
Doc No: N1741=04-0181

Project: Programming Language C++

Date: Friday, November 05, 2004

Author: Francis Glassborow

email: francis@robinton.demon.co.uk

Proposal for Extending the switch statement
Note this paper is a preliminary discussion document with the intent that we should
determine how far we wish to go in providing an extended switch-statement for C++.

Background
The switch-statement in C++ has been inherited unaltered from C. In C restricting the
selection to cases that were constant integral values made sense because the integer types
are the only ones that can be sensibly and consistently compared for equality. Floating
point types can be compared but there are well known reasons for comparison for
equality to be unreliable. Comparing pointers in the context of a selection statement
would almost always not be what the programmer intended. For example, if allowed:
char * array;
/* code that initializes array */
switch(array){
 case "one": /* action */
 break;
 case "two": /* action */
 break;
 case "three": /* action */
 break;
 case "four": /* action */
 break;
 default: /* action */
}
would normally be intended to compare the strings not the addresses. C does not support
the equality comparison for user-defined types (other than enum via decay to integer
values).

Again the restriction to const integer expressions made a good deal of sense in the C
context because it allowed other mechanisms for selection other than a straight linear
search.

For the programmer, the switch-statement has two distinct things to offer. The first is
that it provides syntactic sugar for a series of if…else if statements. We should not
ignore the value of that, a switch-statement can make the logic of a program clearer
and easier to maintain.

mailto:francis@robinton.demon.co.uk

The second feature of the current switch-statement is that it enables the compiler to
optimize the selection by a variety of different techniques. The current requirements for
switch-statements ensures that such optimizations are possible at compile time.

The switch-statement we have today is a valuable programming tool. However many
programmers are frustrated by the constraints that have been inherited from C. In C++
exact comparisons can be, and often are, provided for user defined types. That means that
the continued restriction that the control expression must be convertible to int makes
much less sense. For example:
std::string select_on;
// code establishing a value for select_on
switch(select_on){
 case "one": /* action */
 break;
 case "two": /* action */
 break;
 case "three": /* action */
 break;
 case "four": /* action */
 break;
 default: /* action */
}
Is expressive, unambiguous and easy to maintain. The single problem is that it is also not
allowed. Instead the programmer has to write:
std::string select_on;
// code establishing a value for select_on
 if(select_on == "one") {
 /*action */
 }
 else if(select_on == "two"){
 /*action */
 }
 else if(select_on == "three"){
 /*action */
 }
 else if(select_on == "four"){
 /*action */
 }
 else /* action */
If the actions are anything but simple statements the code can become a maintenance
nightmare.

Even from the programmer's perspective reformulating the constraints on the switch-
statement to allow its use as an alternative to nested if … else statements makes a
great deal of sense.

The question is to what degree should we loosen the constraints. It seems to me that there
are three possible degrees of loosening all based on using the operator == for the
type of the control expression (others want to consider other comparisons or the
allowance of case labels based on ranges).

1) Allow the cases to be const pure expressions. That is expressions that are free from
side-effects (so re-ordering of their evaluation has no implications to the program as a
whole). Being const expressions would allow a compiler to evaluate them should the
implementer support compile time evaluation for the relevant expressions. The compiler
could then set up optimized selection. The above example is a case in point. High quality
implementations could select efficiently on the basis of string literals and a
std::string control expression.

2) Allow pure expressions that are not const and so cannot be evaluated statically.
Because the expressions are pure, the compiler still has some potential for re-ordering the
evaluations but generally this version of an extended switch-statement would be
implemented by transformation into the equivalent set of nested if…else statements.
This version would be useful, for example, for an internationalized program where the
cases would be read from a suitable data file at execution time in the chosen language.

3) Allow any expressions convertible to the type of the control expression. In this case
the switch-statement would become pure syntactic sugar for a series of nested
if…else statements.

Proposal
Expand the grammar of C++ to include:

pure-expression
const-pure-expression

Expand the specification of a switch-statement or provide a new alternative 'selection
statement' so:

The control expression can have any type for which there is an operator== provided.

Specify that any necessary conversions will be limited to those that convert the type of
the case label expression to that of the control expression.

The case labels shall be const-pure-expressions of the same type as the control
expression or convertible to the type of the case label expression.

Consider a further extension to include case labels that are pure-expressions and specify
that where two or more case labels compare equal to the control expression that the one
selected is unspecified.

Discussion
The definition of a pure-expression at first sight seems easy to provide by extending the
grammar of the language. Unfortunately operators that are essentially pure for
fundamental types are not required to not retain that quality when overloaded for udts.

For example operator << is 'pure' for fundamental types but is not when overloaded
for std::ostream.

This means that we need to provide a semantic rather than a syntax (grammar)
specification of what it means to be a pure expression.

A const-pure-expression is a pure-expression whose evaluation only accesses const
objects. We will need to consider whether we wish to limit this to compile time const
expressions as opposed to execution time const expressions. For example, the
difference between shows the two concepts (a compile time const expression only uses
values known at compile time):
int const value(0); // compile time const
and
int foo();
int const value(foo()); // execution time const.
I think that even the most limited extension to allow the control expression of a switch-
statement to be any type supporting operator == with case labels being compile time
const-pure-expressions would be helpful to many programmers as well as allowing
better maintenance and better optimization of source code. The 'pure' requirement allows
the compiler more opportunities for optimization but until we have a mechanism for
declaring functions as pure it greatly limits the expressions that can be used in case labels
unless we are willing to allow it to be unspecified if and when the side effects of
evaluating such expressions will occur.

Allowing execution time const-pure-expressions in case labels or even pure-
expressions in case labels would further expand the utility to many programmers but with
reduced optimization opportunities.

It would probably be advantageous to warn programmers if the type of the expression in
a case label reduces potential optimization but that might be considered a QoI issue.

A case can be made for two other modifications to the C++ switch-statement:

Allow case labels to specify ranges. This would be useful for selecting on types that are
completely ordered – particularly useful for floating point types.

Deprecate the use of 'fall through' to the first break-statement and provide an alternate
syntax where 'fall through' does not happen.

Doing the second without the providing a mechanism for some form of range case label
would add problems to some coding cases. Fall-through is currently used as a substitute
for range or set case labels.

An option that could be considered is that of adding syntax to allow a case label to
reference a container for objects of the same type as the control expression. Something
like:
int selector;// i.e. get a selection value
std::vector<int> values1;
std::vector<int> values2;
//code initializing the above variables

switch (selector){
 case 1: // actions
 break;
 case values1: // actions
 break;
 case values2: // actions
 break;
 default: //actions
}
If we can come up with some suitable qualifier to distinguish the new switch from the
classical one then we could also remove the fall through so the above code could be
simplified to:
int selector;// i.e. get a selection value
std::set<int> values1;
std::set<int> values2;
//code initializing the above variables
new switch (selector){
 case 1: // actions
 case values1: // actions
 case values2: // actions
 default: //actions
}
However this mechanism will not address the problem of floating point types where
comparison for equality is inexact.

It is worth noting that ranges can be supported by udts. For example:
struct float_range{
 float upper;
 float lower;
 float_range(float l, float u): upper(u), lower(l){}
 float_range(float l):upper(l), upper(u){}
}
bool operator==(float f, float_range const& fr){
 return (f<fr.upper && f>fr.lower)? true : false;
}
However the cost of supporting ranges that way is that we have an asymmetric equality
operator. We would also have to revisit the requirements for the operands of the
operator== used in the switch-statement to allow for this asymmetry. The
allowance of a case label using a container such as std::set would work well for
small finite ranges but supporting asymmetric equality comparisons provides for a greater
range of uses.

Another option would be to provide a new selection syntax in which both a selector value
and a comparison operator was provided.

A set of use cases might help us choose how far we want to extend the switch-
statement.

	Proposal for Extending the switch statement
	Background
	Proposal
	Discussion

