're interested in addressing does this fit into?
* inprove support for systens progranm ng: type systemis enhanced (or at | east
coherent with the type-spirit of enuns), augnenting safety.

* renove enbarrassnents: redundant val ues are detected and candi dates to be
el i m nat ed; unreachabl e code is detected and (forced to be) either corrected or
el i m nat ed.
2. The Proposal
When the SWTCH recei ves an enum type, require case |abels to be enum
el ements of such enum
2.1 Basic Cases

enum Greatings

{
Hel | o,
Goodbye,
SeeYou
s

const int X = SeeYou;

void f(Greatings g)

{
switch(g)
{

case Hello: //ok
br eak;
case X //error
br eak;
case 3: !/ error
br eak;
case Goodbye: /1 ok
br eak;
}

}
2.2 Advanced Cases

Enum checki ng i s disabl ed when casted to int. Exanple:
switch((int)g)
{
case Hello: //ok
br eak;
case X /1 ok
break;

3. Interactions and I nplenmentability

3.1 Interactions

Thi s proposal nmay break -intentionally- existing code.

Errors could be classified according to situations b) and c) nentioned above.



In situation b), the change is straight forward: replace the literal or constant
by the enum el enent.

In situation c), the unreachable code should be analyzed, and this type of
errors will help to discover possible bugs, being an opportunity to inspect

t hese situations.

As nentioned above, the feature can be easily (quickly) disabled by explicit
casting to “int” the SWTCH paraneter.

By this, the intention to have “unreachable” code is explicited in the code (as
the cast is explicited), serving as a docunentation factor (and a Il ow ng
war ni ng di sabl enment according to the conpiler inplenmentation).

3.2 Implenentability
The conpil er should performtype-checking for each case | abel



