
A Proposal1 to add the Infinite Precision Integer and Rational

to the C++ Standard Library

M.J. Kronenburg
e-mail: M.Kronenburg@inter.nl.net

1 November 2004

1Document number N1718=04-0138

ii

Contents

Contents iii

List of Tables v

1 General 1
1.1 Motivation . 1
1.2 Impact on the Standard . 1
1.3 Existing Implementations . 2
1.4 Performance . 2

1.4.1 Infinite Precision Integer Performance . 2
1.4.2 Rational Performance . 3

1.5 Unresolved Issues . 4

2 Design Decisions 5
2.1 Classes . 5
2.2 Interface . 6
2.3 Error Handling . 7

3 Infinite Precision Integer 9
3.1 Constructors . 9
3.2 Operators . 10

3.2.1 Arithmetic Operators . 10
3.2.2 Boolean Operators . 11
3.2.3 Bitwise Operators . 11
3.2.4 Shift Operators . 12
3.2.5 Stream Operators . 12

3.3 Functions . 13
3.3.1 Arithmetic Functions . 13
3.3.2 Member Functions . 14
3.3.3 Bit Functions . 14
3.3.4 Miscelaneous Functions . 15

4 Rational 17
4.1 Constructors . 17
4.2 Operators . 18

iii

iv CONTENTS

4.2.1 Arithmetic Operators . 18
4.2.2 Boolean Operators . 19
4.2.3 Stream Operators . 19

4.3 Functions . 20
4.3.1 Member Functions . 20
4.3.2 Arithmetic Functions . 21
4.3.3 Miscelaneous Functions . 21

5 Proposed Headers 23
5.1 Infinite Precision Integer . 23
5.2 Rational . 25
5.3 Error Handling . 26

6 References 29

List of Tables

1.1 Range and precision of arithmetic base types . 1
1.2 Specific complexities and their meaning . 2
1.3 Infinite precision integer multiplication algorithms 3

2.1 New arithmetic class types . 5
2.2 Error conditions . 7

3.1 Infinite precision integer constructors requirements 9
3.2 Infinite precision integer arithmetic operators requirements 10
3.3 Infinite precision integer boolean operators requirements 11
3.4 Infinite precision integer bitwise operators requirements 11
3.5 Infinite precision integer shift operators requirements 12
3.6 Infinite precision integer stream operators requirements 12
3.7 Infinite precision integer arithmetic functions requirements 13
3.8 Infinite precision integer member functions requirements 14
3.9 Infinite precision integer bit functions requirements 14
3.10 Infinite precision integer miscelaneous functions requirements 15

4.1 Rational constructors requirements . 17
4.2 Rational arithmetic operators requirements . 18
4.3 Rational boolean operators requirements . 19
4.4 Rational stream operators requirements . 19
4.5 Rational member functions requirements . 20
4.6 Rational arithmetic functions requirements . 21
4.7 Rational miscelaneous functions requirements . 21

v

vi LIST OF TABLES

Chapter 1

General

1.1 Motivation

The need of arithmetic types not fitting into the data width of the processor increases. For exam-
ple on a 32-bit machine the typical ranges and precisions (excluding the sign) of the arithmetic
base types are given in the table below:

Table 1.1: Range and precision of arithmetic base types
base type approximate range approximate precision
int 1 - 109 -
float 10−38 - 1038 6 decimals
double 10−308 - 10308 15 decimals
long double 10−4932 - 104932 19 decimals

For exceeding these ranges and precisions, classes can be created that combine many base type
elements and a sign into arithmetic classes whose data sizes are only limited by available memory
size. The mathematical operators and functions are overloaded.
Two arithmetic classes are proposed in this document for exceeding these ranges: the infinite
precision integer and the rational. The rational is a combination of two infinite precision integers,
the numerator and the denominator, and is relatively easy to implement on top of the infinite
precision integer. For completeness, the arbitrary precision real is mentioned in the introducing
chapters, but not proposed, because the mathematical functions of the arbitrary precision real
are difficult to implement. The arbitrary precision real is also built on top of the infinite precision
integer. When the infinite precision integer and the rational are accepted, the proposal for the
arbitrary precision real may follow at a later stage.

1.2 Impact on the Standard

There is no impact of change on the standard, as the new arithmetic classes are fully self-
contained with their own memory management. For input/output, the standard istream and
ostream library classes are used, and internally many other standard library elements are used.

1

2 CHAPTER 1. GENERAL

1.3 Existing Implementations

Currently a number of implementations of the infinite precision integer exist that give a good
overview of design and performance issues:

1. The Integer class in the Gnu C++ library
(C++, limited to about 105 decimals [7]).

2. The Gnu Multiple Precision Arithmetic Library
(C with assembler, unlimited [6]).

3. The Integer class developed by myself.
(C++ with assembler, unlimited)

Below these implementations are referred to as implementations 1, 2 and 3. There are also a
few commercial computer algebra programs and libraries available.

1.4 Performance

1.4.1 Infinite Precision Integer Performance

The complexities in this document are provided as functions of N , which is the number of
decimals or bits.

Table 1.2: Specific complexities and their meaning
complexity meaning
N number of decimals or bits
M(N) multiplication of two infinite precision integers
D(N) division or remainder of two infinite precision integers
G(N) greatest common divisor of two infinite precision integers

On most systems M(N)<D(N)<G(N). In some cases the performance may not be of any
interest, but users that start using the infinite precision integer and rational may tend to test
the class for large arguments and compare results with the well known commercial computer
algebra programs. This may be even more the case when on top of the infinite precision integer
the arbitrary precision real is defined. Therefore the complexities of the basic operations should
be carefully considered in the design and implementation.
The data granularity is the width of the data chunks that are operated on, which is not necessarily
the processor data width. On 32-bit processors, implementation 1 uses short 16-bit granularity,
because this means that all shift and carry operations can be done using 32-bit ints and no

1.4. PERFORMANCE 3

assembler is needed. The performance of all arithmetic operations is much better using the
granularity of the processor data width, which means that assembler is unavoidable.
For the multiplication of two large infinite precision integers, a number of algorithms exist (N
is number of decimals or bits):

Table 1.3: Infinite precision integer multiplication algorithms
algorithm implementation complexity decimals reference
basecase 1,2,3 O(N2) 1− 102

Karatsuba 2,3 O(N1.585) 102 − 103 [1,5]
3-way Toom-Cook 2 O(N1.465) > 103 [1,5]
16-way Toom-Cook 3 O(N1.239) > 103 [1]
Schönhage NTT 2 O(N log N log log N) > 103 [3,4,5]
Strassen FFT - O(N log2 N) > 103 [1,4,6]

(NTT is Number Theoretic Transform, FFT is Fast Fourier Transform). The Strassen FFT al-
gorithm uses floating-point arithmetic, which means that its accuracy cannot be mathematically
guaranteed for very large arguments [5], and it is therefore not used in the quoted implementa-
tions, but its performance is the best of all. Implementation 1 only uses basecase multiplication,
and therefore for large arguments its performance is poor. In implementation 3 I found that
16-way Toom-Cook is faster than Schönhage NTT (up to some very large argument not known
to me).
For division and remainder recursive algorithms lead to better performance for large integers,
and the same is true for the instream and outstream, which means conversion from binary to
decimal notation and vice versa. For very large integers, division with Newton’s method [1]
becomes fastest, which is O(M(N)). For the greatest common divisor and extended greatest
common divisor, Euclidean, binary and other algorithms exist, which are mostly O(N2) [1,2,5].

1.4.2 Rational Performance

The performance of the rational is mostly determined by the performance of the greatest com-
mon divisor and the multiplication of the infinite precision integer. After most of the arithmetic
operations of the rational a normalization is necessary, which means a division of the numerator
and denominator by their greatest common divisor, thus keeping the rational objects unique
and of minimal size. Therefore these arithmetic operations have complexity O(G(N)). When
the performance of the rational needs to be optimized, for computations where no boolean or
stream operators are required, this normalization can be temporarily switched off by setting
rational::autonorm to false, reducing the complexity of arithmetic operations with complex-
ity O(G(N)) to complexity O(M(N)). In that case, as soon as boolean or stream operators
are required, the objects must be explicitly normalized with x.normalize(). The automatic

4 CHAPTER 1. GENERAL

normalization can be switched on again by setting rational::autonorm to true, which is also
the default. When performance of the rational is not an issue, the user is never required to use
rational::autonorm or x.normalize().

1.5 Unresolved Issues

1. The required complexities of pow, powmod, fac, sqrt and random are currently not clear.

2. The overall performance of the infinite precision integer should be comparable with the overall
performance of such functionality in the well known commercial computer algebra programs
or libraries. Existing implementations should therefore be tested on performance.

3. Avoiding temporaries in expressions (for example converting a:=b+c; into a:=b; a+=c;) can
be done at compile time with templates, or (preferably) as a compiler code optimization flag.
This should work for all arithmetic classes.

Chapter 2

Design Decisions

2.1 Classes

The arithmetic types of infinite precision integer, rational and arbitrary precision real are ex-
pressed as C++ classes. Each object of these classes contains the data that is unique and
sufficient to represent its numerical value. The arithmetic operations are overloaded, which
makes any expression possible that is also possible for the arithmetic base types.

Table 2.1: New arithmetic class types
arithmetic type meaning class
infinite precision integer integer with infinite range integer
rational fraction of two infinite precision integers rational
arbitrary precision real real with arbitrary precision and range real

The infinite precision integer class consists of two pointers to the begin and end of a contiguous
memory block that contains its numerical absolute value, and a sign that can be 1 (positive), 0
(zero) or -1 (negative). An alternative would be to put the data in an STL vector, but as many
infinite precision integer operations are performed at bit level, this would imply a dependency
on the STL vector container implementation.
The use of C++ classes is much easier for the user that the use of a C-style interface, although
in some cases a C-style interface may result in a slightly better performance. The use of a pure
C++ interface is however recommended.
The rational class simply consists of two infinite precision integers: the numerator and denom-
inator. After changing these values, they must always be normalized, that is divided by their
greatest common divisor, so that the rational objects are unique and of minimal size. Given an
infinite precision integer with greatest common divisor, the rational is relatively easy to imple-
ment.
For the rational, the possibility for using a template as rational<int> and rational<integer>
is not recommended, because the range of the numerator and denominator of rational<int>
would be only half the range of the base type int. This is because addition or subtraction
of rationals imply multiplications of numerators and denominators. This would be difficult to
explain to the user. The prevention of such overflow in a template is practically impossible. The

5

6 CHAPTER 2. DESIGN DECISIONS

gain in performance by using rational<int> would be very limited. Therefore in this proposal
no template is used for the rational, and the use in the rational of infinite precision integers for
numerator and denominator is implied.
The arbitrary precision real consists of two infinite precision integers for the mantissa and the
exponent, whose values are bounded by the range and the precision that can be set by the user.
As mentioned the arbitrary precision real requires a separate proposal, but as the arbitrary
precision real is built on top of the infinite precision integer, that proposal may refer to the
contents of this proposal.

2.2 Interface

The interface to the arithmetic types is provided by specifying the possible operations on objects
of the classes described in the previous sections. These operations are a list of all possible
arithmetic, boolean, bitwise and other operators and functions. Given these operators and
functions, listed in the following two chapters, different declarations in the header can be possible:
an operator can be declared as member or non-member function, and an argument can be passed
as a const or non-const parameter. Therefore the recommended declarations of the arithmetic
types in the header file are provided (see chapter Proposed Headers).
Some arithmetic operators are preferable declared as non-member functions, because only in that
case implicit conversion of the left-hand side argument is possible, as for example in x = 3 + y;,
where the int 3 is implicitly converted to the class type of y via the constructor from int. In
the case of x += 3; defining a special += operator for the int is a bit faster than implicit
conversion, but given the complexity of the += operator, this performance gain is in general very
small. However implementations may add specialized operators to the interface. Constructors of
the arithmetic classes from arithmetic base types and conversion functions from the arithmetic
classes to the arithmetic base types are present, which may ease the use of these new arithmetic
classes with existing software.
For the infinite precision integer, constructors from C-style and C++ strings are present. In this
way, constants can be expressed as:
const integer x("-12345678901234567890");
The interface of the arithmetic class types should enable the use of templates for (for example)
vectors and matrices, by using definitions that can both be used for arithmetic base types and for
the new arithmetic class types. For example, when the boolean function even would have been
defined as a member function x.even(), then a template using this function could never work
for base type int. Therefore the even function is defined as a non-member function even(x), so
that a similar function can be defined for base type int. Some functions have both a member
and a non-member variant, like x.abs() and abs(x). This is because in this case the member
variant has a better complexity, which makes the member variant preferable for non-template
application.

2.3. ERROR HANDLING 7

2.3 Error Handling

When an error condition in the infinite precision integer or rational operations occurs, an ex-
ception of the appropriate exception class type is thrown. This exception class is derived from
the std::exception class. It has a member method appendCaller that appends a string with
caller information, so that the caller of the function that generated the exception, can catch it,
append caller information to the exception, and throw it. The user that catches this exception in
the main program and calls the exceptions what() function gets a string with a list of successive
called functions that leads to the function that generated the exception. This way a maximum
of exception information is provided to the user.
The internal type of exception is one of an enum list, which can be division by zero, memory
allocation etc. This enum list is preferred in favour of multiple derivation of the exception class,
as long as each arithmetic class derives its own exception class from std::exception.
The infinite precision integer has a global variable maxbits that gives the maximum number of
bits. When an infinite precision integer exceeds this maximum, an exception is generated. On
most systems the default value of maxbits may be set to a value where the maximum memory
size is exceeded, or it may be set to a lower value by the user for debugging purposes. When
maxbits is set to zero, the maximum number of bits is infinite.
The table below gives an overview of possible error conditions.

Table 2.2: Error conditions

error condition meaning typical operations
error unknown unknown error (default) all
error bitoverflow number of bits > maxbits arithmetic, left shifts, bit operations
error iszero integer is zero error highestbit, lowestbit
error isnegative integer is negative error arithmetic sqrt, pow, powmod
error divbyzero division by zero error arithmetic division and remainder
error memalloc memory allocation error all
error conversion base type conversion overflow error conversions to base types
error basefield input base conversion error instream

8 CHAPTER 2. DESIGN DECISIONS

Chapter 3

Infinite Precision Integer

3.1 Constructors

The constructor of the infinite precision integer can take as argument variables of any arithmetic
base type or a string type. The values of the floating point base types are truncated towards
zero. The destructor has complexity O(1).

Table 3.1: Infinite precision integer constructors requirements
expression return type pre/post-condition complexity
integer() integer returns an integer with the value 0 O(1)
integer(ivar) integer returns an integer with the value of the

int variable ivar
O(1)

integer(uivar) integer returns an integer with the value of the
unsigned int variable uivar

O(1)

integer(fvar) integer returns an integer with the truncated
value of the float variable fvar

O(1)

integer(dvar) integer returns an integer with the truncated
value of the double variable dvar

O(1)

integer(ldvar) integer returns an integer with the truncated
value of the long double variable ldvar

O(1)

integer(csvar) integer returns an integer with the decimal value
of the C-string variable csvar

O(< N2)

integer(strvar) integer returns an integer with the decimal value
of the string variable strvar

O(< N2)

integer(iivar) integer returns an integer with the value of the
integer variable iivar

O(N)

9

10 CHAPTER 3. INFINITE PRECISION INTEGER

3.2 Operators

3.2.1 Arithmetic Operators

Table 3.2: Infinite precision integer arithmetic operators requirements
expression return type pre/post-condition complexity
x = y integer reference integer x is assigned by integer y O(N)
++x integer reference integer x is incremented by one amortized O(1)
--x integer reference integer x is decremented by one amortized O(1)
x++ integer integer x is incremented by one and the

original value is returned
O(N)

x-- integer integer x is decremented by one and the
original value is returned

O(N)

-x integer returns the negated integer x O(N)
x += y integer reference integer x is added by integer y O(N)
x -= y integer reference integer x is subtracted by integer y O(N)
x *= y integer reference integer x is multiplied by integer y M(N)=O(< N2)
x /= y integer reference integer x is divided by integer y D(N)=O(< N2)
x %= y integer reference integer x is divided as remainder by

integer y
D(N)

x + y integer returns the sum of integers x and y O(N)
x - y integer returns the difference of integers x and y O(N)
x * y integer returns the product of integers x and y M(N)
x / y integer returns the quotient of integers x and y D(N)
x % y integer returns the remainder of integers x and y D(N)

3.2. OPERATORS 11

3.2.2 Boolean Operators

Table 3.3: Infinite precision integer boolean operators requirements
expression return type pre/post-condition complexity
x == y bool returns true if integer x is equal to

integer y, otherwise false
O(N)

x != y bool returns true if integer x is not equal to
integer y, otherwise false

O(N)

x > y bool returns true if integer x is greater than
integer y, otherwise false

O(N)

x >= y bool returns true if integer x is greater than or
equal to integer y, otherwise false

O(N)

x < y bool returns true if integer x is less than
integer y, otherwise false

O(N)

x <= y bool returns true if integer x is less than or
equal to integer y, otherwise false

O(N)

3.2.3 Bitwise Operators

Table 3.4: Infinite precision integer bitwise operators requirements
expression return type pre/post-condition complexity
x |= y integer reference integer x is or-ed with integer y O(N)
x &= y integer reference integer x is and-ed with integer y O(N)
x ^= y integer reference integer x is xor-ed with integer y O(N)
x | y integer returns integer x or-ed with integer y O(N)
x & y integer returns integer x and-ed with integer y O(N)
x ^ y integer returns integer x xor-ed with integer y O(N)

12 CHAPTER 3. INFINITE PRECISION INTEGER

3.2.4 Shift Operators

When a left shift results in an infinite precision integer with more bits than integer::maxbits
(see section 3.3.2), an exception is thrown.

Table 3.5: Infinite precision integer shift operators requirements
expression return type pre/post-condition complexity
x <<= iivar integer reference integer x is left shifted by the integer

iivar
O(N)

x >>= iivar integer reference integer x is right shifted by the integer
iivar

O(N)

x << iivar integer returns integer x left shifted by the
integer iivar

O(N)

x >> iivar integer returns integer x right shifted by the
integer iivar

O(N)

3.2.5 Stream Operators

The numerical notation of the infinite precision integer is determined by the basefield flag of the
corresponding stream, which can be set with the stream manipulators std::dec, std::hex and
std::oct.

Table 3.6: Infinite precision integer stream operators requirements
expression return type pre/post-condition complexity
is >> x istream reference integer x is read from the istream is O(< N2)
os << x ostream reference integer x is written to the ostream os O(< N2)

3.3. FUNCTIONS 13

3.3 Functions

3.3.1 Arithmetic Functions

The greatest common divisor of two infinite precision integers is the greatest integer that divides
both values. This function is also needed for the normalization of rationals (see section 4.3.1).

Table 3.7: Infinite precision integer arithmetic functions requirements
expression return type pre/post-condition complexity
abs(x) integer returns the absolute value of integer x O(N)
sqr(x) integer returns the square of integer x M(N)
sqrt(x) integer returns the floor of the square root of

integer x
?

divmod(x,y,q,r) void integer q becomes the quotient of
integer x and y, and integer r becomes
the remainder

D(N)

pow(x,y) integer returns the power of integer x by integer
y

?

powmod(x,y,z) integer returns the power of integer x by integer
y, modulo integer z

?

fac(x) integer returns the factorial of integer x ?
random(x,y) integer returns a random integer >= integer x

and < integer y
?

gcd(x,y) integer returns the greatest common divisor of
integer x and integer y

G(N)=O(N2)

lcm(x,y) integer returns the least common multiple of
integer x and integer y

G(N)

extgcd(x,y,a,b) integer returns gcd(x,y), and integers a and b
fulfill xa + yb = gcd(x,y)

O(N2)

14 CHAPTER 3. INFINITE PRECISION INTEGER

3.3.2 Member Functions

The default value of integer::maxbits may be related to the maximum available memory size.
It may be set to a lower value by the user for debugging purposes. When integer::maxbits is
zero, the maximum number of bits is infinite.

Table 3.8: Infinite precision integer member functions requirements
expression return type pre/post-condition complexity
integer::maxbits integer the maximum number of bits of an integer O(1)
x.negate() integer reference the sign of integer x is negated O(1)
x.abs() integer reference the sign of integer x becomes positive O(1)

3.3.3 Bit Functions

The bit numbering is such that the lowest bit has bit number 0. When the second parameter of
getbit, setbit or clearbit is larger than integer::maxbits (see section 3.3.2), an exception
is thrown.

Table 3.9: Infinite precision integer bit functions requirements
expression return type pre/post-condition complexity
getbit(x,iivar) bool returns true if the bit with bit number

integer iivar of integer x is 1, other-
wise false

O(1)

setbit(x,iivar) void integer x has the bit with bit number
integer iivar set to 1

O(1)

clearbit(x,iivar) void integer x has the bit with bit number
integer iivar set to 0

O(1)

lowestbit(x) integer returns bit number of the lowest bit that is
1 of integer x

amortized O(1)

highestbit(x) integer returns bit number of the highest bit that
is 1 of integer x

O(N)

3.3. FUNCTIONS 15

3.3.4 Miscelaneous Functions

For conversion of infinite precision integers to floating point base types, truncation takes place
towards zero.

Table 3.10: Infinite precision integer miscelaneous functions requirements
expression return type pre/post-condition complexity
sign(x) int returns 0 if integer x is 0, 1 if x is greater

than 0, and -1 if x is less than 0
O(1)

even(x) bool returns true if integer x is even, otherwise
false

O(1)

odd(x) bool returns true if integer x is odd, otherwise
false

O(1)

swap(x,y) void swaps the values of integer x and
integer y

O(1)

toint(x) int returns an int with the value of integer
x, if x is too large an exception is thrown

O(1)

tofloat(x) float returns a float with the truncated value of
integer x, if x is too large an exception is
thrown

O(1)

todouble(x) double returns a double with the truncated value
of integer x, if x is too large an exception
is thrown

O(1)

tolongdouble(x) long double returns a long double with the truncated
value of integer x, if x is too large an ex-
ception is thrown

O(1)

16 CHAPTER 3. INFINITE PRECISION INTEGER

Chapter 4

Rational

4.1 Constructors

The constructor of rational can be called with variables of any arithmetic base type or strings;
they are implicitly converted to infinite precision integer type by the corresponding infinite
precision integer constructor (see section 3.1). The sign of the resulting rational is the product
of the signs of the first and second argument. When rational::autonorm (see section 4.3.1) is
true, the rational is normalized. The destructor has complexity O(1).

Table 4.1: Rational constructors requirements
expression return type pre/post-condition complexity
rational() rational returns a rational with the

value 0
O(1)

rational(iivar) rational returns a rational with a nu-
merator value of the integer
variable iivar and a denomi-
nator value 1

O(1)

rational(iivar1,iivar2) rational returns a rational with a nu-
merator value of the integer
variable iivar1 and a denom-
inator value of the integer
variable iivar2

O(1)

rational(rvar) rational returns a rational with the
value of the rational variable
rvar

O(N)

17

18 CHAPTER 4. RATIONAL

4.2 Operators

4.2.1 Arithmetic Operators

When rational::autonorm (see section 4.3.1) is true, the rational is normalized.
When rational::autonorm is false, the arithmetic functions with complexity O(G(N)) get
complexity O(M(N)).

Table 4.2: Rational arithmetic operators requirements
expression return type pre/post-condition complexity
x = y rational reference rational x is assigned by rational y O(N)
-x rational returns the negated rational x O(N)
x += y rational reference rational x is added by rational y O(G(N))
x -= y rational reference rational x is subtracted by rational y O(G(N))
x *= y rational reference rational x is multiplied by rational y O(G(N))
x /= y rational reference rational x is divided by rational y O(G(N))
x + y rational returns the sum of rationals x and y O(G(N))
x - y rational returns the difference of rationals x and y O(G(N))
x * y rational returns the product of rationals x and y O(G(N))
x / y rational returns the quotient of rationals x and y O(G(N))

4.2. OPERATORS 19

4.2.2 Boolean Operators

Table 4.3: Rational boolean operators requirements
expression return type pre/post-condition complexity
x == y bool returns true if rational x is equal to

rational y, otherwise false
O(N)

x != y bool returns true if rational x is not equal to
rational y, otherwise false

O(N)

x > y bool returns true if rational x is greater than
rational y, otherwise false

O(N)

x >= y bool returns true if rational x is greater than
or equal to rational y, otherwise false

O(N)

x < y bool returns true if rational x is less than
rational y, otherwise false

O(N)

x <= y bool returns true if rational x is less than or
equal to rational y, otherwise false

O(N)

4.2.3 Stream Operators

The notation of a rational is equal to the notation of the infinite precision integer numerator
and denominator (see section 3.2.5) separated by the character /.

Table 4.4: Rational stream operators requirements
expression return type pre/post-condition complexity
is >> x istream reference rational x is read from the istream is O(< N2)
os << x ostream reference rational x is written to the ostream os O(< N2)

20 CHAPTER 4. RATIONAL

4.3 Functions

4.3.1 Member Functions

Normalization of rational objects means that after each arithmetic operation the numerator
and denominator are divided by their greatest common divisor, keeping the objects unique and of
minimal size. For performance optimization, when no boolean or stream operators are needed,
the normalization can be temporarily switched off by setting rational::autonorm to false,
making the arithmetic operations that are of complexity O(G(N)) temporarily of complexity
O(M(N)). In that case x.normalize() must be used to explicitly normalize a rational before
calling boolean or stream operators. The automatic normalization can be switched on again by
setting rational::autonorm to true, which is also the default.

Table 4.5: Rational member functions requirements
expression return type pre/post-condition complexity
rational::autonorm bool when true (which is default),

rational objects are normalized
after each arithmetic operation;
when false, they must be explicitly
normalized

O(1)

x.numerator() integer reference returns the numerator of
rational x

O(1)

x.denominator() integer reference returns the denominator of
rational x

O(1)

x.normalize() rational reference rational x is normalized O(1)
x.negate() rational reference the sign of rational x is negated O(1)
x.abs() rational reference the sign of rational x becomes

positive
O(1)

x.invert() rational reference rational x is inverted O(1)
x.trunc() rational reference rational x is truncated towards

zero
O(D(N))

x.fract() rational reference rational x becomes the remain-
der of truncation

O(D(N))

4.3. FUNCTIONS 21

4.3.2 Arithmetic Functions

When rational::autonorm (see section 4.3.1) is true, the rational is normalized.
When rational::autonorm is false, the arithmetic functions with complexity O(G(N)) get
complexity O(M(N)).

Table 4.6: Rational arithmetic functions requirements
expression return type pre/post-condition complexity
abs(x) rational returns the absolute value of rational x O(N)
sqr(x) rational returns the square of rational x O(G(N))
pow(x,y) rational returns the exponent of rational x by

integer y
?

4.3.3 Miscelaneous Functions

The conversion of rationals to floating point base types takes place by separate conversion of
the infinite precision integer numerator and denominator (see section 3.3.4), and a floating point
division.

Table 4.7: Rational miscelaneous functions requirements
expression return type pre/post-condition complexity
sign(x) int returns 0 if rational x is 0, 1 if x is greater

than 0, and -1 if x is less than 0
O(1)

swap(x,y) void swaps the values of rational x and
rational y

O(1)

tofloat(x) float returns a float with the value of rational
x, if x is too large an exception is thrown

O(1)

todouble(x) double returns a double with the value of
rational x, if x is too large an exception
is thrown

O(1)

tolongdouble(x) long double returns a long double with the value of
rational x, if x is too large an exception
is thrown

O(1)

22 CHAPTER 4. RATIONAL

Chapter 5

Proposed Headers

5.1 Infinite Precision Integer

class integer
{
private:
unsigned int *data, *maxdata; // For exposition only
signed char thesign; // For exposition only

public:
integer();
integer(int);
integer(unsigned int);
integer(float);
integer(double);
integer(long double);
integer(const char *);
integer(const string &);
integer(const integer &);
~integer();

static integer maxbits;
integer &negate();
integer &abs();
integer &operator=(const integer &);
integer &operator++();
integer &operator--();
const integer operator++(int);
const integer operator--(int);
const integer operator-() const;
integer &operator+=(const integer &);
integer &operator-=(const integer &);
integer &operator*=(const integer &);
integer &operator/=(const integer &);
integer &operator%=(const integer &);
integer &operator|=(const integer &);
integer &operator&=(const integer &);
integer &operator^=(const integer &);

23

24 CHAPTER 5. PROPOSED HEADERS

integer &operator<<=(const integer &);
integer &operator>>=(const integer &);

};

const integer operator+(const integer &, const integer &);
const integer operator-(const integer &, const integer &);
const integer operator*(const integer &, const integer &);
const integer operator/(const integer &, const integer &);
const integer operator%(const integer &, const integer &);

const bool operator==(const integer &, const integer &);
const bool operator!=(const integer &, const integer &);
const bool operator>(const integer &, const integer &);
const bool operator>=(const integer &, const integer &);
const bool operator<(const integer &, const integer &);
const bool operator<=(const integer &, const integer &);

const integer operator|(const integer &, const integer &);
const integer operator&(const integer &, const integer &);
const integer operator^(const integer &, const integer &);

const integer operator<<(const integer &, const integer &);
const integer operator>>(const integer &, const integer &);

ostream & operator<<(ostream &, const integer &);
istream & operator>>(istream &, integer &);

const integer abs(const integer &);
const integer sqr(const integer &);
const integer sqrt(const integer &);
void divmod(const integer &, const integer &, integer &, integer &);
const integer pow(const integer &, const integer &);
const integer powmod(const integer &, const integer &, const integer &);
const integer fac(const integer &);
const integer random(const integer &, const integer &);
const integer gcd(const integer &, const integer &);
const integer lcm(const integer &, const integer &);
const integer extgcd(const integer &, const integer &, integer &, integer &);

const bool getbit(const integer &, const integer &);
void setbit(integer &, const integer &);
void clearbit(integer &, const integer &);
const integer lowestbit(const integer &);
const integer highestbit(const integer &);

5.2. RATIONAL 25

const int sign(const integer &);
const bool even(const integer &);
const bool odd(const integer &);
void swap(integer &, integer &);

const int toint(const integer &);
const float tofloat(const integer &);
const double todouble(const integer &);
const long double tolongdouble(const integer &);

5.2 Rational

class rational
{
private:
integer numerator, denominator; // For exposition only

public:
rational();
rational(const integer &);
rational(const integer &, const integer &);
rational(const rational &);
~rational();

static bool autonorm;
integer &numerator();
integer &denominator();
rational &normalize();
rational &negate();
rational &abs();
rational &invert();
rational &trunc();
rational &fract();
rational &operator=(const rational &);
const rational operator-() const;
rational &operator+=(const rational &);
rational &operator-=(const rational &);
rational &operator*=(const rational &);
rational &operator/=(const rational &);

};

const rational operator+(const rational &, const rational &);
const rational operator-(const rational &, const rational &);
const rational operator*(const rational &, const rational &);

26 CHAPTER 5. PROPOSED HEADERS

const rational operator/(const rational &, const rational &);

const bool operator==(const rational &, const rational &);
const bool operator!=(const rational &, const rational &);
const bool operator>(const rational &, const rational &);
const bool operator>=(const rational &, const rational &);
const bool operator<(const rational &, const rational &);
const bool operator<=(const rational &, const rational &);

ostream & operator<<(ostream &, const rational &);
istream & operator>>(istream &, rational &);

const rational abs(const rational &);
const rational sqr(const rational &);
const rational pow(const rational &, const integer &);
const int sign(const rational &);
void swap(rational &, rational &);

const float tofloat(const rational &);
const double todouble(const rational &);
const long double tolongdouble(const rational &);

5.3 Error Handling

class numeric_exception : public std::exception
{ public:

enum type_of_error {
error_unknown, error_divbyzero, error_memalloc, ...

};
numeric_exception(type_of_error = error_unknown, ...);
appendCaller(const string &);
virtual const char *what() const;

private:
type_of_error error_type;
string error_description;

};

class integer_exception : public numeric_exception
{ integer_exception(type_of_error);

virtual const char *what() const;
};

5.3. ERROR HANDLING 27

class rational_exception : public numeric_exception
{ rational_exception(type_of_error);

virtual const char *what() const;
};

28 CHAPTER 5. PROPOSED HEADERS

Chapter 6

References

1. D.E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms
(1998).

2. E. Bach and J. Shallit, Algorithmic Number Theory, Volume 1: Efficient Algorithms (1996).

3. P. Zimmermann, An implementation of Schönhage’s multiplication algorithm (1992).

4. A. Schönhage and V. Strassen, Computing 7 (1971) 281.

5. Free Software Foundation, Gnu MP manual ed. 4.1.2 (2002).

6. http://numbers.computation.free.fr/Constants/Algorithms/fft.html

7. http://www.swox.com/gmp

8. http://www.math.utah.edu/docs/info/libg++_20.html

29

http://numbers.computation.free.fr/Constants/Algorithms/fft.html
http://www.swox.com/gmp
http://www.math.utah.edu/docs/info/libg++_20.html

	Contents
	List of Tables
	General
	Motivation
	Impact on the Standard
	Existing Implementations
	Performance
	Infinite Precision Integer Performance
	Rational Performance

	Unresolved Issues

	Design Decisions
	Classes
	Interface
	Error Handling

	Infinite Precision Integer
	Constructors
	Operators
	Arithmetic Operators
	Boolean Operators
	Bitwise Operators
	Shift Operators
	Stream Operators

	Functions
	Arithmetic Functions
	Member Functions
	Bit Functions
	Miscelaneous Functions

	Rational
	Constructors
	Operators
	Arithmetic Operators
	Boolean Operators
	Stream Operators

	Functions
	Member Functions
	Arithmetic Functions
	Miscelaneous Functions

	Proposed Headers
	Infinite Precision Integer
	Rational
	Error Handling

	References

