Contents

Decltype and auto (revision 3)
Programming Language C++
Document no: N1607=04-0047

Jaakko Jarvi Bjarne Stroustrup
Indiana University AT&T Research
Pervasive Technology Laboratories and Texas A&M University
Bloomington, IN bs@research.att.com

jajarvi@osl.iu.edu

February 17, 2004

d 2

[L.T Changesfrom NTAY8 e 2

[3 Design alternatives fortypeof 4

|4 The decltypeoperator| 5

4.1 Problemswitldecltypé. e 9

b Autol

[2.1 Directinitializationsyntgx L 12
. unctions with Implicit return types o o e e e e 13
B3 Tmplicittemplatgs e 14

[6 New function declaration syntax 14

[7—Conclusion$ 15

|8 Proposed wording 15

8.1 decltype :proposedtext e e e e e 15

8.2 Removincauto as storage Specifier: proposedifext Lo Lo Lo 17

[8.3 auto Invariable declarations: proposedfext. o oL 17
[8-4New function declarafion syntax that moves the return type expression after parameter [ist: propoised

L texi

8.5 Allowing auto to occur In the return type of a function to deduce Its return type from Its body: |

| proposed teXt e e 20

[8.6 Allowing auto In the types of function parameters: proposedtext 20

[9 Acknowledgments$ 22

Doc. no: N1607=04-0047 2

1 Background

This document is a revision of the document N1478=03-0061 [JS03], clarifying which of the features described in
N1478=03-0061 we propose to be included into the next revision of the standard. The clarifications reflect the EWG
discussions and results of the straw votes that took place in the Kona meeting. In addition, this document suggests
standard wording for the proposed features.

Sectior] I.]1 describes the changes between the document N1478 and the current proposa].] Section 8 contains the
proposed standard wording. The proposal describes several related but distinct felatitsgs @nd the use adutoin
several contexts), thus Sectign 8 is divided into sections according to these individual features. Each section describes
the changes and additions necessitated by a particular feature.

1.1 Changes from N1478

e N1478 suggestenplicit templatedo give a less verbose syntax for defining template functions. Support for
this feature was mild in the Kona meeting, and thus we do not suggest the feature to be included at this point.
For future consideration and for the purpose of documentation, however, this document includes the description
and suggested standardeze for implicit templates.

e N1478 mentioned allowing template specializations for variable declarations. For example, the variable decla-
ration:
template <class T> std::pair<T, T> z = bar();
would succeed as long as the result typéba{) would matchstd::pair<T, T>. Allowing template syntax for
variable declarations is not part of the current proposal. We note however, that the feature would provide a
convenient mechanism for ascertaining that the type of an expression has an expected form.
e N1478 suggested adding two new syntaxes for function declarations.
auto function—name(parameterlist) —> expression

auto function—name(parameterlist) —> type

The syntax with an expression following- is not part of this proposal. First, it is not strictly necessary, because
the same effect can be attained with the latter syntax by wrapping the expressidecitygeand using simple
metafunctions. Second, the syntax may lead to ambiguous parses. For example:

float f(int);
auto (xp)(int) —> f(0)
What is the return type ofp? float, or float (&)(int).

e Regarding implicit return types (return types deduced fronréhen statement in the function body) we sug-
gested the following rule, banning the use of a function definition with an implicit return type to provide a
definition for a declaration that did specify a return type.

If a function is declared first, any subsequent declarations, and the definition of the function must
specify the return type (using any function declaration syntax), and the return type must be the same
as in the first declaration. The actual expression specifying the return type can be different, though.

This rule is a safety measure, but also a special case, and thus may not be justified. We have not included the
specification of this rule in the suggested standard wording.
e decltypeof string literals and functions yield a reference type, unlike in N1478.

There is no obvious choice for either way (reference or non-reference type); the current rules are more consistent
with the decltyperule for function and operator call expressions.

Doc. no: N1607=04-0047 3

2 Introduction

C+~ does not have a mechanism for directly querying the type of an expression. Neither is there a mechanism for
initializing a variable without explicitly stating its type. Stroustrup suggests [Str02] that the language be extended
with mechanisms for both these tasks, discussing broadly several different possibilities for the syntax and semantics of
these mechanisms. Subsequent proposals [JSGS03, JS03] defined the exact semantics and suggested syntax for these
mechanisms: thdecltypeoperator for querying the type of an expression, and the keyauataifor indicating that the
compiler should deduce the type of a variable from its initializer expression. Furthermore, the proposals explored the
possibility of using theauto keyword to denote implicit template parameters, and to instruct the compiler to deduce
the return type of a function from its body. This proposal builds on those previous proposals and to make the proposal
self-contained, we include background material from [JSGS03] and|[JS03], summarizing earlier discusyipeston

In what follows, we use the operator natgpeofwhen referring to the mechanism for querying a type of an expression

in general. Thalecltypeoperator refers to the proposed variantygfeof

2.1 Motivation

C+~ would benefit fromtypeofandauto in many ways. These features would be convenient in several situations, and
increase code readability. More importantly, the lack ey@eofoperator is worse than an inconvenience for many
generic library authors: it is often not possible to express the return type of a generic function. This leads to hacks,
workarounds, and reduced functionality with an additional burden imposed on the library user (see for example the
return type deduction mechanisms/in [JPLL03,Diin01,WK02, Vel], or the function object classes in the standard library).
Below we describe typical cases which would benefit ftgpeofor auto. For additional examples, see [Str02].

e The return type of a function template can depend on the types of the arguments. It is currently not possible to
express such return types in all cases. Many forwarding functions suffer from this problem. For example, in the
tracefunction below, how should the return type be defined?

template <class Func, class T>

??? trace(Func f, T t) { std::cout << "Calling f*; return f(t); }
Currently, return types that depend on the function argument types are expressed as (complicated) metafunctions
that define the mapping from argument types to the return type. For example:

template <class Func, class T> typename Func::result_type trace(Func f, T t);

or following a recent library proposal [Gre03]:

template <class Func, class T>
typename result_of<Func(T)>::type trace(Func f, T t);

Such mappings rely on programming conventions and can give incorrect results. Itis not possible to define a set
of traits classes/metafunctions that cover all cases. Witkof(that has appropriate semantics, see Sefion 3)
thetracefunction could be defined as:

template <class Func, class T>
auto trace(Func f, T t)—> typeof(f(t));

Note the suggested new function definition syntax, discussed in Sg¢tion 6, where the return type expression
following the —> symbol comes after the argument list. Using this syntax, the argument names are in scope in
the return type expression.

As another example, the return types of operators in various algebraic libraries (computations on vectors, ma-
trices, physical units, etc.) commonly depend on the argument types in non-trivial ways. We show an addition
operator between two matrices as an example:

template <class T> class matrix;

template <class T, class U>
??7? operator+(const matrix<T>& t, const matrix<U>& u);

Doc. no: N1607=04-0047 4

For instance, suppose the return typenattrix<int>() + matrix<double>()is matrix<double> Expressing such
relations requires heavy template machinery. Usypgof the relation could be expressed as:

template <class T, class U>
auto operator+(matrix<T> t, matrix<U> u)-> matrix<typeof(t(0,0)+u(0,0))>;

e Often the type of a relatively simple expression can be very complex. It can be tedious to explicitly write such
types, making it tedious to declare variables. Common cases are iterator types of containers:

template <class T>
int foo(const std::map<T, std::map<T, T>& m) {
std::map<T, std::map<T, T> >::const_iterator it = m.begin();

}

Types resulting from invocations of function templates can be too complicated to be practical to write by hand.
For example, the type of the Lambda Library [JP02] expressibr _2 + 3spans several lines, and contains
types that are not part of the public interface of the libraryypeofoperator can be used to address this problem.
For example, the declaration ibfusingtypeofbecomes:

typeof(m.begin()) it = m.begin();
This is an obvious improvement. However, the semantitgpgofis not well-suited for the purpose of declaring

variables (see Secti¢n 5). Furthermore, the redundant repetition of the initializer expression is a distraction and
not quite harmless. For example, the following example appeared (innocently) in a reflector discussion:

typeof(xy) z = yx;

The snag is that the types of similar, yet different, expressions are not necessarily the same. Thus, the need
to repeat the initializer becomes a maintenance problem. Consequently, we propose a separate mechanism for
declaring variablesguto, which deduces the type of the variable from its initializer expression:

auto it = m.begin();

e The semantics chosen fauto in variable declarations naturally extends to other conctexs as well. We propose
allowing its use in the return type expression of a function stating that the return type should be deduced from
the return statement in the body of the function. This can increase readability of code containing short functions,
which are frequent in OO programming. For example:

template <class T, class U>
auto foo(T t, U u) {returnt+u; }

3 Design alternatives fortypeof

Two main options for the semantics ofygpeofoperator have been discussed: either to preserve or to drop references
in types. For example:

int& foo();
typeof(foo()); //int& or int?

inta;
int& b =a;

typeof(a); /l int& or int?
typeof(b); [/l int& or int?

Doc. no: N1607=04-0047 5

A reference-droppintypeofalways removes top-level references. Some compiler vendors (EDG, Metrowerks, GCC)
provide atypeofoperator as an extension with reference-dropping semantics. This appears to be a reasonable se-
mantics for expressing the type of variables (see Seflion 5). On the other hand, the reference-dropping semantics
fails to provide a mechanism for exactly expressing the return types of generic functions, as demonstrated by Strous-
trup [Str02]. This implies that a reference-droppiggeofwould cause problems for writers of generic libraries. A
reference-preservingypeofhas been proposed to return a reference type if its expression operangatuanSuch
semantics, however, could easily confuse programmers and lead to surprises. For example, in the abova esxample
declared to be of typimt, but under aypeofreflecting "lvaluenesstypeof(a)would beint& . It seems that variants of
both semantics are required, thus suggesting the need for two diffgpeotlike operators. This proposal defines just
onetypeoflike operator, which attempts to provide the best of both worlds. The discussion in $ection 4.1 demonstrates
that this is not entirely without problems.

In the standard text (Section 5(6)), ‘type of an expression’ refers to the non-refererﬁe type

If an expression initially has the type “referenceTto(8.3.2, 8.5.3), the type is adjusted Toprior to
any further analysis, the expression designates the object or function denoted by the reference, and the
expression is an Ivalue.

For example:
int x;
int Xx = X; I type of the expression x is int
int&y =x;
intyy=vy; I type of the expression y is int
int& foo();
int zz = foo(); I type of the expression foo() is int

The Ivalueness of an object is expressed separate from its type. In the program text, however, a reference is clearly
part of the type of an expression. From here on, we refer to the type in the program textasldred typeof an
object.

int x; // declared type of x is int
int&y = x; // declared type of y is int&
int& foo(); // declared type of foo() is int& (because the declared return type of foo is int&)

The first line above demonstrates that the lvalueness of an object does not imply that the declared type of the objectis a
reference type. The semantics of the proposed version ofpleefoperator reflects the declared type of the argument.
Therefore, we propose that the operator be nadesitype

4 The decltypeoperator

The syntax oflecltypeis:

simple-type—specifier

decltype (expression)

We require parentheses (as opposesizeofs more liberal rule) to keep the syntax simple and to keep the door open
for inquiry operations on the results @écltype e.g.decltype(e).is_reference(However, we do not propose any such
extensions. Syntacticallgecltype(e)s treated as if it were typedef-namécf. 7.1.3). The semantics of thikecltype
operator is described as:

1. If eis a name of a variable in namespace or local scope, a static member variable, or a formal parameter of a
function, decltype(e)s the declared type of that variable or formal parameter. In particidatiype(eyesults
in a reference type if, and only if, the variable or formal parameter is declared as a reference type.

2. If erefers to a member variabléecltype(e)s the declared type of the member variable. This rule applies to the
following expression forms:

1The standard is not always consistent in this respect; in some occasions reference is part of the type.

Doc. no: N1607=04-0047 6

(a) eis an identifier that names a member variable aisdwithin a definition, i.e., function body, of a member
function.

(b) eis a class member access expression (invocation of the buitirin > operators) referring to a member
variable.

3. If eis an invocation of a function or of an operator, either user-defined or builteicltype(ejs the declared
return type of that function. The standard text does not list the prototypes of all built-in operators. For the
functions and operators whose prototypes are not listed, the declared type is a reference type whenever the
return type of the operator is specified to be an Ivalue, except whej|rule 2 applies.

4. If eis an rvalue literal or typd, thendecltype(e)s the non-reference type If eis an Ivalue literal of typd,
thendecltype(e)s the reference typ€&.

5. If eis an Ivalue of function typ@&, decltype(e)s T&.
6. decltypedoes not evaluate its argument expression.

Note that unlike theizeofoperatordecltypedoes not allow a type as its argument.
In the following we give examples afecltypewith different kinds of expressions:

e Function invocations:

int foo();
decltype(foo()) //int

float& bar(int);
decltype (bar(1)) // float&

decltype(1+2) /l'int

inti;
decltype (i=5) //int&, because the "declared type" of integer assignment is int&

classA{.. }
const A bar();
decltype (bar()) //constA

const A& bar2();
decltype (bar2()) // const A&

e Variables in namespace or local scope:

int a;

int& b =a;
constint& c =a;
constintd =5;
const A e;

decltype(a) //int
decltype(b) //int&
decltype(c) // constint&
decltype(d) // constint
decltype(e) // const A

e Formal parameters of functions:

void foo(int a, int& b, const int& c, int d) {
decltype(a) //int
decltype(b) //int&

Doc. no: N1607=04-0047 7

decltype(c) // constint&
decltype(d) //ink

}

e Function types:

int foo(char);
decltype(foo) // int(&)(char)
decltype(&foo) // int§)(char)

e Array types:

int a[10];
decltype(a); //int[10]

e Pointers to member variables and member functions:

class A {

int x;

int& y;

int foo(char);
int& bar() const;

3

decltype(&A::x) /lint Azx

decltype(&A::y) [/ error: pointers to reference members are disallowed (8.3.3 (3))
decltype(&A::foo) //int (A::x) (char)

decltype(&A::bar) //int& (A::x) () const

e Member variables:

The type given bydecltypeis exactly the declared type of the member variable that the expression refers to.
Particularly, whether the expression is an Ivalue or not does not affect the type. Furthermore, the cv-qualifiers
originating from theobject expressiowithin a. operator or from th@ointer expressiowithin a —> expression

do not contribute to the declared type of the expression that refers to a member \@riable.

class A{
int a;
int& b;
static int c;

void foo() {
decltype(a); //int
decltype(b); //int&
decltype(c); //int
}

void bar() const {

decltype(a); //int (constis not added)
decltype(b); //int&

decltype(c); //int

}

h
2This decision is based on the reasoning thatieltypeof any expression referring to a member variable gives the type visible in the program

text similarly to non-member variables. We have not found particularly strong arguments favoring the proposed semantics over one where cv-
qualifiers of the object/pointer expression would affect the declared type of a member variable.

Doc. no: N1607=04-0047 8

A aa;
const A& caa = aa,;

decltype(aa.a) //int
decltype(aa.b) //int&
decltype(caa.a) //int

Note that the.x and —>x operators follow thedecltyperule[3 for functions, instead of rufg 2 for member
variables. The signatures for these built-in functions are not defined in the standard, hence the Ivalue/rvalue rule
applies. Using the classes and variables from the example above:

decltype(aax&A::a) // int&
decltype(aas&A::b) // illegal, cannot take the address of a reference member
decltype(caa&A::a) // const int&

The operatorsx and. (respectively—>+ and —>) can thus give different results when querying the type of

the same member. Sectipn}4.1 discusses similar cases with other operators and explains why, nevertheless, the
proposed rules were chosen. Here we note a useful observatiof] rule 2 is a special case which only applies for
data member accesses where the reference to the member is by the name of the field. The right hand sides of
-+ and—>x operators are not names of fields but ratpeinter-to-membeobjects, and can in fact be arbitrary
expressions that result in pointers to members, making it natural to appfy rule 3 for functions. Furthermore,

can be freely overloaded, and thus for user-defimerator—>x the function rule must be followed anyway.

Note that member variable names are not in scope in the class declaration scope:

class B {
int a;
enum B_enum{b};

decltype(a) c; / error, a not in scope
static const int x = sizeof(a); // error, a not in scope

decltype(this->a) c2; /I error, this not in scope
decltype(((B)0)—>a) hack; /I error, B« is incomplete

decltype(a) foo() { ... }; [l error, a not in scope
fun bar() —> decltype(a){ ... }; /I still an error

decltype(b) enums_are_in_scope() { return b; } // ok

3
Should this be seen as a serious restriction, we can consider relaxing it, but we see no current need for that.

o this:

class X {

void foo() {
decltype(this) // %
decltypethis) // X&

void bar() const {
decltype(this) // const X
decltype¢this) // const X&

Doc. no: N1607=04-0047 9

e Literals:
String literals are Ivalues, all other literals rvalues.

decltype("decltype") Il const char(&)[9]
decltype(1) /lint

e Redundant reference&) and cv-qualifiers.

Since adecltypeexpression is considered syntactically to bypedef-nameredundant cv-qualifiers angl
specifiers are ignored:

int&i=..;

constintj=..,;

decltype(i)& // the redundant & is ok

const decltype(j) // the redundant const is ok

Catering to library authors The semantics oflecltypedescribed above allow to return types of forwarding func-
tions to be accurately expressed in all cases. tfme and matrix addition examples in Sectjgn 2 work as expected
with this definition ofdecltype

Catering to novice users The rules are consistent;akprin decltype(expr)s a variable, formal parameter, or refers

to a member variable, the programmer can trace down the variable’s, parameter’'s, or member variable’s declaration,
and the result oflecltypeis exactly the declared type. épris a function invocation, the programmer can perform
manual overload resolution; the result of thecltypeis the return type in the prototype of the best matching function.

The prototypes of the built-in operators are defined in the standard, and if some are missing, the rule that an lvalue has
a reference type applies. There are some less straightforward cases though, as discussed in the next section.

4.1 Problems withdecltype

The somewhat subtle propertiesducltypen a few corner cases described in this section were presented to the EWG
in Kona. Since the Kona meeting, no changes that would affect the described properties has been made to the proposed
rules ofdecltype The properties do logically follow from thaecltyperules and it seems that attempts to add more
special cases would complicate the rules and implementations unnecessarily. It is also questionable, whether such
special cases would lead to more intuitive semantics.

The key property that is required for generic forwarding functions is to haypenfmechanism that does not
lose information. Particularly, information on whether a function returns a reference type or not must be retained. The
following example demonstrates why this is crucial:

int& foo(int& i);
float foo(float& f);

template <class T> auto forward_to_foo(T& t}> decltype(foo(t)) {
..., return foo(t);

}

int i; float f;
forward_to_foo(i); / should return int&
forward_to_foo(j); // should return float

Further, similar forwarding should work with built-in operators:

template <class T, class U>
auto forward_foo_to_comma(T& t, U& u)}-> decltype(foo(t), foo(u)) {
return foo(t), foo(u);

}

int i; float f;

Doc. no: N1607=04-0047 10

forward_foo_to_comma(foo(i), foo(f)); // float
forward_foo_to_comma(foo(f), foo(i)); // int&

This is easily attained with a full reference-presentiygeofoperator, with just one rule: if the expression whose type
is being examined is an Ivalue, the resulting type should be a reference type; otherwise, the resulting type should not be
a reference type. Theecltypeoperator obeys this rule except for non-member variables and expressions referring to
member variables. The deviation from the rule, however, is not serious, as it only occurs with certain syntactic forms
and can be accounted for by library solutions (it is possible to emulate the full reference presgreinfgperator
with decltypg. The deviation, however, leads to subtle behavior with some built-in operators. g€ction 2 gave such
examples for thex and—>x operators. Comma and conditional operators are subject to the same kinds of subtleties:
inti;
decltype(i); // int
but

decltype(0, i); // int&
decltype(true ?i:i); // int&

Thedecltype(i)case is covered byecltyperule[]. Rulg B, however, applies in the latter two cases. In the first of these
cases, the topmost expression is an invocation to the built-in comma operator. There is no prototype for that operator,
hence the Ivalue/rvalue rule applies; sinde an Ivalue, the result is a reference type. The second case follows the
same reasoning. In short, the intent of the Ivalue/rvalue rule is that if a built-in operator returns an lvalue of some type
T and the standard does not specify its signature, tleeftypeacts as if there was a signature for that operator with
return typeT&.

The member function rules afecltypecan lead to even more surprising cases:

struct A {
int x;

%

const A ca;
decltype(ca.x); // int
decltype(0, ca.x) // const int&

Thetype not thedeclared typeof ca.xis const intandca.xis an Ivalue; thusdecltypeacts as if there was a signature
of the comma operator returning a reference type. Hence, the resldtitypein this case i€onst int&.
It seems that at least the comma, conditiongland —>x operators suffer from these subtleties, but potentially

surprising cases can arise with other operators as well:

inti;

decltype(i); // int

decltype(i =i); // int&

decltypet&i); // int&

It is conceivable that these operators would be handled in some special manner. Such a rule for the comma operator
would definedecltype(a, basdecltype(b)f the operator invocation resolved to the built-in comma operator. This rule
would in some cases require examining more than just the topmost expression node to decide adudlyfienf an
expression is. It is not enough to know the topmost node and the types of its arguments; the compiler needs to know
thedeclared typesf the arguments:

inta, b, c,d;int& e =d;
decltype(a, (b, (c, d))); // int
decltype(a, (b, (c, e))); // int&

Here, the declared type of the leaf node determines the declared type of the whole expression.

Special rules for the conditional operator would be more complex than for the comma operator. In any case, the
decltyperules would get complicated with special cases for comma, conditienalnd—>x operators. Furthermore,
there do not seem to be clear criteria that would define this exact set of operators as subject to special rules.

Note that not special casing these operators (particularly comma) gives an easy way to emulate full reference-
preservingtypeof semantics, though in a somewhat hackish form. Witomevoid expressiondecltype(v, e)s

Doc. no: N1607=04-0047 11

equivalent to the full reference-preservitygpeofof e. Thevoid expression is needed to guarantee that the built-in
comma operator is the only matching operator.

It seems that the subtleties described in this section are unavoidabléyfoeatoperator that is not either fully
reference-preserving, or fully reference-stripping. Hence, the optiongdeofsemantics boil down to the following
three (banning the use decltypewith the problematic operations is a fourth option, though not particularly appeal-

ing):
1. Areference preservingpeof

e Has the right semantics for forwarding functions.
e Unintuitive results for non-reference variables and member variables.
e Simple rules.

2. Areference strippintypeof

e Intuitive and easy to teach.
e Simple rules.
e Useless (almost) for forwarding functions, which is the main motivation for the whole feature.

3. Decltype

¢ Intuitive for the most part. Does have some very subtle properties.
e More complex rules.
¢ Adequate for forwarding functions.

In [JS03], we wrote:

Although this proposal brings thaecltypesolution forward, we feel that a careful consideration of the
trade-offs between thaecltypesolution and the reference-preservigpeofis necessary.

Regarding this tradeoff, the EWG discussions in Kona and suppodefdtypeindicated by the straw votes strength-
ened our belief that the curredécltypespecification best hits the 'sweet-spot’ of both the needs of advanced generic
library authors’ and the needs of application programmers’.

5 Auto

Stroustrup brought up the idea of reviving theto keyword to indicate that the type of a variable is to be deduced
from its initializer expression [Str02]. For example:

auto x = 3.14; // x has type double

autois faced with the same questionstggeof Should references be preserved or dropped? Stautttbe defined

in terms ofdecltype(i.e., isauto var = exprequivalent tadecltype(expr) var = expP We suggest that the answer to

that question be “no” because the semantics would be surprising, non-ideal for the purpose of initializing variables,
and incompatible with current usestypeof Instead, we propose that the semanticaub follow exactly the rules

of template argument deduction. Taeto keyword can occur in any deduced context in an expression. Examples (the
notationx : T is read as X has typel™):

int foo();

auto x1 = foo(); /X1 :int

const auto& x2 = foo(); // x2 : const int&

auto& x3 = foo(); /I x3 : int&: error, cannot bind a reference to a temporary
float& bar();

auto y1 = bar(); /lyl : float

const auto& y2 = bar(); //y2: const float&
auto& y3 = bar(); /l'y3 : float&

Doc. no: N1607=04-0047 12

A major concern in discussions aluto-like features has been the potential difficulty in figuring out whether the
declared variable will be of a reference type or not. Particularly, is unintentional aliasing or slicing of objects likely?
For example

class B { ... virtual void f(); }
class D : public B { ... void f(); }
Bx d = new D();

auto b =xd; //is this casting a reference to a base or slicing an object?
b.f(); /l'is polymorphic behavior preserved?

A unconditionally reference-preserviagito (e.g. anauto directly based owmlecltypg would favor an object-oriented

style of use to the detriment of types with value semantics. Basitmon template argument deduction rules provides

a natural way for a programmer to express his intention. Controlling copying and referencing is essentially the same
as with variables whose types are declared explicitly. For example:

A foo();
A& bar();

A x1 = foo(); IIx1:A
auto x1 =foo(); //x1:A

A& x2 =foo(); /I error, we cannot bind a non-lvalue to a non-const reference
auto& x2 = foo(); // error

Ayl = bar(); IIyl: A
autoyl =bar(); //yl:A

A&y2=Dbar(); Iy2:A&
auto& y2 =bar(); //y2:A&

Thus, as in the rest of the language, value semantics is the default, and reference semantics is provided through
consistent use d&. The type deduction rules extend naturally to more complex definitions:

std::vector<auto> x = foo();
std::pair<auto, auto>& y = bar();

The declaration ok would fail at compile time if the return type débo was not an instance atd::vector or a type
that derives from an instance siid::vector Analogously, the return type dflar must be an instance efd::pair, or a
type deriving from such an instance. Declaring such partial types for variables can be seen as documenting the intent
of the programmer. Here, the compiler can enforce that the intent is satisfied.

The suggested syntax does not allow expressing constraints between two differentaugeseo., requiring that
both arguments tpair in the above example are the same. The current template syntax provides such capabilities. It
is conceivable that template syntax was allowed for variable declarations. For example, the variable declaration:

template <class T> std::pair<T, T> z = bar();

would succeed as long as the result typéaf() would matchstd::pair<T, T>. We do not propose such a feature at
this point.

5.1 Direct initialization syntax

Direct initialization syntax is allowed and is equivalent to copy initialization. For example:

autox=1;//x:int
auto x(1); // x : int

The semantics of a direct-initialization expression of the farm(x) with T a type expression containing one or
more uses o&uto, v as a variable name, andan expression, is defined as a translation to the corresponding copy
initialization expressioif v = x. Examples:

Doc. no: N1607=04-0047 13

const auto& y(x)—> const auto& y = x;
std::pair<auto, auto> p(bar()}-> std::pair<auto, auto> p = bar();

It follows that the direct initialization syntax is allowed witlewexpressions as well:
new auto(1);

The expressioauto(1)has typdnt, and thushew auto(1)has typent+. Combining anewexpression usingutowith
anauto variable declaration gives:

autox X = new auto(1);

Here,new auto(1)has typdntx, which will be the type ok too.

5.2 Functions with implicit return types

We suggest the use afito to be allowed in a return type expression of a function, or function template, leaving the
return type to be deduced from the return statement in the body of the function. For example:

template <class T, class U>
auto add(T x, Uy) {returnx +vy; }

The return type is deduced as the type deduced for the variebile the expressiomuto ret = x +y Any deduced
context is allowed:

const aute foo(...) { return expr; }
auto& bar(...) { return expr; }
vector<auto> bah(...) { return expr; }

The return types of the above functions are deduced as the types deduced for the vatiabietS, respectively:

const aute retl = expr;
auto& bar ret2 = expr;
vector<auto> ret3 = expr;

Note that the use afuto as a return type follows exactly the same rules as the uaatofwith variable declarations.
Particularly, the return type is not deduced according to the semantiEctifpe which could easily lead to subtle
errors. For example:

auto foo() {
inti=0;
return ++i;

}

With decltypesemantics the return type of the above function woulohti, leading to an attempt to return a reference
to a local variable. Henceuto as a return is not a tool for forwarding functions, but rather aimed for everyday
programming. It provides easier and more convenient means to define short (and often inlined) functions, which are
common in OO and generic programming.

We say that functions which have one or more occurrencastofin their return type expression haveiamplicit
return type Implicit return types raise some questions:

e Multiple return statements are a problem. The two solutions are either not allawtogn the return type
of a function with more than one return statement, or applying type deduction rules similar to those used for
deducing type of an invocation of the conditional operator. We suggest that functions relying on implicit return
types can contain at most one return statement.

e Missing return statement. Should the return type/die, or should such a function definition be an error? We
suggest that a function with an implicit return type has the return wgiebif the function does not contain a
return statement or contains the empty return statene¢untn;

e To be able to deduce the return type from the body of the function, the body needs to be accessible. This restricts

a function with an implicit return type to be callable only from the compilation unit that contains the definition
of the function.

Doc. no: N1607=04-0047 14

5.3 Implicit templates

Implicit templates were not strongly supported in EWG discussions in Kona. The main points against were the diffi-
culties in adapting current implementations, and doubts whether the benefits of a new template syntax are worth the
costs. We do not suggest this feature for standardization at this point, but nevertheless document the feature here, and
describe the corresponding changes and additions to the standard in Se¢tion 8.6.

By defining the semantics @uto in terms of initialization we automatically defirmito in every context where
a type is deduced through the initialization rules. Usago as a mechanism famplicit template functionsvas
suggested in [Str02] and has been discussed within the Evolution Working Group. For example, the implicit template
function:

void f(auto x) { ... }
is equivalent to
template<class T> void f(T x) { ... }
and
void f(auto x, auto y) { ... }
is equivalent to
template<class T, class U> void f(T x, Uy){... }

The translation from implicit templates to traditional templates is straightforward: every occurrende isfregarded
as a new unique template parameter. Note that the set of types that match a particular argument can be constrained in
the same ways as with traditional templates. For example,

void foo(auto a, auto& b, const auto& c, pair<int, auto> d, aut@);
is equivalent to:

template<class A, class B, class C, class D, class E>
void foo(A a, B& b, const C& ¢, pair<int, D> d, E e);

However, the implicit template syntax cannot capture relations between template arguments. To express such relations,
the traditional syntax must be used:

template<class T>void f(Tx, Ty) {... }

6 New function declaration syntax

We anticipate that a common use for tihecltypeoperator will be to specify return types that depend on the types
of function arguments. Unless the function’s argument names are in scope in the return type expression, this task
becomes unnecessarily complicated. For example:

template <class T, class U> decltypg({+*)0)+(x(Ux*)0)) add(T t, U u);

The expressiofk(Tx*)0) is a hackish way to write an expression that has the Tyaed does not requireto be default
constructible. If the argument names were in scope, the above declaration could be written as:

template <class T, class U> decltype(t+u) add(T t, U u);

Several syntaxes that move the return type expression after the argument list are discussed in [Str02]. If the return
type expression comes before the argument list, parsing becomes difficult and name lookup may be less intuitive; the
argument names may have other uses in an outer scope at the site of the function declaration.

From the syntaxes proposed fin [Str02], and those discussed within the evolution group in the Oxford-03 meeting,
the original decltype proposal [JSGS$03] suggested adding a new keyworth express that the return type is to
follow after the argument list. The return type expression is preceded>hgymbol, and comes after the argument
list (and potential cv-qualifiers in member functions) but before the exception specification:

Doc. no: N1607=04-0047 15

template <class T, class U> fun add(T t, U &)> decltype(t + u);
class A{
fun f() const —> int throw ();

g

We refer to[[StrOR] for further analysis on the effects of the new function declaration syntax.
Adding a new keyword is a drastic measure. Therefore, we suggest an alternative syntax that achieves the same
goals, but does not necessitate the introduction of a new keyword:

auto function—name(parameterlist) —> type

A type follows —>, and specifies the return type of the function. Particularly, the type can be expressed using a
decltypeexpression. For example:

auto f(inti) —> int;
template <class T>
auto id(T& a) —> decltype(a);

The syntax with which a function is declared is insignificant. For example, the following two function declarations
declare the same function:

auto foo(int) —> int;
int foo(int);

7 Conclusions

In C+2003, it is not possible to express the return type of a function template in all cases. Furthermore, expressions
involving calls to function templates commonly have very complicated types, which are practically impossible to write
by hand. Hence, it is often not feasible to declare variables for storing the results of such expressions. This proposal
describeslecltypeandauto, two closely related language extensions that solve these problems. Intuitivelgcthae
operator returns the declared type of an expression. For variables and parameters, this is the type the programmer finds
in the program text. For functions, the declared type is the return type of the definition of the outermost function called
within the expression, which can also be traced down and read from the program text (or in the standard in the case of
built-in functions).

The semantics ddiuto is unified with template argument deduction. The template argument deduction rules form
the backbone of two different features: functions with implicit return types, and the as#ooh variable declarations.
Both uses ofauto thus build on the same mechanism and essentially provide new use for what is already in the
language.

8 Proposed wording

8.1 decltype : proposed text
Section 2.11 Keywords.
Add decltype to Table 3.

Section 3.2 One definition rule
To paragraph 2, add:
is the operand of thdecltype operator ([dcl.type.decltype])

as one of the exceptions fpotentially evaluated

Doc. no: N1607=04-0047 16

Section 4.1 Lvalue-to-rvalue conversion
To paragraph 2, add a case ftecltype

. When an Ivalue-to-rvalue conversion occurs within the operargizebf (5.3.3) ordecltype
([dcl.type.decltype]) the value contained in the referenced object is not accessed, since those operators do
not evaluate their operands.

Section 7.1.5 Type specifiers
In paragraph 1:

— const or volatile can be combined with any other type-specifier. However, redundant cv-qualifiers are
prohibited except when introduced through the use of typedefs (7de8jtype ([dcl.type.decltype]), or
template type arguments (14.3), in which case the redundant cv-qualifiers are ignored.

Section 7.1.5.2 Type specifiers

In paragraph 1, add the following to the list of simple type specifiers:
decltype (expression)
To Table 7, add the line:

decltype (expression | the declared type of the outermost ex-
pression node of expression

New subsection: Decltype [dcl.type.decltype]
Should be placed after 7.1.5.2. The text of the section:

The type denoted by a decltype type expressiealtype(e) is the declared type of the outermost
expression node of its argumentdefined as:

1. If e is a name of a variable in hamespace or local scope, a static member variable, or a formal
parameter of a functiomlecltype(e) is the declared type of that variable or formal parameter. In
particulardecltype(e) results in areference type if, and only if, the variable or formal parameter
is declared to have a reference type.

2. If e refers to a member variabldecltype(e) is the declared type of the member variable. This
rule applies to the following expression forms:

(a) e is an identifier that names a non-static member variableeargdwithin a definition, i.e.,
function body, of a non-static member function.

(b) e is aclass member access expression (invocation of the builbin> operators) referring to
a member variable.

[Note: The I- or rvalueness and the cv-qualification of thgect expressio(fexpr.ref]) do not affect
the declared types of member variables.]

3. If e is an invocation of a function or of an operator, either user-defined or buieititype(e)
is the declared return type of that function or operator. The standard text does not list the prototypes
of all built-in operators. For those functions and operators whose prototypes are not listed, except
those covered by ru[g 2, the declared return type is a reference type if, and only if, the return type of
the operator is specified to be an Ivalue.

4. If e is an rvalue literal ([expr.prim]) of typ&, thendecltype(e) is the non-reference type If
e is an Ivalue literal ([expr.prim]) of typ@, thendecltype(e) is the reference typ€&.

5. If e is an Ivalue of function typd, decltype(e) isT&.
A decltype type expression does not evaluate its argument expressidaclype type expression

that would result in an unnamed type is ill-formed. Syntacticaljeeltype type expression is treated
as if it were atypedef-namécf. 7.1.3).

Doc. no: N1607=04-0047 17

Section 14.6.2.1 [temp.dep.type] Dependent types
Add a case fodecltype

— obtained withdecltype(expressioh, whereexpressioris a type-dependent expression ([temp.dep.expr]).

8.2 Removingauto as storage specifier: proposed text
Section 3.7.1 Static storage duration [basic.stc.static]

Remove reference @uto in paragraph 1, in

Local objects explicitly declareduto orregister or ...

Section 7.1.1 Storage class specifiers [dcl.stc]

Removeauto as a storage class specifier and the discussion apbait from paragraph 2.

Section 8.3 Meaning of declarators [dcl.meaning]

From paragraph 2, remowito from the list of type specifiers that apply declarator-ids.

Section 9.2 Class member [class.mem]

Removeauto from paragraph 5 which reads:

A member shall not be auto, extern, or register.

Section A.6 Declarations [gram.dcl.dcl]

Removeauto from storage class specifiers.

8.3 auto invariable declarations: proposed text
Section 7.1.5.2 Simple type specifiers [dcl.type.simple]

In paragraph 1, add the following to the list of simple type specifiers:

auto

To Table 7, add the line:

[auto | placeholder for a type

Add to the paragraph following Table 7:

Theauto type specifier ([dcl.type.auto]) is only allowed irdacl-specifier-sequendkeat is followed by
aninit-declarator-listin which eachinit-declarator consists of aleclaratorand a non-emptinitializer.
The initializer must be of either of the following two forms:

= initializer—clause
(initializer—clause)
[Example:The following are valid declarations:

auto X 5 vy = 3.14;
auto u 5, *v = expr,
pair<int, auto> a = pair<int, int>(), *b = new pair<int, float>();

— end example

Doc. no: N1607=04-0047 18

Section 8.3 Meaning of declarators [dcl.meaning]

New paragraph after paragraph 1:

Thedecl-specifier-sequencd a declaration may contain one or more occurrences odtibe keyword
if each declarator in the declaration declares an object and specifies an initial value. In this case, the type
of each declared identifier is deduced from the type of its initializer ([dcl.auto]).

Replace paragraph 4 with:

First, thedecl-specifier-seq determines a type; or, when it contains occurrencesitd , atype
schemeA type scheme yields a type if each occurrencauwib in the type scheme is replaced by a type.
In a declaration

TD

thedecl-specifier-sed determines the type, or type schemg,.“| Example:in the declarations
int unsigned i;
pair<auto, auto> p = f();

the type specifiermit unsigned determine the typeunsigned int ", and the type specifier
pair<auto, auto> determines the type schemgdir<auto, auto> " ([dcl.type.simple]).]

Sections 8.3.1-6 discuss héwreference, array etc. in the declarator propagate to the type détiti@rator-id These
must be adapted to apply to type schemes in addition to types. Details not shown.

New subsection: Auto [dcl.auto]

The section should be a subsection of Section 8.3 ([dcl.meaning]). The text of the new subsection:

Once the type scheme oflaclarator-idhas been determined, the type of each variable usinggtiarator-

id is determined from the type of its initializer using the rules for template argument deduction ([temp.deduct]).
Let T be the type scheme that has been determined for a variable ideditifiede be the initializer ex-

pression ford. ObtainT’ from T by replacing each occurrence afito with a new unique identifier.

Denote these identifiers a5 . . ., t,,. Define a function template as follows:

template <class t1, ..., class tn>
void _ f(T" _d) {}

The type deduced for the variakdeis then the type that would be deduced for the parametdrin a
callto__f with e as its actual argument. If the function argument deduction would fail, the declaration
is ill-formed.

[Example:

vector<auto, auto> & = expr;

The type scheme igector<auto, auto>& , and the type of is the deduced type of the argument
__i inthecall__f(expr) of the following function template:

template <_ T1, _ T2> void _ f(vector<__T1, _ T2>& i);
— end example
Section 8.5 Initializers [dcl.init]
To paragraph 14 add a case:

If the destination type contains tlaito specifier, see section [dcl.init.auto].

Doc. no: N1607=04-0047 19

Section 5.3.4 New [expr.new]
Paragraph 1 specifies the valid forms of new expressions. Add the following fonmedetype-idto the grammar:

new-type—id:

cv auto direct—new—declarator,

And the text:
If new-type-ids of the form ‘tvauto direct-new-declaratay,:”, new-initializerwith exactly one initial-
izer argument must follomew-type-idlor the program is ill-formed. The allocated type is deduced from

the type of this initializer argument as follows: L) be thenew-initializer, then the allocated type is
the type deduced for the variabtan the declaration ([dcl.auto]):

Ccv auto x = e

Once the allocated type has been deduced, the semanticsnawhexpressiors as if the form
“cvauto direct-new-declaratay,;” was written “T direct-new-declaratay,.”, where T is the type de-
duced for the allocated typeExample:

new auto(1); /I allocated type is int

double& foo();

new const auto[10](foo()); // allocated type is const double

auto x = new auto(’a’); // allocated type is char, x is of type char*

— end example

8.4 New function declaration syntax that moves the return type expression after parameter
list: proposed text

Section 8.3.5 Functions ([dcl.fct])
Add a new paragraph after paragraph 1:

In a declaratiorauto D , whereD has the form

D1 (parameter-declaration-clause) cv—qualifier—seq,: -> type-id exception-specification,:
and the type scheme of the contairdstlarator-idin the declaratiorauto D1 is “derived-declarator-
type-listauto ", the type of thedeclarator-idin Dis “derived-declarator-type-lidunction of (parameter-

declaration-clausgecv-qualifier-seg,; exception-specificatiqp, returningtype-id’; a type of this form
is afunction type

Section 8.4 Function definitions ([dcl.fct.def])

To paragraph 1, add the new syntax as an allodedlaratorform in function definitions. The end of the paragraph
should read:

Thedeclaratorin afunction-definitiorshall have one of the forms:

D1 (parameterdeclaration-clause) cv—qualifier—seq,,: exceptior-specification,,
D1 (parameter-declaration-clause) cv—qualifier—seq,: -> type—id exceptior-specification,;

as described in 8.3.5. A function shall be defined only in namespace or class scope.

Doc. no: N1607=04-0047 20

8.5 Allowing auto to occur in the return type of a function to deduce its return type from
its body: proposed text

Section 8.3.5 Functions ([dcl.fct])
At the end of paragraph 1, add the sentence:

If “ derived-declarator-type-listspecifies a type scheme (i.e. contains the keyvaar), either a func-
tion body must follow the declaration ([dcl.fct.def]) e and a return type must follow the declaration,
or the program is ill-formed.

Section 8.4 Function definitions ([dcl.fct.def])

Add to paragraph 1 that describes the allovdeglaratorforms in function definitions. The end of the paragraph
should read:
Thedeclaratorin afunction-definitiorshall have one of the forms:
D1 (parameter-declaration-clause) cv—qualifier—seq,: exceptior-specification,:
auto declarator-id (parameter-declaration-clause) cv—qualifier—seq,; -> type—id exceptior-specification,:

as described in 8.3.5. A function shall be defined only in namespace or class sabpd-dpecifier-seq
specifies dype-schemécontains occurrences afito) and the declarator is of the first form above, the
return type of the function is deduced from fia@ction-bodyaccording to the following rules:

1. If the function body contains more than amg¢urn statement, the program is ill-formed.

2. If the sole return statement of the function body is of the foetarn e , wheree is a nonvoid
expression, the return type of the function is the type that woulddoleiced to thedeclarator-id
in D1 in the following declaration.

decl—specifier—seq D1 = e

3. If decl-specifier-sedl is of the formauto declarator-id the function body is allowed to con-

tain no return statement, an empty return statemetorn; , or a return statement of the form
return e; wheree is an expression of typeoid . In these cases, the return type of the function
isvoid .

8.6 Allowing auto in the types of function parameters: proposed text
Section 8.3.5 Functions ([dcl.fct])

Add to paragraph 3 (before discussion of the transformations to the parameter types):

If the type of a parameter contains occurrencesud , the function declaration istamplate-declaration
that declares a function template, as described in ([temp]).

Section 14 Templates ([temp])
In paragraph 1, add a new form feamplate-declaration
template—declaration

export ,,; implicit—function-template

and text:

implicit-function-templatg[temp.fct]) is adeclarationthat declares or defines a function whose list of
parameter types contains one or more occurrencestof .

Doc. no: N1607=04-0047 21

Section 14.5.5 Function templates ([temp.fct])
Add a paragraph after paragraph 1:

A function declaration, or a template declaration declaring a function template, whose list of parameter
types contains one or more occurrenceautb is animplicit-function-templateEach such use @futo

is animplicit template parameterAn implicit function template is treated as if it was defined as a function
template obtained with the following procedure.

1. If the implicit function template does not have a template parameter list, add an empty template
parameter list.

2. Examine the function parameter list from left to right lexically.

3. For each occurrence afito in the parameter list, add a new unigypetemplate parame@at the
end of the template parameter list, and replagt with the name of the new template parameter.

[Example:

auto& f(auto& i, const pair<auto, auto> j) { ... }

is equivalent to the definition:

template <typename __T1, typename __ T2, typename __ T3>
auto& f(__T1& i, const pair<__ T2, T3> j) { ... }

Note:theauto in the return type expression is not affected.

template <class T, class U = int, class V>
int g(T t, auto* x, Vv) { ... }

is equivalent to the definition:

template <class T, class U = int, class V, class _ T1>
int gTt _T1*x, Vv){..}

References

[Dim01] Peter Dimov.The Boost Bind LibraryBoost, 2001www.boost.org/libs/bind

[Gre03] Douglas Gregor. A uniform method for computing function object return types. C++ standards committee
document N1437=03-0019, February 2003.

[JP02] Jaakko Jarvi and Gary Powelhe Boost Lambda Librar®002.www.boost.org/libs/lambda

[JPLO3] Jaakko Jarvi, Gary Powell, and Andrew Lumsdaine. The Lambda Library: unnamed functions in C++.
Software—Practice and Experien@&3:259-291, 2003.

[JS03] J. Jarvi and B. Stroustrup. Mechanisms for querying types of expressions: Decltype and auto revis-
ited. Technical Report N1527=03-0110, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22,
Programming Language C++, September 2008p://anubis.dkuug.dk/jtc1l/sc22/wg21/
docs/papers/2003/n1527.pdt

[JSGSO03] Jaakko Jarvi, Bjarne Stroustrup, Douglas Gregor, and Jeremy Siek. Decltype and auto. C++ standards com-
mittee document N1478=03-0061, April 2008ttp://anubis.dkuug.dk/jtc1l/sc22/wg21/
docs/papers/2003/n1478.pdf

[Str02] Bjarne Stroustrup. Draft proposal for "typeof". C++ reflector message c++std-ext-5364, October 2002.

Sauto cannot be used in place of non-type template parameters

www.boost.org/libs/bind
www.boost.org/libs/lambda
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1527.pdf
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1527.pdf
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1478.pdf
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/papers/2003/n1478.pdf

Doc. no: N1607=04-0047 22

[Vel] Todd Veldhuizen. Blitz++ home pagéittp://oonumerics.org/blitz

[WKO02] Jorg Walter and Mathias KochThe Boost uBLAS Library Boost, 2002. www.boost.org/libs/
numeric |

9 Acknowledgments

We are grateful to Jeremy Siek, Douglas Gregor, Jeremiah Willcock, Gary Powell, Mat Marcus, Daveed Vandevoorde,
Gabriel Dos Reis, David Abrahams, Andreas Hommel, Peter Dimov, and Paul Mensonides for their valuable input in

preparing this proposal. Clearly, this proposal builds on input from members of the EWG as expressed in face-to-face
meetings and reflector messages.

www.boost.org/libs/numeric
www.boost.org/libs/numeric

	Background
	Changes from N1478

	Introduction
	Motivation

	Design alternatives for [basicstyle=]typeof
	The [basicstyle=]decltype operator
	Problems with [basicstyle=]decltype

	Auto
	Direct initialization syntax
	Functions with implicit return types
	Implicit templates

	New function declaration syntax
	Conclusions
	Proposed wording
	[basicstyle=]decltype: proposed text
	Removing [basicstyle=]auto as storage specifier: proposed text
	[basicstyle=]auto in variable declarations: proposed text
	New function declaration syntax that moves the return type expression after parameter list: proposed text
	Allowing [basicstyle=]auto to occur in the return type of a function to deduce its return type from its body: proposed text
	Allowing [basicstyle=]auto in the types of function parameters: proposed text

	Acknowledgments

