
Document Number:

Date:

Project:

Reference:

Reply To:

SC22/WG21/N1681
J16/04-0121

01 September, 2004

JTC1.22.32
Programming Language C++
Library Working Group

ISO/IEC IS 14882:1998(E)

David B. Held
CodeLogic, LLC
110 10th Ave. N
St. Cloud, MN 56303 USA
dheld@codelogicconsulting.com

A Proposal to Add a Policy-Based Smart Pointer
Framework to the Standard Library

I. Motivation

Smart pointers provide an automated memory management solution that aids in preventing
resource leaks and ensuring exception safety. Further motivation and justification for smart
pointers in the Standard Library can be found in N1450=03-0033 [DDC03]. Said document
argues that shared ownership semantics are the most common need among smart pointer users.
This proposal amplifies that notion with the insight that this goal may be achieved through
multiple implementation designs, each offering various tradeoffs. Furthermore, this proposal
will present a coherent framework by which most useful smart pointer designs may be assembled
with as little effort as possible. While the proposal is based on an existing reference
implementation, that implementation is not believed to be widely used, as it has not been
officially released. On the other hand, the reference implementation is based on an earlier library
that has been released and has been in use for about three years.

Multiple Roads to Shared Ownership
There are numerous strategies for implementing smart pointers with shared-ownership
semantics, and even the Boost.SmartPtr library [CD99] from which
std::tr1::shared_ptr<> was selected contains both an externally counted and an intrusively
counted pointer. While shared_ptr<> tends to get most of the attention,
boost::intrusive_ptr<> definitely has some users, judging by the occasional questions and
comments on the Boost mailing list. Furthermore, the Microsoft® COM specification provides a
large set of intrusively counted objects for which the safest, most efficient, and most natural
usage would call for a wrapper of IUnknown::AddRef() and IUnknown::Release(). Finally,

WG21/N1681=J16/04-0121 Page 2
Policy-Based Smart Pointer

the OMG CORBA® architecture also provides numerous intrusively counted types that could
benefit from a smart pointer wrapper.

Somewhat surprisingly, it seems that reference linking may, in fact, be one of the fastest non-
intrusive ownership-sharing strategies for smart pointers in a single-threaded context. Tests
conducted for a C/C++ Users Journal article [AH04] indicate that the minimization of
conditional branches led to fairly fast code, if not for optimal pointer size. A scenario in which
speed is strongly favored over size and the solution cannot be intrusive may benefit from a
reference-linked implementation.

It is inevitable that some designs will result in pointer cycles, which a naïve implementation will
fail to free properly. The current Boost.SmartPtr library solves this problem by introducing
boost::weak_ptr<>, which breaks cycles. While this is an appropriate solution, it requires
developers to explicitly track cycle-forming scenarios and use weak_ptr<>s in the appropriate
places, which may be an onerous process in large projects. Thus, some developers, such as Greg
Colvin [Colv99] and Larry Evans [Evan04], have developed smart pointers which detect cycles
and clean them up correctly.

The number of shared ownership strategies is overwhelming, and the subject could fill an entire
paper all by itself. But perhaps it is worth noting that there are gray areas between totally
intrusive reference counting and purely external reference counting. Phillipe Bouchard explored
a point in this region of the design space with his shifted_ptr<>1 [Bou03], which was
anticipated by an earlier Boost effort to evaluate various ownership techniques2.

Non-Shared Ownership
While shared ownership may be the most common need, one can hardly argue that other
ownership semantics are not used regularly, given the existence of std::auto_ptr<>.
Furthermore, while boost::scoped_ptr<> was left out of N1450=03-0033, it is clear that it, too,
has many users, given the somewhat frequent requests to modify it in various ways (such as by
adding a custom deleter [Rame04]). This strategy might be called “no-copy semantics”. The
frequent suggestions to improve std::auto_ptr<> itself has led to better designs and
implementations which utilize what we now call move semantics (c.f.: N1377=02-0035
[HDA02]). And occasionally, there is a request for a smart pointer with deep copy semantics3.

Smart Resource?
Besides pointers to objects and pointers to arrays, it has been noted that a policy-based
framework could generate arbitrary resource wrappers for everything from FILE* to sockets to
Win32® handles. As an exercise, Held wrote a smart lock wrapper for a mutex. These would all
be instances of custom storage policies.

1 In this design, the reference count is non-intrusively grafted onto the pointee, and the pointer is “shifted” to make it
look like an otherwise normal intrusive implementation.
2 Check the History and Acknowledgements section of [CD99], especially the “Placement attached” configuration.
3 Of course, Alan Griffith’s [Grif99] grin_ptr<> has been in existence for quite some time. It can implement deep
copy semantics and its motivating use-case is the pImpl idiom.

WG21/N1681=J16/04-0121 Page 3
Policy-Based Smart Pointer

Checking For Null
C++ programmers must constantly make trade-offs between speed and safety. While safety is
generally preferred, there are enough times when performance is absolutely necessary that it
would be burdensome to write a custom smart pointer (or family of smart pointers!) that has all
the safety features removed. For a monolithic design like std::tr1::shared_ptr<>, which
already does a lot of work, it would probably not be appropriate to create a stripped-down
version with all the non-essential checking removed. But for smaller, lightweight pointers that
may get created thousands of times and accessed many times more than that, it makes sense to
have a version that does not contain any safety features, once it has been shown to be correct.
Furthermore, some programmers will refuse to switch from raw pointers to smart pointers if they
perceive any significant loss of performance (whether this position is warranted or not).
Demonstrating smart pointers that perform favorably compared to raw pointers is an important
step in encouraging such programmers to adopt more modern techniques. Alexandrescu and
Held [AH04] showed that dereference checking adds about a 40% performance penalty over raw
pointers, while checking-free smart pointers perform identically to raw pointers on dereference.
Both options should be available, and in a policy-based framework, they are. Not only is there a
choice between checking or not, but one may also choose whether checking is reported via
assertion, exception, or some other mechanism. Finally, there are different strategies for
checking which result in different performance payoffs. Only checking for null during
construction and copying avoids the somewhat costly dereference check, but prevents the default
construction of pointers. Whereas, checking for null on every access is the safest approach,
which is why it is the default checking policy.

On a more philosophical note, Alexandrescu comments [in private communication] that: “…it is
in the grand tradition of C++ to offer efficient components for building safe components (the
converse being impossible)... By trying to amass all of the useful features in one, shared_ptr<>
inevitably fails that tradition. smart_ptr<> offers a range of flexible designs, with the safe ones
building on the fast ones.”

Implicit Conversion
While it is generally agreed that implicit conversion to the raw pointer type is a bad idea for
smart pointers, some programmers will insist that any replacement for a raw pointer must
interact with raw pointers seamlessly, and that means no calls to functions like get()4. Since
this is an unsafe alternative, users must choose it explicitly with the allow_conversion policy.

Combinatorics and Boilerplate
A quick review of custom-written smart pointers will reveal a syntactic and semantic regularity
that is awkward in its redundancy and ease with which implementation errors are introduced. It
is inevitable that some functions (like operator->()) will be written in a similar manner. It is
equally inevitable that some programmers will make subtle mistakes while designing such smart
pointers. While a policy-based framework cannot eliminate all such mistakes, it can help to
reduce them by allowing programmers to reuse portions that are already known to be correct.
This reduces the burden of writing custom smart pointers in the way that the Boost.Iterator
[ASW03] library reduces the burden of writing custom iterators and the way that the

4 Or, as Alexandrescu suggests, “leak()”.

WG21/N1681=J16/04-0121 Page 4
Policy-Based Smart Pointer

Boost.Operators [Abra99] library reduces the burden of writing custom operators. Some
functionality, such as comparison operators and casting operators, is almost always identical
across configurations, thus saving the user considerable time in designing a new pointer type.

Furthermore, users can leverage work done by others by combining existing policies with their
own custom ones, resulting in a combinatorial number of pointer configurations, rather than a
linear selection. For example, one new checking policy can often be used with all the existing
storage and ownership policies, multiplying the number of new pointer configurations available
from which to select appropriate size, speed, and safety tradeoffs. Even if a custom ownership
policy requires a specific custom storage policy, both can probably still benefit from the large
number of checking policies available.

Summary
Is a policy-based framework justified, given the complexity for both users and implementers?
The arguments above, together with an ever-increasing user demand for refined, specialized
smart pointers, seem to support this conjecture. The steady stream of proposals for new smart
pointer types and feature requests for existing ones on both the Boost mailing list and groups like
comp.lang.c++.moderated strongly suggest that no small fixed set of smart pointers will satisfy
the C++ community. The committee can serve developers well by providing a framework that
offers the most common smart pointer designs while accommodating and aiding those who wish
to construct non-standard designs.

II. Impact on the Standard

This proposal is essentially a pure extension. It does not by necessity depend on any other
library, standard or non-standard, but implementations will benefit from the availability of
facilities such as those provided by Boost. In particular, the reference implementation uses
Boost.TypeTraits [Madd01], Boost.Utility [Abra03], and Boost.MPL [GAW02]. No other
library or proposal depends on this framework, at the time of writing. No core language changes
are required, but this framework would benefit significantly from template aliases as proposed in
N1489=03-00325 [SD03]. It would not benefit from automated forwarding constructors à la
N1583=04-0023 [Glas04] as previously assumed. This proposal would either modify <memory> or
add a new header: <smartptr> (for details see section V).

There is certainly overlap between this proposal and N1450=03-0033. It is reasonable to believe
that the smart pointers specified in [DDC03] could be implemented in terms of the framework
presented in this proposal. The committee must decide whether this approach is mandated or
allowed. As proof of concept, earlier versions of boost::shared_ptr<>, boost::weak_ptr<>
and boost::intrusive_ptr<> were, in fact, implemented as policies within an earlier version
of the current framework. However, boost::shared_ptr<> enjoys near continuous
development, and it is not practical to update the policy definition whenever there is a change in
the corresponding design. Nonetheless, it is strongly believed that std::tr1::shared_ptr<>
and weak_ptr<> can, in fact, be implemented purely as policies within the framework being

5 In fact, the Loki::SmartPtr library from which this proposal is derived was a motivating example in N1406=02-
0064 [Sutt02].

WG21/N1681=J16/04-0121 Page 5
Policy-Based Smart Pointer

proposed here. For the record, it is known that a standalone implementation of
std::tr1::shared_ptr<> can peacefully coexist in the same project with the policy-based
framework being proposed.

III. Design

Overview
The design of the library is derived from that specified in Modern C++ Design (MC++D), by
Alexandrescu [Alex01]. The essence of the framework is summarized by a class parameterized
over four policies, as illustrated below:

template <
typename T,

 class StoragePolicy = scalar_storage,
 class OwnershipPolicy = ref_counted,
 class ConversionPolicy = disallow_conversion,
 class CheckingPolicy = assert_check
>
class smart_ptr;

These policies provide the majority of the functionality and all of the data defined by the
smart_ptr<> class. The defaults are chosen to coincide with the most common use-case,
although there is more to say on that later. The design of the framework attempts to
accommodate several criteria deemed to be very important:

1. Size
The framework should not produce types that are unreasonably large. This means that
for simple configurations requiring no external ownership-tracking mechanisms (such as
a std::auto_ptr<>-like, boost::scoped_ptr<>-like, or intrusively counted config-
uration), sizeof(smart_ptr<T>) should equal sizeof(T*). Other configurations that
provide similar capability to established smart pointer designs should be no larger than
those extant types. E.g.: a typical externally reference-counted smart_ptr<T> should
have size no larger than sizeof(T*) + sizeof(unsigned*).

2. Speed

Types produced by the framework should be as fast as equivalent hand-rolled smart
pointer designs. Thus, any non-essential features that may impact performance must be
user-configurable via the policy mechanism.

3. Exception Safety

The framework should offer reasonable exception safety guarantees given constraints and
requirements on policy classes. At least the basic guarantee must be offered for all
functions6.

6 As Dave Abrahams notes, this should go without saying for all libraries. However, the conspicuous absence of
exception safety analysis for many libraries indicates that this point is worth stressing.

WG21/N1681=J16/04-0121 Page 6
Policy-Based Smart Pointer

4. Configurability
In some respects, the cost of this framework is high. To justify that cost, the framework
should make it relatively easy to produce virtually any smart pointer configuration
desired. Whether that goal can be realistically achieved or not remains an open question.

Policy Integration
There are two obvious ways to integrate the policies into the smart_ptr<> type. One is to use
the multiple-inheritance approach implemented by the Loki library which accompanies MC++D:

template <
typename T,

 class StoragePolicy, class OwnershipPolicy,
class ConversionPolicy, class CheckingPolicy

>
class smart_ptr
 : public StoragePolicy, public OwnershipPolicy,

public ConversionPolicy, public CheckingPolicy
{ ... };

The other is to use a chained-policy approach as illustrated below:

template <
typename T,

 class StoragePolicy, class OwnershipPolicy,
class ConversionPolicy, class CheckingPolicy

>
class smart_ptr
 : public

CheckingPolicy<
ConversionPolicy<

OwnershipPolicy<
StoragePolicy<T>

 >
>

 >
{ ... };

Aggregation is not desirable as it does not allow policies to contribute to the public interface of
smart_ptr<>7. For the same reason, private inheritance is not considered. Each of the designs
mentioned above implies various tradeoffs in simplicity, ease of implementation, and the policy
interface presented to users who wish to write their own policies.

Multiple Inheritance
The multiple inheritance approach was initially selected because of its conceptual simplicity and
implied orthogonality of policies. However, it was later realized that the policies cannot quite be
made entirely orthogonal, and some communication among them is necessitated by the demand

7 For a justification of why policies should be able to contribute to the public interface of smart_ptr<>, consider
operator[] for configurations which support array access (deemed by the Boost community to be important, à la
boost::scoped_array<> and boost::shared_array<>).

WG21/N1681=J16/04-0121 Page 7
Policy-Based Smart Pointer

for exception safety. Nonetheless, this was the preferred implementation approach until the
following issues were identified.

Poor Support for the Empty Base-class Optimization
The so-called “Empty Base-class Optimization” (EBO) is absolutely necessary to achieve the
size criterion. Unfortunately, many compilers tested during the development of this library
failed to suitably apply the EBO. Since the size criterion is deemed to be extremely important
(due to the desire for low abstraction overhead), a workaround was sought. Alexandrescu
proposed a solution he called OptionallyInherit<>, which is essentially the dual of
boost::compressed_pair<>. Held implemented it as optimally_inherit<>, and its use led
to this implementation:

template <
typename T,

 class StoragePolicy, class OwnershipPolicy,
class ConversionPolicy, class CheckingPolicy

>
class smart_ptr
 : public optimally_inherit<

optimally_inherit<StoragePolicy, OwnershipPolicy>::type,
optimally_inherit<ConversionPolicy, CheckingPolicy>::type

 >::type
{ ... };

While this solution does solve the size problem for most compilers, it is unsatisfying for several
reasons. First, the optimally_inherit<> mechanism must forward all constructors, as well as
swap(). Note that this would not be alleviated by N1583=04-0023 because the forwarding copy
constructors perform casting to base classes so that non-templated constructors in those base
classes will be properly called8. Second, the technique relies on partial template specialization
(PTS), which at the time of original development, was still not widely supported (including on
some popular compilers). However, it is possible to implement the mechanism without PTS for
non-conforming compilers. Third, it adds compilation overhead to an already template-heavy
library. While the overhead may be small compared to other features in the framework (such as
the policy adaptor), if the template is instantiated over many types (which is to be expected in a
large project), this overhead begins to impose a measurable compilation burden.

Policy Interaction
In discussing issues regarding this framework on the Boost mailing list, it became clear that the
library was not exception safe. That is, it was possible for the smart_ptr<> class to take
ownership of a newly allocated resource and then abort construction via an exception (such as
while allocating an external reference count), thus leaking the resource. The solution to this
problem was an intermediate template class called resource_manager<> which provided the
cleanup function originally found in ~smart_ptr(). By insinuating this class in the right
position within the inheritance lattice (while imposing some reasonable requirements on policy
authors), the basic guarantee was achieved. Conveniently, the resource_manager<> mechanism
replaced one of the optimally_inherit<> instances. However, the lessons learned from this

8 For a detailed explanation of this issue see note 1 in section VI.

WG21/N1681=J16/04-0121 Page 8
Policy-Based Smart Pointer

minor debacle are that there is a necessary ordering relation for the initialization of
OwnershipPolicy and StoragePolicy and that coordination between the two is required to
obtain proper destruction. That, in turn, implies that these policies are not completely
orthogonal.

This conclusion is also consistent with the observation by many policy designers that some
interaction between OwnershipPolicy and StoragePolicy is desirable for various
configurations. This led some to question, even from the very beginning, whether these two
policies should be independent at all, or should rather constitute one policy. An argument for
keeping the policies independent is that there are currently two StoragePolicies provided by
the library: scalar_storage and array_storage. If these were merged into the currently
provided OwnershipPolicies, there would be N × M such policies, rather than N + M policies
as it is now (where N and M are the number of StoragePolicies and OwnershipPolicies).

Furthermore, it is easily imagined that the framework could be used to construct resource
managers for types other than heap-allocated objects. Such a configuration could be
implemented by creating yet another StoragePolicy. For instance, consider a wrapper for
FILE*. It is not appropriate to call operator delete on such an object. One solution would be to
write a custom StoragePolicy which calls std::fclose() at the appropriate time. Note that
this wrapper would benefit from the various ownership strategies already available, including
external reference counting (keep the file open until all users are done with it), scoped semantics
(no copying of the file handle), or move semantics (the handle can move from its original scope,
but must retain exactly one owner at all times).

However, it is possible to retain some orthogonality and preserve the separation of concerns that
somewhat independent StoragePolicies and OwnershipPolicies achieve while also allowing
some interaction between the two policies. This is rather elegantly obtained by the chained-
policy architecture.

Linear Inheritance
Despite initial suggestions that the Curiously Recurring Template Pattern (CRTP) be applied
instead of multiple inheritance, the final design does not actually use CRTP because it is not
necessary and there is nothing useful TP

9
PT that the smart_ptr<> template can provide to the policies

(or, at least, it is far less useful than it might at first appear). Thus, the current reference
implementation specifies a design by which each policy is parameterized on and inherits from
the policy above it within the inheritance lattice (except for the StoragePolicy, which is
parameterized on T, the pointee type passed to smart_ptr<>). That leads to a lattice of this
form:

TP

9
PT Such as dependent types.

WG21/N1681=J16/04-0121 Page 9
Policy-Based Smart Pointer

storage_policy<T>

↑
ownership_policy

↑
checking_policy

↑
conversion_policy

↑
smart_ptr

This design is straightforward and should be easy for policy writers to understand. While this
solution deals nicely with some of the practical problems arising from the multiple inheritance
architecture, it has issues of its own that need to be addressed.

Benefits
Because only single inheritance is used, EBO is far more effective; and most compilers will
easily produce types with minimal size. This allows us to dispense with the somewhat ungainly
optimally_inherit<> infrastructure. Since OwnershipPolicy is now derived from
StoragePolicy, it has complete access to StoragePolicy’s interface, which provides the
amount of coupling that most policies need, while still maintaining the factorization that leads to
minimal code redundancy. This design also precludes the need for the resource_manager<>
helper template, and simplifies the cleanup process over the original multiple inheritance
design TP

10
PT. In those respects, this appears to be an ideal configuration.

Drawbacks
This design does not come without costs, however. The most obvious is the need for forwarding
constructors in every policy class. As mentioned in section VI, note 1, inherited forwarding
constructors do not help us here because of the presence of templated constructors (which are
necessary for allowing policies to obtain arbitrary initialization data). Preprocessor
metaprogrammingTP

11
PT can alleviate the problem somewhat by generating many of the forwarding

constructors, but it remains to be seen whether policy writers will want to take advantage of such
an arcane device when a text editor will solve the same problem in much less time. Other issues
are related to the conspicuous absence of template aliases (such as proposed in [SD03]). These
issues will be explained in detail in the next section, which will describe the current workaround
for the lack of template aliases.

Type Generator
A common criticism of a policy-based framework with a large number of template parameters is
that users are required to name all non-default parameters with every declaration. One can
certainly define a typedef for a pointer to a specific type, like so:

typedef smart_ptr<X, no_copy, no_check> X_ptr;

TP

10
PT For details, see note 2 in section VI.

TP

11
PT Using a tool like the Boost.Preprocessor library [KM02]. The current reference implementation does not use

Boost.PP because it would replace an unwieldy solution with a solution that is unwieldy in another dimension.

WG21/N1681=J16/04-0121 Page 10
Policy-Based Smart Pointer

However, it would be much more convenient to be able to define an alias for a particular
configuration that is still parameterized on the pointee type, as in:

template <typename T>
using scoped_ptr = smart_ptr<T, no_copy, no_check>;

Unfortunately, template aliases do not yet exist in the language. Thus, Alexandrescu [in private
communication] suggested a type generator approach whereby the policy parameters are passed
to an outer class and the actual pointer type is a nested type parameterized over the pointee type.
This design results in the following syntax, allowing typedef to come to the rescue:

smart_ptr<no_copy, no_check>::to<X> p;

typedef smart_ptr<no_copy, no_check> scoped_ptr;
scoped_ptr::to<X> q;

While this syntax is not as elegant as that possible with template aliases, it was decided that it is
superior to writing the entire policy list for each pointer or forcing the user to create typedefs for
concrete pointer types.

Unfortunately, it also creates a set of its own problems due to the rules for template argument
deduction in C++. Before we examine these issues, let us take a look at the current design:

template <
class StoragePolicy, class OwnershipPolicy,
class ConversionPolicy, class CheckingPolicy

>
class smart_ptr
{
 template <typename T>
 class to

 : public
CheckingPolicy<

ConversionPolicy<
OwnershipPolicy<
 StoragePolicy<T>

 >
>

 >
{ ... };

};

Here it is apparent that smart_ptr::to<> does the real work. However, it must make reference
to smart_ptr<> in some very important contexts, such as the conversion constructor:

template <class SP, class OP, class CP, class KP, typename U>
to(smart_ptr<SP, OP, CP, KP>::to<U> const& rhs);

Unfortunately, the type of rhs will not be deduced, because to<U> creates a non-deducible
context according to 14.8.2.4/4 [ISO98]. Nonetheless, the type of rhs is logically deducible
because to<U> refers to a type that is entirely nested within smart_ptr<>. While there might be

WG21/N1681=J16/04-0121 Page 11
Policy-Based Smart Pointer

some merit to proposing a language change in which this special but important case were made
deducible, the addition of template aliases would render this approach entirely unnecessary.

Policy Adaptor
Another common criticism of the library is that it has a large number of template parameters, and
that specifying a non-default parameter requires specification of all parameters preceding it.
This problem can be ameliorated by either named template parameters or a policy adaptor which
automatically reorders policies as needed. It was decided that the latter approach would be easier
for users, and was thus implemented. The policy adaptor uses Boost.MPL and policy category
tags embedded in the policies to detect which non-default policies have been passed to the
framework. It would be possible to use the TypeList facilities available in Loki to accomplish
this task (or to even hand-roll a solution), but MPL enjoys broad development and strong support,
making it fairly painless for implementers to use.

The resulting configuration is unspecified if a user passes two policies of the same category (for
instance, two OwnershipPolicies). While it is possible to detect such errors programmatically,
it seems unlikely that users who specify non-default policies will make such mistakes.
Furthermore, such checking would only add to the compilation burden of a device that already
weighs heavily on the compilation cost of the rest of the library. A more subtle kind of mistake
is one in which the user specifies an invalid policy combination. This type of error could occur
no matter what type of policy adaptor is used (including the trivial do-nothing adaptor). This
type of problem is extremely difficult to solve programmatically, so this proposal suggests that
the onus be placed on users to read the policy documentation carefully and make sure that a valid
policy combination is selected. In most cases, it should be fairly obvious when a combination
does not make senseTP

12
PT, or when a custom policy set must be used together TP

13
PT.

Provided Policies
Though there are an enormous number of policies which could be provided, the set included in
the current framework is fairly representative of the types of configurations most users request.
Following is a summary of those policies.

Storage Policies

• scalar_storage: This is the default policy for pointers to single objects allocated with
operator new(). The reference implementation calls boost::checked_delete() to
ensure that the type is complete at the time of destruction.

• array_storage: This policy supports builtin arrays, allowing emulation of
boost::scoped_array<> and boost::shared_array<>. The array is disposed of with a
call to boost::checked_array_delete().

TP

12
PT Such as array_storage<> and deep_copy<>. Upon inspection, the user should quickly discover that it is

impossible to define a member clone() function for built-in arrays, thus making this combination invalid.
TP

13
PT Such as the shared_storage<> and boost_ref<> policies which are used to emulate boost::shared_ptr<>.

WG21/N1681=J16/04-0121 Page 12
Policy-Based Smart Pointer

Ownership Policies

• ref_counted: This is currently the default ownership policy. It enables a straightforward
externally counted smart pointer. The count is allocated on the heap with the global
operator new(), although an implementation could optimize this by using a custom
allocator. However, [DDC03] argues that resources would be better spent optimizing the
global operator new().

• ref_linked: This is a reference-linked shared ownership policy that implements a doubly

linked list for references. A singly-linked list was deemed too slow to be practical, though
such an implementation might be appropriate for applications where the use count is known
to be very low and/or heap allocation is to be avoided. Surprisingly enough, this policy
exhibits very favorable performance characteristics among the non-intrusive ownership
policies.

• com_ref_counted: This is a wrapper for Microsoft® COM pointers. It is the framework

representative for intrusively counted pointers. No corresponding OMG CORBA® wrapper
is provided, though there is no anticipated obstacles to providing such a policy. The Boost
Smart Pointer emulation set also includes an emulation of boost::intrusive_ptr<>.

• deep_copy: This policy provides deep copying of the pointee through a clone() member

function.

• no_copy: This policy enables boost::scoped_ptr<> emulation.

• move_copy: Although this policy is present in the current framework, a move pointer
configuration is not currently functional due to various factors that are difficult to work
around, including the absence of template aliases. See section V for details.

Checking Policies

• assert_check: This policy asserts on an invalid dereference. Null pointers are otherwise
allowed. It also asserts on an attempt to reset() a pointer with itself, but all of the provided
checking policies do so (and it is recommended that all user-defined policies do so as well).

• assert_check_strict: This policy asserts on invalid dereference as well as default

initialization and initialization with a null pointer.

• reject_null: This policy is equivalent to assert_check except that it throws an exception
instead of triggering an assertion.

• reject_null_strict: Analogously to assert_check_strict, this policy throws an

exception on null initialization and invalid dereference, but allows default initialization.

• reject_null_static: This policy adds an assertion to reject_null_strict that disables
default initialization.

WG21/N1681=J16/04-0121 Page 13
Policy-Based Smart Pointer

Conversion Policies

• disallow_conversion: This is the default conversion policy which does exactly what it says
(disallows implicit conversions to the raw pointer type).

• allow_conversion: This alternative is provided for completeness, but the user must select it

explicitly.

Boost Emulation Policies
Though the Boost emulation policies have not been updated to work with the latest framework or
to emulate the latest version of the Boost smart pointers, the earlier versions will be summarized
to emphasize the point that emulation is possible.

• shared_storage: An interesting artifact of the shared_ptr<> architecture is that it does not
neatly fit into the current framework’s notion of separate storage and ownership policies.
Nonetheless, by treating the different strategies as StoragePolicies, it is possible to
provided the desired emulation. This policy enables emulation of shared_ptr<> itself.

• weak_storage: This policy enables emulation of weak_ptr<>.

• intrusive_storage: This policy enables emulation of intrusive_ptr<>.

• boost_ref: This policy is more or less a dummy OwnershipPolicy.

It should be noted that one way in which shared_ptr<> emulation fails is in providing support
for initialization from a move pointer. Since std::auto_ptr<> emulation has not thus far been
achieved in the current framework, this shared_ptr<> feature is also not fully operational.
Another feature which has not been implemented is support for custom deleters. While part of
the infrastructure exists to support this feature, it has not been completed, and there is no
guarantee that it can be seamlessly integrated into the existing framework. There are no obvious
hurdles, but the presence of a large number of templated constructors in smart_ptr<> tends to
complicate matters. On the other hand, it may be possible in the current framework to support
both runtime deleters and compile-time deleters, as requested in [Rame04].

IV. Proposed Text

Because the current implementation is designed as a workaround for the lack of template aliases,
it would not be appropriate to describe a formal interface here based on that implementation. It
would also be presumptuous to present an interface that assumed the presence of template
aliases. Thus, the proposed text will be deferred to a future revision of this document, should the
committee find favor with this proposal.

WG21/N1681=J16/04-0121 Page 14
Policy-Based Smart Pointer

V. Unresolved Issues

Header Organization
The standard has established a precedent for placing memory management devices such as
auto_ptr<> in the header <memory>. Proposal N1450=03-0033 has followed this precedent by
adding smart pointer types to <memory>. However, there is a popular opinion within the C++
community (and Boost in particular) that headers should be fine-grained (to support the
philosophy of not paying for what you don’t use), and adding a sizeable framework to <memory>
would contradict that opinion. The reference implementation is itself currently divided among
several header files, with specific policy implementations being placed in separate files. So one
possibility would be to reintegrate these files into <memory>, and another would be to create a
new standard header <smart_ptr> (or <smartptr>, more in keeping with <stdexcept>,
<stdio>, etc.). If the latter approach were chosen, it would still remain to be decided whether
the standard policies should all appear in this header, or whether there should further be fine-
grained separation of policy headers. If a fine-grained approach should be taken, it would make
sense to put these headers in their own “header space”, so to speak, like so:

#include <policy/array_storage>
#include <policy/deep_copy>

However, there is no precedent for such an organization in the Standard Library.

Move Semantics
At this time, a suitable implementation of a pointer having move semantics has not been
achieved in the present framework. The primary obstacle is the need for a high degree of
configurability. This results in a large number of templated constructors which makes overload
resolution a very tricky business. The original mechanism, which was quite clever in its design,
was found to be flawed due to the necessity of having both const& and non-const& conversion
constructors.

Work by Sharoni [Shar03] on std::auto_ptr<> led to an SFINAE-based approach submitted
by Daniel Wallin [in private communication]. Unfortunately, Daniel’s technique relies on a
partial template specialization that produces a non-deduced context for template arguments that
must be deduced using the current nested design. One possible solution is to stay with the
original mechanism and create a partial specialization of the entire framework for policy
configurations that require move semantics. For many obvious reasons, this is an unattractive
approach. There may yet be a workaround that will reasonably enable proper support for move
semantics, but that goal has not yet been achieved in the current reference implementation. Yet
another approach would be to simply exclude support for move semantics from the policy-based
framework, and allow std::auto_ptr<> to remain a special case. Due to the occasional
suggestions to improve std::auto_ptr<> in various ways, including adding features to it, this
would not seem to be an ideal solution. Finally, if template aliases are added to the language, the
nested design can be discarded and Mr. Wallin’s approach will almost certainly work.

WG21/N1681=J16/04-0121 Page 15
Policy-Based Smart Pointer

Non-Standard Policies
Some creative programmers have attempted to write policies for the proposed framework which
implement unusual ownership strategies. They may well be exploring the limits of policy-based
design, and it remains to be seen whether the framework can suitably accommodate them. Most
notable among these attempts is Evans’ managed_ptr<> [Evan04]. It would appear that he has
mostly succeeded in writing a custom policy which implements a form of garbage collection.
Hence, it may be possible that the proposed framework coupled with this policy set is one
avenue to optional garbage collection in C++. A less successful attempt was Bouchard’s
shifted_ptr<> [Bou03], though it is unclear whether the failure was an inadequacy of the
framework or a lack of real effort in writing a policy set. Thus the issue of whether the library
delivers on the promise of accommodating a wide variety of custom policy configurations is as
yet unresolved. The existence of the Boost emulation policies, which were not even anticipated
when the framework was originally conceived, as well as Evans’ managed_ptr<>, seems to bode
well for this issue.

Default Configuration
The default policy configuration of the current library is an externally reference-counted smart
pointer with assertion checking on dereference. That was the design decision chosen for the
original Loki incarnation, and there was no immediate need to change it. This configuration
reflects the observation stated earlier that shared ownership is the most common need and that
safety should come first. It also presents a fairly light-weight pointer that has little memory
overhead (either in the pointer itself or in associated heap-allocated resources) and reasonable
performance. However, the adoption of boost::shared_ptr<> into the Library Technical
Report brings up the issue of whether shared_ptr<> emulation should, in fact, be the default
configuration should this proposal be accepted by the committee. There are no obvious obstacles
to such an approach, and the wealth of experience which has gone into the development of
shared_ptr<> may well recommend this as the preferred choice. It would also provide a
smooth transition from the current TR to one which includes a policy-based framework. This
proposal leaves it to the committee to make such a decision without offering a recommendation
either way.

VI. Notes

1. Why implicit forwarding constructors don’t help smart_ptr<>.
Due to the configurability requirements of the framework, many templated constructors exist in
both smart_ptr<> and the policy classes. To ensure that the proper base class constructors get
called in the presence of completely generic templated constructors, the object must be properly
sliced before being passed to the base class. The code below illustrates:

smart_ptr(this_type const& rhs)
: base_type(static_cast<base_type const&>(rhs))

{ ... }

template <typename U>
ref_counted_(U const& p)

: base_type(p), count_(new counter_type(1))
{ }

WG21/N1681=J16/04-0121 Page 16
Policy-Based Smart Pointer

ref_counted_(ref_counted_ const& rhs)
: base_type(static_cast<base_type const&>(rhs)), count_(rhs.count_)

{ }

Suppose for a moment that ref_counted<> is the immediate base class of smart_ptr<> (that is,
that smart_ptr::base_type == ref_counted<>). If the smart_ptr<> constructor did not cast
rhs before passing it to the base initializer, the templated ref_counted<> constructor would get
called instead of the copy constructor. This is a general problem not limited to the current
framework, which perhaps reduces the utility of N1583=04-0023. That is, whenever a base class
contains a generic templated constructor, a copy constructor in the derived class must cast its
argument to the base type just to ensure that the base class copy constructor gets called rather
than the templated constructor. Thus, there is no obvious way for such a derived class to inherit
a useful copy constructor.

2. How cleanup occurs in the chained-policy design

The original Loki::SmartPtr<> design orchestrated initialization and cleanup like so:

template
<

typename T,
template <class> class OwnershipPolicy,
class ConversionPolicy,
template <class> class CheckingPolicy,
template <class> class StoragePolicy

>
class SmartPtr

: public StoragePolicy<T>
, public OwnershipPolicy<typename StoragePolicy<T>::PointerType>
, public CheckingPolicy<typename StoragePolicy<T>::StoredType>
, public ConversionPolicy

{
 // ...
public:

SmartPtr(const StoredType& p) : SP(p)
{

KP::OnInit(GetImpl(*this));
}

~SmartPtr()
{

if (OP::Release(GetImpl(*static_cast<SP*>(this))))
{

SP::Destroy();
}

}
};

The StoragePolicy receives the resource, then the Ownership, Checking, and Conversion
policies are constructed, and then the CheckingPolicy’s OnInit() function is called (e.g.: to
test for null). When ~SmartPtr() gets called, the OwnershipPolicy releases ownership of the

WG21/N1681=J16/04-0121 Page 17
Policy-Based Smart Pointer

resource and returns a bool specifying whether it is safe to destroy the resource. If it is, the
StoragePolicy actually cleans it up. However, suppose that the OwnershipPolicy is
RefCounted<> (which provides external reference counting). As one can see below,
RefCounted<> performs a dynamic allocation to create the count:

RefCounted()
{

pCount_ = static_cast<unsigned int*>(
SmallObject<>::operator new(sizeof(unsigned int))

);
assert(pCount_);
*pCount_ = 1;

}

In the following scenario:

SmartPtr<X> p(new X);

It is possible for the StoragePolicy to successfully acquire the resource, and then for the
OwnershipPolicy (in this case, RefCounted<>) to throw an exception (such as
std::bad_alloc). In that case, the acquired resource is leaked because the smart pointer is not
fully constructed, and thus ~SmartPtr() never gets called. To rectify this lack of exception
safety, Held redesigned the cleanup scheme as follows:

• By default, the StoragePolicy destroys the resource in its destructor
• If the StoragePolicy should not destroy the resource, StoragePolicy::release() will be

called to erase the StoragePolicy’s reference to the resource. Then, the StoragePolicy
destructor will have no effect.

• By default, the OwnershipPolicy destroys any resources it allocates in its destructor
• If the OwnershipPolicy should not destroy its resources, OwnershipPolicy::release()

will ensure that references to those resources are properly erased to cause the
OwnershipPolicy destructor to have no effect.

The code below illustrates the new design with the multiple inheritance architecture (and thus,
the resource_manager<> mechanism):

template
<

typename T,
class StoragePolicy, class OwnershipPolicy,
class CheckingPolicy, class ConversionPolicy

>
class smart_ptr
 : public optimally_inherit<

detail::resource_manager<
StoragePolicy,
OwnershipPolicy

>,

WG21/N1681=J16/04-0121 Page 18
Policy-Based Smart Pointer

typename optimally_inherit<
CheckingPolicy,
ConversionPolicy

>::type
>::type

{ ... };

template <class StoragePolicy, class OwnershipPolicy>
class resource_manager
 : public optimally_inherit<StoragePolicy, OwnershipPolicy>::type
{
 // ...
public:

~resource_manager()
{

if (!ownership_policy::release(get_impl(*this)))
{

storage_policy::release();
}

}
}

The resource_manager<> destructor says: “Let the OwnershipPolicy release the resource. If it
was not the last owner, then we must prevent the StoragePolicy from cleaning it up. Hence,
call StoragePolicy::release().”

template <typename T>
class scalar_storage
{

// ...
protected:

~scalar_storage()
{

boost::checked_delete(pointee_);
}

void release()

 {
pointee_ = 0;

}
private:

stored_type pointee_;
};

Here one can see that by default, scalar_storage<> deletes the resource. When release() is
called, scalar_storage<> is absolved of responsibility (its share of the ownership is released)
and the destructor deletes the null pointer.

WG21/N1681=J16/04-0121 Page 19
Policy-Based Smart Pointer

template <typename P>
class ref_counted
{

// ...
protected:

~ref_counted()
{

delete count_;
}

bool release(P const&)
{
 if (!count_ || !--*count_) return true;

count_ = 0;
return false;

}
};

And the theme above is repeated again in the OwnershipPolicy. If ref_counted<> is the last
owner, it signals that it is safe to delete the resource. In turn, resource_manager<> responds by
doing nothing, and the StoragePolicy will clean up the resource. If it is not the last owner, it
erases its reference to the count, and its destructor deletes the null pointer. On exit,
resource_manager<> tells the StoragePolicy to release its ownership, thus preventing cleanup
of the shared resource.

The user requirement to obtain the basic guarantee for the initialization of smart_ptr<> is that
the StoragePolicy constructor (which gets called first) must either succeed or clean up the
resource (that is, the StoragePolicy constructor itself must give the basic guarantee). For
scalar_storage<>, the constructor is guaranteed to succeed. However, if the
OwnershipPolicy throws an exception, the StoragePolicy subobject is fully constructed, so its
destructor will properly clean up the resource. The OwnershipPolicy constructor must also
provide the basic guarantee, and this is true for ref_counted<> (as well as all the other policies
included in the reference implementation). If the StoragePolicy and OwnershipPolicy
constructors succeed, it is still possible for the CheckingPolicy constructor to throw. If this
occurs, everything will be cleaned up properly because the resource_manager<> subobject is
fully constructed and possesses all knowledge required to properly dispose of the resource.
Thus, the basic guarantee is obtained14. While this seems to be a fairly elegant solution to the
exception safety problem, the chained policy architecture provides even tighter coupling:

template <class StoragePolicy>
class ref_counted_ : public StoragePolicy
{
 // ...
protected:

14 It is assumed that the CheckingPolicy and ConversionPolicy are stateless and pure.

WG21/N1681=J16/04-0121 Page 20
Policy-Based Smart Pointer

~ref_counted_(void)
{

if (!count_ || !--*count_)
{

delete count_;
}
else
{

storage_policy::release();
}

}
}

The StoragePolicy remains as before, but the fact that the OwnershipPolicy now has access to
the StoragePolicy’s interface allows for a very streamlined cleanup design. Since the polices
need not be orchestrated by a third party (smart_ptr<> or resource_manager<>), there is no
need to have OwnershipPolicy::release(). Instead, the release() code is merged directly
with the destructor code. It should be apparent that this code is somewhat shorter, and avoids the
additional comparison which tested the return value of release(). On the other hand, writers of
custom OwnershipPolicies must now remember to call StoragePolicy::release() at the
appropriate time, which was not formerly a requirement.

The astute reader may note that in some configurations, the StoragePolicy may know how to
clean up the resource on failed initialization, but may not know whether that is the appropriate
action to take. Consider an intrusively counted pointer. If the OwnershipPolicy were to throw
an exception on construction, the default StoragePolicy would blithely destroy the resource,
because it does not know about intrusive counts. In scenarios where proper initialization cleanup
requires assistance from the OwnershipPolicy, this design requires that both the
StoragePolicy and OwnershipPolicy constructors not fail. For most intrusive designs, this
requirement is trivially met.

3. Objections
Due to the often parochial nature of smart pointer design, a policy-based framework is
surprisingly controversial. It raises a number of objections, the most common of which are
presented and addressed below.

1. Multiple Inheritance (MI) should be avoided
This objection was primarily related to the fact that EBO is poorly supported for the MI
case, and thus the resulting smart pointers were a less-than-optimal size. It was even
debated whether EBO is always allowed in the presence of MI. This objection was
addressed first with the optimally_inherit<> mechanism, and later with the chained-
policy architecture.

2. Parameterization discourages use
While this was perhaps true in 1998 when it was first put forth as an argument against a
complex smart pointer type [CB99], the argument hardly carries the same force today with
the existence of such popular libraries as Boost.Function [Greg01] (which even made it
into the TR), Boost.Graph [SLL00], Boost.Iterator (also in TR1), Boost.MPL (which

WG21/N1681=J16/04-0121 Page 21
Policy-Based Smart Pointer

makes the use of parameterization in the current framework seem almost quaint),
Boost.Operators, Boost.Python [Abra02], etc. ad nauseum.

Nonetheless, there are ancillary issues related to this objection that were addressed. One is
the specification of non-default policies, which was accommodated with a policy adaptor
that detects the policy types and reorders them appropriately. This alleviates the burden of
spelling out intervening default policies. Another is the need to abbreviate long policy
configurations with typedefs or some other mechanism. While it cannot be stressed enough
how much template aliases would benefit this library, this issue was handled by introducing
a type generator architecture that allows users to typedef their favorite configurations while
still parameterizing over the pointee type.

3. The feature set is part of the type.
This objection is raised primarily in contrast to boost::shared_ptr<>, in which optional
features such as custom deleters and embedded counts are handled at runtime, leaving a
unified type as an interface between libraries. From N1450=03-0033: “Following the ‘as
close as possible’ principle, the proposed smart pointers have a single template parameter,
the type of the pointee. Avoiding additional parameters ensures interoperability between
libraries from different authors, and also makes shared_ptr easier to use, teach and
recommend.” [DDC03]

The interoperability principle can be retained by agreeing that the shared_ptr<> emulation
of the current framework is the de facto inter-library configuration. Since some authors do
not agree that interoperability is an essential criterion and write their own smart pointer
types anyway, it seems sensible to accommodate those programmers with a policy-based
framework. In other cases, it is apparent that the types of smart pointers ought to be
different, as they should not be mixed any more than one should attempt to intermingle raw
data pointers and function pointers.

For pedagogical purposes, one could again restrict discussion to the shared_ptr<>
configuration, if it is deemed that custom policies would confuse students. The addition of
template aliases would allow the shared_ptr<> emulation to look exactly like the
standalone implementation. On the other hand, user configurability of libraries is fast
becoming a popular trend in C++ and the current framework may actually turn out to be an
aid in presenting this notion to students.

When recommending a smart pointer to a user that is new to the concept, the default should
certainly make the most sense and offer the least resistance to adoption. If the
shared_ptr<> emulation were the default configuration of the proposed framework, then
the recommendation to use shared_ptr<> would apply equally well to the current
proposal.

4. Future Directions
The following features are under consideration for addition to the proposed framework, but
should not be considered part of this proposal itself. They are included merely to inform the
committee that they may be present in a future revision of this proposal.

WG21/N1681=J16/04-0121 Page 22
Policy-Based Smart Pointer

• Hinnant, in [Hinn03], demonstrates an elegant syntax for a smart pointer which also supports
arrays. Namely, move_ptr<T[]>. It may be possible to support this syntax in the proposed
framework, and that issue will be explored.

• Lovset suggests a means to protect inadvertent initialization of a smart pointer with a raw

pointer in [Lov04]. Namely, initialization from a raw pointer would require a type of explicit
cast to a proxy type, like so:

smart_ptr<X> p = smart_ptr_cast<X>(new X);

This would avoid unintentionally assigning a raw pointer to a smart pointer when transfer of
ownership is not intended. The proposal also includes a means to allow NULL assignment to
be a synonym for p.reset(). While the merits and complications of this proposal have not
been fully evaluated, it is a possible direction that the proposed framework might take.

• Not only do custom deleters specified at runtime need to be supported by the proposed

framework to achieve complete shared_ptr<> emulation, but static deleters that become
part of the type should also be considered.

• While the original Loki implementation included a thread-safe externally reference counted
OwnershipPolicy, unresolved issues regarding multithreading in C++ have caused that
policy to be removed from the current offering. If and when multithreading is properly
supported, issues of thread safety will be reconsidered and the appropriate policies will be
added.

VII. Acknowledgements

This proposal would not be possible without the generous encouragement, support, and advice of
Andrei Alexandrescu. The heart and soul of the library is his handiwork, and most of the major
design decisions and philosophies are his. The refinements to the original Loki work were
mainly the result of thoughtful criticism and suggestions from the Boost community, including,
but certainly not limited to: Gennadiy Rozental, Beman Dawes, Dave Abrahams, Giovanni Bajo,
Phil Nash, Peter Dimov, Greg Colvin, and Doug Gregor. Contributions to the reference
framework were provided by Aleksey Gurtovoy, Paul Mensonides, Daniel Wallin, Larry Evans,
and others. Porting assistance was provided by Jonathan Turkanis and others. Finally, Andrei
graciously lent his insights and suggestions to help refine this proposal.

WG21/N1681=J16/04-0121 Page 23
Policy-Based Smart Pointer

VIII. References

[Abra99] Abrahams, D., et al. 1999. Boost Operators Library Documentation.

http://www.boost.org/libs/utility/operators.htm.
[Abra02] Abrahams, D. 2002. Boost Python Library Documentation.

http://www.boost.org/libs/python/doc/index.html.
[Abra03] Abrahams, D., et al. 2003. Boost Utility Library Documentation.

http://www.boost.org/libs/utility/utility.htm.
[ASW03] Abrahams, D., Siek, J., and Witt, T. 2003. Boost Iterator Library Documentation.

http://www.boost.org/libs/iterator/doc/index.html.
[AH04] Alexandrescu, A., and Held, D. B. 2004. Smart pointers reloaded (iv): finale. C/C++

User’s Journal, 22, 4.
[Alex01] Alexandrescu, A. 2001. Modern C++ Design: Generic Programming and Design

Patterns Applied. Addison-Wesley, New York, NY.
[Bou03] Bouchard, P. 2003. shifted_ptr documentation.

http://fornux.com/personal/philippe/devel/shifted_ptr/libs/smart_ptr/doc/.
[Colv99] Colvin, G. Boost Mailing List. weak pointers and cycles.

http://article.gmane.org/gmane.comp.lib.boost.devel/38518/match=cyclic+ptr.
[CB99] Colvin, G., Dawes, B., et al. 1999. Boost Smart Pointer Library Documentation.

http://www.boost.org/libs/smart_ptr/smart_ptr.htm.
[DDC03] Dimov, P., Dawes, B., and Colvin, G. 2003. A proposal to add general purpose smart

pointers to the library technical report. ISO/IEC JTC1/SC22/WG21 Document,
N1450=03-0033.

[Evan04] Evans, L. 2004. managed_ptr documentation.
http://cvs.sourceforge.net/viewcvs.py/boost-sandbox/boost-
sandbox/libs/managed_ptr/doc/html/.

[Glas04] Glassborow, F. 2004. Inheriting constructors. ISO/IEC JTC1/SC22/WG21 Document,
N1583=04-0023.

[Greg01] Gregor, D. 2001. Boost Function Library Documentation.
http://www.boost.org/doc/html/function.html.

[Grif99] Griffiths, A. 1999. Octopull/C++. Ending with the grin.
http://www.octopull.demon.co.uk/arglib/TheGrin.html.

[GAW02] Gurtovoy, A., Abrahams, D., and Winch, E. 2002. Boost MetaProgramming Library
Documentation. http://www.boost.org/libs/mpl/doc/index.html.

[HDA02] Hinnant, H., Dimov, P., and Abrahams, D. 2002. A proposal to add move semantics
support to the C++ language. ISO/IEC JTC1/SC22/WG21 Document, N1377=02-
0035.

[Hinn03] Hinnant, H. 2003. move_ptr<> implementation.
http://home.twcny.rr.com/hinnant/Utilities/move_ptr.

[ISO98] ISO/IEC 14882:1998(E). 1998. Programming languages – C++.
[KM02] Karvonen, V., and Mensonides, P. 2002. Boost Preprocessor Library

Documentation. http://www.boost.org/libs/preprocessor/doc/index.html.
[Lov04] Lovset, T. 2004. Boost Mailing List.

http://article.gmane.org/gmane.comp.lib.boost.devel/107435/match=nullptr.
[Madd01] Maddock, J., et al. 2001. Boost Type Traits Library Documentation.

http://www.boost.org/libs/type_traits/index.html.

WG21/N1681=J16/04-0121 Page 24
Policy-Based Smart Pointer

[Rame04] Ramey, R. 2004. Boost Mailing List. scoped_ptr<T, D>.
http://thread.gmane.org/gmane.comp.lib.boost.devel/103937.

[Shar03] Sharoni, R. 2003. Usenet newsgroup: comp.std.c++. auto_ptr: improved
implementation.
http://groups.google.com/groups?q=g:thl1103834576d&dq=&hl=en&lr=&ie=UTF-
8&safe=off&selm=3fc75686%40news.microsoft.com&rnum=1.

[SLL00] Siek, J., Lee, L., and Lumsdaine, A. 2000. Boost Graph Library Documentation.
http://www.boost.org/libs/graph/doc/table_of_contents.html.

[SD03] Stroustrup, B. and Dos Reis, G. 2003. Template aliases for C++. ISO/IEC
JTC1/SC22/WG21 Document, N1489=03-0072.

[Sutt02] Sutter, H. 2002. Proposed addition to C++: typedef templates. ISO/IEC
JTC1/SC22/WG21 Document, N1406=02-0064.

