
Doc No: SC22/WG21/N1584 = 04-0024 

Project: JTC1.22.32 

Date: Thursday, February 12, 2004 

Author: Francis Glassborow 

email: francis@robinton.demon.co.uk 

Regularizing Initialization Syntax   
1 The Problem 
C++ has two distinct syntactic forms for initialization. However the two forms are not 
interchangeable, there are cases where only assignment style syntax is allowed (in 
conditionals such as if, while and the second part of for) and there are places where 
only function style is allowed (constructor initializer lists) and places where the two 
forms have different semantics (conversion initialization). And finally we have the case 
where a potential ambiguity is resolved in favor of a function declaration.  

This makes C++ harder to teach and seems to give us nothing in exchange.  

2 The Proposal 
Change the grammar so that in as far as possible, wherever one syntactic form is valid the 
alternative form is also and has exactly the same semantic result. The following is a list 
of the changes that need to be considered: 

1) Make function-style and assignment-style initialization in variable declarations 
equivalent in all cases so that: 

mytype mt = expr; 

and 
mytype mt(expr); 

 are equivalent in all cases where the latter cannot parse as a function declaration. I.e. 
we remove the implicit conversion followed by copy construction from the former 
case. The only remaining  ‘irregularity is that the former syntax is never a function 
declaration. 

 (note this does not resolve the ambiguity of variable versus function declaration)  

2) Allow assignment-style initialization in constructor initialiser lists so: 
mytype::mytype(int val): i(val), j(val) {} 

can be written as: 
mytype::mytype(int val): i = val, j = val {} 

3) Allow function-style initialization in conditionals so: 
if(mytype mt = expr) dosomething; 

can be written as: 
if(mytype mt(expr)) dosomething; 

mailto:francis@robinton.demon.co.uk


3 Discussion 
1) Above is the problem case because there are some subtle cases. The most notable of 
these is that in: 
class X { 
public: 
    X(short s){} 
    explicit X(long l) {} 
}; 
 
int main(){ 
    X x(3); //A 
    X y=3; //B 
} 

Line A is ambiguous because we do not prefer conversion of an int to long as better 
than conversion to short.  Line B is surprising because it is not ambiguous (explicit 
constructors are not considered for implicit conversions) but selects a narrowing 
conversion. This provides a problem because it means that the proposed change 
potentially impacts on existing code. It also strengthens my feeling that we should teach 
newcomers to use the function style syntax. 

Possibly we might also consider the syntax for default arguments but that is a distinct 
concept and requiring assignment syntax seems reasonable in this case. 

There is very little that we can do about the potentially ambiguous parse of initialized 
variable versus function declaration from a Standards perspective because there does not 
seem to be even a transitional path from where we are now to anywhere else that is 
useful. Possibly we might consider allowing use of ‘auto’ to disambiguate in favor of an 
initialized variable so that: 
auto mytype mt(); 

defines mt as a default initialized mytype object. I would like to strongly encourage 
implementors to default to issuing warnings whenever a function appears to be declared 
at block scope as I think it is rare for modern code to declare a function at other than at 
namespace or class scope.   

Another issue that has been raised by members of the BSI C++ Panel is that there is 
actually a third initialization form; brace initialization of aggregates. It would be nice to 
consider how we might bring that in from the cold and allow it in constructor initializer 
lists. I think it is doable, and doing so would certainly be appreciated by those wishing to 
initialize containers at the point of definition. 

Changes to the Working Paper 
These are not provided at this point. It seems more important to agree the mechanism. 


	Regularizing Initialization Syntax
	
	1 The Problem
	2 The Proposal
	3 Discussion
	Changes to the Working Paper



