Doc.no. N1612=04-0052
Date: March 29th, 2004
Reply-To: Thorsten Ottosen, nesotto@cs.auc.dk or tottosen@dezide.com

How we might remove the remaining shortcomings of
std::complex<T>

The language of pairs is incorrect for Complex Arithmetic; it needs the
Imaginary type.
Professor William Kahan

Introduction

Recently there have been written two proposals that seek to enhance the
use of std::complex<T> [GKAO02] [Rei02]. The proposals have my full
support, but a few other changes could be made for the sake of elegant
code, efficiency and intuitive behavior. The changes rely mainly on the in-
troduction of an imaginary class describing imaginary numbers like 5:. It
is worth noticing that C99 has added support for complex numbers and de-
scribed recommendations that seek to address these issues [C9903, 183ff].
One way to characterize this proposal is that it suggests partial support for
Language Independent Arithmetic Part 3 (LIA-3) [ISOO01].

Contents

1 The problem 2
2 The solution 3
3 Changes to <complex> 3
4 Discussion 6
5 Acknowledgements 7

1 The problem

As discussed in [Mar03], the lack of imaginary literals in C++ gives rise to
both inelegant usage and efficiency concerns. To avoid this problem, the
programmer may have to decompose complex arithmetic expressions into
separate computations of real and imaginary parts thereby forgoing some
of the advantages of compact notation. To illustrate the inelegant syntax
consider how we code (4 + 2i)/i:

typedef complex<double> complex_t;
complex_t ¢3 = complex_t(4, 2) / complex_t(0, 1);

The inefficiency occurs especially (but not exclusively) with multiplica-
tion and division:

complex_t z(1, 2);
z *= complex_t(O, 1); // note: rhs is imaginary
z /= complex_t(0, 1); // note: ditto

Complex multiplication normally takes 4 multiplications and 2 additions,
but when a pure imaginary number is involved, multiplication boils down
to 1 negation and 2 multiplications due to the zero real part [C9903, 184].
(Remark: an implementation might simply check for the zero real part, but
neither Dinkumware nor STLport 4.6.1 does it. On Intel + win32 I tested
the overhead of such a branching and it was hard to measure. I suspect
that other platforms behave differently.) For division we normally need
one comparison, 3 divisions, 3 multiplications and 3 additions instead of
2 divisions and 1 negation.

As a third concern, there is an unintuitive distinction between how real
and imaginary numbers behaves when combined with complex numbers.
For some applications it is important that complex-real and complex-imagi-
nary mixed arithmetic does not promote real and imaginary numbers to
complex numbers before a multiplication. However, that is impossible with-
out imaginary numbers. This avoids the following problem with infinities
[C9903, 471]:

const double inf = numeric_limits<double>::infinity();

complex_t x = 2.0 * complex_t(3.0, inf);

complex_t y = complex_t(2.0, 0) * complex_t(3.0, inf);
cout << x << y; // should print '(+6,+inf) (+nan,+inf)’

The first output is better since it maintains the right quadrant of the num-
ber. A similar problem exists with signed zeros:

x = 2.0 * complex_t(3.0, -0);
y = complex_t(2.0, 0) * complex_t(3.0, -0);
cout << x << vy; /I should preferably print '(+6,-0) (+6,+0)’

The first result is desirable (because it preserves the right sign information),
but none of my three C++ compilers will compute it because the standard
does not specify the necessity of signed zeros [KD98, 15f]. This again leads
to non-intuitive examples such as

complex_t z = -1; // or any other negative real
cout << sqgrt(conj(z)) << conj(sart(z)));
/I prints: (+0,+1) (+0,-1)

The problem is that the equality sqrt(conj(z)) = conj(sqrt(z)) holds for
certain complex numbers, but not for others. Further discussion of the im-
portance of signed zeros can be found in [Gol91, 201f] and [Kah87].

2 The solution

The issues that arise because we do not have unsigned zeros cannot be
resolved through a library proposal. The language needs to change, and it
is an open question how this might be done. One possibility could be to
require signed zeros if the hardware supports it.

However, all the remaining issues can be dealt with by a library exten-
sion: we simply need to add a new class that defines imaginary numbers
and which interacts with the real and complex numbers. This small sample
shows how we might use the new complex and imaginary classes:

typedef imaginary<double> imaginary_t;
complex_t z = 4.2 + 3.0%;

complex_t x = 42.%;

complex .ty = (4 + 20%)/ (1%),

zZ *= 32.%;

z [= 1.%;

imaginary_t im(4); Il ok

imaginary_t im2 4; /I error, rhs is a real
imaginary_t im3 = 4.*i // ok, rhs is now imaginary<double>
imaginary_t im4 5% + im * 4. - im3;

sqrt(im); Il error

sqrt(complex_t(im)); // ok

So the idea is simply to overload operators such that any interaction with
I creates an imaginary number.

3 Changes to <complex>

This proposal suggests that the <complex> header should be extended to
include the following:

template< typename T >

class imaginary

{
imag_; // exposition only

public:
explicit imaginary(T imag = 0); // explicit forces 'imaginary z = 2.*V
T value() const;
imaginary& operator=(T r);
imaginary& operator=(imaginary r);
imaginary& operator+=(imaginary r);
imaginary& operator-=(imaginary r);
imaginary& operator*=(T r);
imaginary operator-() const;
/I note: no operator/() since result is complex
/I note: default copy operations are ok

struct imaginary_unit_t // one constant that works will all fp types

{
imaginary_unit_t() {}
h

const imaginary_unit_t i;

template< typename T >
class complex

{
/I as before ... but
/I new constructors
complex(imaginary<T> r);
complex(T realval, imaginary<T> imagval);
/I new arithmetic
complex& operator=(imaginary<T> r);
complex& operator+=(imaginary<T> r);
complex& operator-=(imaginary<T> r);
complex& operator*=(imaginary<T> r);
complex& operator/=(imaginary<T> r);
b

o
/I imaginary literals, ex: i * 4.2f, 4.3 * |

template< typename T >

imaginary<T> operator*(T |, imaginary_unit);
template< typename T >

imaginary<T> operator*(imaginary_unit, T r);
1

/I ... also for operator +, -, /

1

template< typename T >
complex<T> operator*(const complex<T>& |, imaginary_unit);

template< typename T >

complex<T> operator*(imaginary_unit, const complex<T>& r);
1

/I ... also for operator +,-,/

i

M
/I imaginary arithmetic

template< typename T >

imaginary<T> operator+(imaginary<T> |, imaginary<T> r);

template< typename T >

imaginary<T> operator-(imaginary<T> |, imaginary<T> r);

template< typename T >

T operator*(imaginary<T> |, imaginary<T> r); // note conversion to T
template< typename T >

imaginary<T> operator/(imaginary<T> |, imaginary<T> r);

I
/I mix-mode arithmetic: real-imaginary

template< typename T >

complex<T> operator+(T |, imaginary<T> r);

template< typename T >

complex<T> operator+(imaginary<T> I, T r);

template< typename T >

complex<T> operator-(T |, imaginary<T> r);

template< typename T >

complex<T> operator-(imaginary<T> I, T r);

template< typename T >

imaginary<T> operator*(T |, imaginary<T> r); // note conversion to imaginary<T>
template< typename T >

imaginary<T> operator*(imaginary<T> |, T r); // note conversion to imaginary<T>
template< typename T >

complex<T> operator/(T |, imaginary<T> r);

template< typename T >

complex<T> operator/(imaginary<T> |, T r);

T
/I mixed-mode arithmetic: complex-imaginary

template< typename T >

complex<T> operator+(const complex<T>& |, imaginary<T> r);
template< typename T >

complex<T> operator+(imaginary<T> |, const complex<T>& r);
template< typename T >

complex<T> operator-(const complex<T>& |, imaginary<T> r);
template< typename T >

complex<T> operator-(imaginary<T> |, const complex<T>& r);
template< typename T >

complex<T> operator*(const complex<T> |, imaginary<T> r);
template< typename T >

complex<T> operator*(imaginary<T> |, complex<T> r);
template< typename T >

complex<T> operator/(const complex<T>& |, imaginary<T> r);
template< typename T >
complex<T> operator/(imaginary<T> |, const complex<T>& r);

i
/I comparison

template< typename T >

bool operator==(imaginary<T> |, imaginary<T> r);
template< typename T >

bool operator!=(imaginary<T> |, imaginary<T> r);
template< typename T >

bool operator<(imaginary<T> |, imaginary<T> r);
i

/I ... and also for >>=<=

I

template< typename T >

bool operator==(const complex<T> |, imaginary<T> r);
template< typename T >

bool operator==(imaginary<T> |, complex<T> r);
I

/I ... and also for !=

1

4 Discussion

There are several issues of the implementation that should be discussed.

1. Should complex math functions be overloaded for imaginary types?
It is probably not worth the trouble since implementation can already
treat a real part of zero special if it is really beneficial.

2. Why should we provide a imaginary_unit_t ? Would it not be eas-
ier to have const imaginary<double> i; ? The problem is that
we now have hardcoded double into the constant so we would need
three constants. If the type of i is public available, one can also call
it j which is common engineering practice. (Remark: C99 has the |
macro.)

3. Should implicit conversion between imaginary<T> and imagina-
ry<U> be allowed by providing templated conversions operators, ex-
tra template argument on operator+() etc.? The downside would
be that narrowing conversions could suddenly happen implicit; how-
ever, this could probably be prohibited using the enable-if technique
[JJLO3]. Strinct conformance to the same value type, on the other hand,
is good for performance.

4. Onereviwer suggested the name imaginary_symbol instead of ima-
ginary_unit_t

5. How advanced should the constant i be? The implementation de-
scribed here requires that i is always used in connection with the
multiplication operator. It is (or at least will be) possible to make i it-
self more context aware, but it will require a much more elaborate
implementation. The simple multiplication mechanism means that
imaginary number are created the same way in C99 and C++.

5 Acknowledgements

Thanks to Andy Little, Daniel Frey and Guillaume Melquiond for their
comments. Thanks to Walter Bright for making his critique of C++ com-
plex numbers public.

References

[C9903]

[GKAO02]

[Gol91]

[1SO01]

[JJLO3]

[Kah87]

[KD98]

[Mar03]

[Rei02]

Rationale for International Standard—Programming Langua-
ges—C. http://anubis.dkuug.dk/jtc1/sc22/wgld/www /C99-
RationaleV5.10.pdf, 2003. 1,2

R.W. Grosse-Kunstleve and D. Abrahams. Predictable data lay-
out for certain non-pod types, document wg21/n1356., 2002. 1

David Goldberg. ~ What every computer scientist should
know about floating-point arithmetic. http://citeseer.nj.nec.-
com/goldberg91what.html, 1991. 3

Information technology—language independent arithmetic, part
3. http://std.dkuug.dk/jtcl/sc22/wgll/docs/n476.pdf, 2001.
1

Jeremiah Willcock Jaakko Jarvi and Andrew Lumsdaine.
enable_if. http://www.boost.org/libs/utility /enable_if html,
2003. 6

William Kahan. Branch Cuts for Complex Elementary Functions,
or Much Ado About Nothing’s Sign Bit. The State of the Art in
Numerical Analysis (eds. Iserles and Powell), 1987. 3

Prof. W. Kahan and Joseph D. Darcy. How Java’s Floating-Point
Hurts Everyone Everywhere, 1998. 3

Digital Mars. D Complex Types and C++ std:complex .
http:/ /www.digitalmars.com/d/cppcomplex.html, 2003. 2

Gabriel Dos Reis. Enhancing numerical support, document
wg21/n1388, 2002. 1

	The problem
	The solution
	Changes to <complex>
	Discussion
	Acknowledgements

