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1 Motivation

The need of integers not fitting into the data width of the processor increases. For example, the
range of the int on a 32-bit machine is ±231 ' ±109. For exceeding this range, a C++ class
is created that concatenates many unsigned ints and a sign into an integer class whose data
width is only limited by available memory size. The mathematical operators are overloaded.
The range of this integer class is ±28m where m is the maximum available memory size in bytes.
With the current memory sizes, the range is practically unlimited, it is an infinite precision
integer, and its proposed class type name is integer.

Currently a number of implementations of the infinite precision integer exist that give a good
overview of support, performance and design issues:

1. The Integer class in the Gnu C++ library
(C++, limited to about 105 decimals [7]).

2. The Gnu Multiple Precision Arithmetic Library
(C with assembler, unlimited [6]).

3. The Integer class developed by myself.
(C++ with assembler, unlimited)

Below these implementations are referred to as implementations 1, 2 and 3.

2 Impact on the Standard

There is no impact on the standard, as the class is fully self-contained with its own memory
management.

3 Design Decisions

There is a number of design decisions, and the alternatives are mostly present in the imple-
mentations listed above. Therefore below the design and other differences between the three
implementations are listed.

3.1 Class Structure

The proposed C++ class would be the integer class. The arithmetic int functions and operators
are overloaded. In addition to the functions and operators overloaded from int, the greatest
common divisor and least common multiple (gcd and lcm) must be present, and also some
functions for bit level operations as setbit, clearbit, getbit, highestbit, lowestbit and so on. In
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implementation 1, there is a C++ class Integer which contains a struct for the internal integer
representation. This means that every class function or operator calls some function operating
on the struct of the internal representation. Implementation 2 is implemented in C, so for
usage in C++ a C++-wrapper is needed. In implementation 3, the Integer class is a simple
C++ class without a struct for internal representation. There is a constructor from string, so
that any number can be specified as a string with decimals of arbitrary length.

3.2 Data Structure

The data in all implementations mentioned above is a contiguous binary block of variable length.
The sign is contained in a separate field, and can have values -1 (less than zero), 0 (zero) and
1 (greater than zero). An alternative would be to put the data in an STL vector, but as
many integer operations are performed at bit level, the dependency on the vector container
implementation would be unacceptable. Therefore the integer does not use any STL container
or function.

3.3 Data Granularity

For the operations on the integer data, its granularity must be defined, that is how wide are
the data chunks that are operated on. On 32-bit processors, implementation 1 uses short 16-bit
granularity, because this means that all shift and carry operations can be done using 32-bit
ints and no assembler is needed. On 32-bit processors, the other implementations use 32-bit
granularity, which means that assembler is unavoidable. Currently it is not clear to me if 64-bit
processors can handle 64-bit granularity integers.

3.4 Performance

The performance of all arithmetic operations is much better using 32-bit granularity and assem-
bler. For the multiplication of two large integers, a number of algorithms exist (N is number
of decimals or bits):

Algorithm implementation order decimals reference
basecase 1,2,3 N2 1− 102

Karatsuba 2,3 N1.585 102 − 103 [1,4]
3-way Toom-Cook 2 N1.465 > 103 [1,4]
16-way Toom-Cook 3 N1.239 > 103 [1]
Schönhage NTT 2 N log N log log N > 103 [2,3,4]
Strassen FFT - N log2 N > 103 [1,3,5]
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(NTT is Number Theoretic Transform, FFT is Fast Fourier Transform). The Strassen FFT al-
gorithm uses floating-point arithmetic, which means that its accuracy cannot be mathematically
guaranteed for very large arguments [4], and it is therefore not used in the quoted implementa-
tions, but its performance is the best of all. Implementation 1 only uses basecase multiplication,
and therefore for large arguments its performance is poor. In implementation 3 I found that
16-way Toom-Cook is faster than Schönhage NTT (up to some very large argument not known
to me).
For division and remainder recursive algorithms lead to better performance for large arguments,
and the same is true for the instream and outstream, which means conversion from binary to
decimal notation and vice versa.
In some cases the performance may not be of any interest, but users that start using the infinite
precision integer may tend to test the class for large arguments and compare results with the
well known commercial computer algebra programs. This may be even more the case when on
top of the infinite precision integer the arbitrary precision real is defined.

3.5 Assembler Usage

Implementation 1 does not use assembler, and runs therefore on any platform. Implementation
2 uses assembler, and is targeted for Unix-like platforms running a C compiler and its assembler
[4]. Implementation 3 uses assembler, and is targeted for Borland C++ Builder and its Turbo
Assembler.

3.6 Conclusion

When a choice between the existing three implementations listed above must be made, the
following may be considered. As implementation 1 is limited to about 105 decimals (it is not
clear to me why this limit exists), this implementation does not seem useful, as the aim of the
infinite precision integer is to be able to use an unlimited number of decimals. For large integers
its performance is poor. Implementation 2 may be preferred on Unix-like platforms, all that
seems to be needed is a C++-wrapper. Implementation 3 may be preferred on Windows-like
Intel platforms. Another option is to collaborate with development of a commercial computer
algebra program.

4 Proposed Text

4.1 Requirements

The requirements to the integer class are provided by the proposed interface in the header
file. The assertions and pre/post-conditions are self-evident, the required average complexity is
provided, where N is the number of decimals or bits:
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class integer
{
private:
unsigned int *data, *maxdata;
signed char thesign;

public: // Complexity:
integer(); // 1
integer( int ); // 1
integer( double ); // 1
integer( const char * ); // < N^2 (see 3.4)
integer( const string & ); // < N^2 (see 3.4)
integer( const integer & ); // N
virtual ~integer(); // 1

const unsigned int size() const; // 1
integer &operator=( const integer & ); // N
integer &negate(); // 1
integer &abs(); // 1
integer &operator++(); // 1
integer &operator--(); // 1
const integer operator++( int ); // N
const integer operator--( int ); // N
integer &operator|=( const integer & ); // N
integer &operator&=( const integer & ); // N
integer &operator^=( const integer & ); // N
integer &operator<<=( unsigned int ); // N
integer &operator>>=( unsigned int ); // N
integer &operator+=( const integer & ); // N
integer &operator-=( const integer & ); // N
integer &operator*=( const integer & ); // < N^2 (see 3.4)
integer &operator/=( const integer & ); // < N^2 (see 3.4)
integer &operator%=( const integer & ); // < N^2 (see 3.4)
const integer operator-() const; // N
const integer operator<<( unsigned int ) const; // N
const integer operator>>( unsigned int ) const; // N

};

const bool operator==( const integer &, const integer & ); // N
const bool operator!=( const integer &, const integer & ); // N
const bool operator>( const integer &, const integer & ); // N
const bool operator>=( const integer &, const integer & ); // N
const bool operator<( const integer &, const integer & ); // N
const bool operator<=( const integer &, const integer & ); // N

const integer operator|( const integer &, const integer & ); // N
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const integer operator&( const integer &, const integer & ); // N
const integer operator^( const integer &, const integer & ); // N

const integer operator+( const integer &, const integer & ); // N
const integer operator-( const integer &, const integer & ); // N
const integer operator*( const integer &, const integer & ); // < N^2 (see 3.4)
const integer operator/( const integer &, const integer & ); // < N^2 (see 3.4)
const integer operator%( const integer &, const integer & ); // < N^2 (see 3.4)

const integer gcd( const integer &, const integer & ); // ?
const integer lcm( const integer &, const integer & ); // ?

ostream & operator<<( ostream &, const integer & ); // < N^2 (see 3.4)
istream & operator>>( istream &, integer & ); // < N^2 (see 3.4)

const int sign( const integer & ); // 1
const bool even( const integer & ); // 1
const bool odd( const integer & ); // 1

const bool getbit( const integer &, unsigned int ); // 1
void setbit( integer &, unsigned int ); // 1
void clearbit( integer &, unsigned int ); // 1
const unsigned int lowestbit( const integer & ); // 1
const unsigned int highestbit( const integer & ); // 1

const integer abs( const integer & ); // N
const integer sqr( const integer & ); // < N^2 (see 3.4)
const integer pow( const integer &, const Integer & ); // ?
const integer factorial( const integer & ); // ?

// floor of the square root, like int sqrt( int )
const integer sqrt( const integer & ); // ?
// random integer >= first and < second argument
const integer random( const integer &, const integer & ); // ?

const int toint( const integer & ); // 1
const double todouble( const integer & ); // 1

For error handling, a separate exception class may be created:

class integer_exception : public exception
{ public:

enum type_of_error {
error_unknown, error_overflow,
error_divbyzero, error_memalloc, ...
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};
integer_exception( type_of_error = error_unknown, ... );
virtual const char * what () const;

private:
type_of_error error_type;
string error_description;

};

5 Unresolved Issues

1. The required complexities of gcd, lcm, sqrt, pow and factorial are currently not yet clear.

2. The overall performance of the infinite precision integer should be comparable with the overall
performance of the well known commercial computer algebra programs.

3. On top of the infinite precision integer, the arbitrary precision real can be defined.
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