Memory Model for
Multithreaded C++

N1738=04-0178

Andrei Alexandrescu
Hans Boehm

Kevlin Henney

Doug Lea

Bill Pugh

Maged Michael

N1738=04-0178 1



Agenda

¢ Myth and reality: is threading a library issue?
¢ |ntroduction to memory model
¢ Conclusions

N1738=04-0178



Threads: library?

¢ Myth: Threads can be implemented as a C++
library without changing the language

+ Fact: Threads affect the very core of code
generation and execution

=« Endless battle between optimizations and correct
multithreaded behavior

¢ Fact: Threads can be implemented without
changing the syntax of the language

= It's the semantics that need changed

N1738=04-0178 3



Current execution model

¢ 1.9/1: “... conforming implementations are required
to emulate (only) the observable behavior of the
abstract machine as explained below.”

+ 1.9/6: “The observable behavior of the abstract

machine 1s 1ts sequence of reads and writes to
volatile data and calls to library I/O functions.’

« Implicit single-threading

= No relationship between operations on
volatile and non- volatile data

= No “global effects” possible

N1738=04-0178 4



[.ocks

¢ Classic lock semantics cannot be defined within
the current language:

Mutexm; /* ... */
{ Lock lock(m); /* access data */ }

+ Nonvolatile reads and writes can be moved
across the lock (cf. language definition)

+ Need to express: All data (volatile and not)
operations inside the locked region must start
after the Lock’s ctor and be committed by the
Lock’s dtor

» €.9., ho register promotions!

N1738=04-0178 5



Reality Check

+ The language can't express such semantics
¢ Overly pessimistic (disables many valid opt’s)
+ No help for user-space locking

¢ Such an observation doesn’t help the plethora of
widely used lock-less mechanisms

+ No help for lock-free and wait-free techniques
either

N1738=04-0178 6



Example

const char* sym; double price;

if (sym == 0) { price = 27.9; sym = “msft”; } // writer
if (sym !=0){ p = price; s =sym; sym =0; }// reader
+ Writers write prices and set symbols

+ Readers read them and reset the symbols

¢ Simple synchronization device
» It should be allowed

= Relies on memory ordering: what if price is
updated after the symbol?

N1738=04-0178 7



Down to the core

+ Consider:

a=235;

b = 6;

¢ The sequence in which they actually are
updated is up to the implementation

¢ |nter-thread communication routinely depends
on proper sequencing of such operations

¢ This is not a theoretical issue

N1738=04-0178 8



Make everything volatile?

+ Possible approach: make all data that is ever
manipulated by multiple threads volatile

+ Manipulated even though not shared!

¢ Severe pessimization for the sake of a few hot
spots

+ A volatile write costs ~50% of an uncontended
lock operation

+ Note: pthreads is defined such that it never
relies on volatile because of its insufficiently
strong semantics

N1738=04-0178 9



Lock-Free programming

¢ CAS primitive (belongs to std):

bool cas(int* p, int expected, int newval) {
if (*p = expected) return false;
*p = newval;
return true;

}

¢+ |t's been proven that any shared data structure
can be implemented with CAS alone

+ A flurry of research and development

N1738=04-0178 10



Lock-Free advantages

¢ Fast (up to 4 times faster than mutexes)
+ Readers don’t get in each other’'s way
+ Graceful degradation under contention

¢ Single-variable lock-free operations much faster
than lock-based

¢ Async signal safety
¢ Immunity to priority inversion
¢ Tolerance to thread death

N1738=04-0178 11



Lock-free disadvantages

¢ Can’t control priorities => can increase
contention gratuitously

¢ Hard to write

¢+ Complex data structures are easier to implement
with locks

= Use locks for 98% of your code
= Use 2% CAS to increase performance by 98%

¢ Conclusion: we need both

N1738=04-0178 12



Approach

¢ The J word:
» Java defines a mathematical memory model
e Fixes bugs in its old informal spec
» Development took years
e Heavily reviewed and scrutinized

= Most of it is language-independent and can be
reused for C++

¢ Shorten development time dramatically

N1738=04-0178 13



Atomicity

¢ Certain operations on primitive data must be
guaranteed to be atomic

+ Still leave leeway to implementations

+ Possibly: define int_atomic_t (at least N bits
integral type)

+ (Non-member) pointer operations should be
atomic

+ Floating-point operations needn’t be atomic

N1738=04-0178 14



Memory modeling

+ “Happens-before” relation —hb>
= Partial ordering of memory operations

+ Program order: classic “as-if” for one thread

¢ Monitor: Unlocking —hb> Locking

+ Volatile: Write —hb> Read

+ Thread start: start() —hb> thread actions

+ Thread termination: thread actions —hb> join()

N1738=04-0178 15



Looking torward

¢+ Once the memory model is complete, semantics
of library primitives can be defined on top of it

+ Development of memory model separate from
development of libraries

N1738=04-0178 16



Conclusions

¢ | .anguage changes necessary
= No syntax changes needed
= Subtle changes in semantics
=« Backwards compatible

+ Pure library additions to come
¢ |ssue: shall we reuse/redeem volatile or not?

N1738=04-0178

17



