Deducing the type of variable from its initializer expressi

(revision 2)
Programming Language C++
Document no: N1794=05-0054

Jaakko Jarvi Bjarne Stroustrup Gabriel Dos Reis
Texas A&M University AT&T Research Texas A&M University
College Station, TX and Texas A&M University College Station, TX
jarvi@cs.tamu.edu bs@research.att.com gdr@cs.tamu.edu
2005-04-13

1 Introduction

This document is a minor revision of the document N1721=0810 The document N1721=04-0161 contained the
suggested wording for new uses of keywardo, which were unanimously approved by the evolution grouptinge

in Redmond, October 2004. Based on the discussions and-gtissvin the Lillehammer meeting in April 2005,
this document now adds wording for allowing the initialipat (with auto) of more than one variables in a single
statement; N1721=04-0161 allowed only one variable iidtdion per statement.

2 Proposed features
We suggest that thauto keyword would indicate that the type of a variable is to beuted from its initializer
expression. For example:

auto x = 3.14; // x has type double

Theautokeyword can occur as a basic type specifier (allow to be usédowiqualifiersy, [] and&) and the semantics
of auto should follow exactly the rules of template argument deidnctExamples (the notation: T is read asX has

typeT"):

int foo();

auto x1 = foo(); /X1 :int

const auto& x2 = foo(); //x2 : constint&

auto& x3 = foo(); /I X3 : int&: error, cannot bind a referenced a temporary
float& bar();

auto y1 = bar(); /l'yl : float

const auto& y2 = bar(); //y2: const float&

auto& y3 = bar(); I1'y3 : float&

Ax fii()

Doc. no: N1794=05-0054 2

autox z1 = fii(); 1121 : Ax
auto z2 = fii(); 1122 : A«
autox z3 = bar(); /I error, bar does not return a pointer type
auto z4[] = fii(); 11 Z4 : Ax

A major concern in discussions alto-like features has been the potential difficulty in figuringt evhether the
declared variable will be of a reference type or not. Paldity; is unintentional aliasing or slicing of objects lik&
For example

class B { ... virtual void f(); }
class D : public B{ ... void f(); }
Bx d = new D();

auto b =xd; //is this casting a reference to a base or slicing an object
b.f(); /I is polymorphic behavior preserved?

Basingauto on template argument deduction rules provides a naturalfferay programmer to express his intention.
Controlling copying and referencing is essentially the e@s with variables whose types are declared explicitly. For
example:

A foo();
A& bar();

A x1 =foo(); IIx1:A
autox1 =foo(); //x1:A

A& x2 =foo(); /I error, we cannot bind a nor-lvalue to a non-const reference
auto& x2 = foo(); // error

Ayl = bar(); IIyl:A
autoyl =bar(); //yl:A

A& y2 = bar(); 11y2: A&
auto& y2 = bar(); //y2:A&

Thus, as in the rest of the language, value semantics is taelltjeand reference semantics is provided through
consistent use &&.

Multi-variable declarations

More than one variable can be declared in a single statement:

inti;

auto a = 1,xb = &i;
In the case of two or more variables, both deductions mudttieéhe same type. Note that the declared variables can
get different types, as is the case in the above example. dthérement on the type deductions to lead to the same

type is best explained by translation to template argumehiidtion. The deductions in the above example correspond
to the deductions of template paraméfdrelow:

template <class T>
void foo(T a, T« b);

foo(1, &i);

Here, T must be deduced to be the same type based on both argumaetsyise the code is ill-defined.

Doc. no: N1794=05-0054 3

Direct initialization syntax

Direct initialization syntax is allowed and is equivalemicopy initialization. For example:

autox =1;//x:int
auto x(1); // x : int

The semantics of a direct-initialization expression offthren T v(x) with T a type expression containing an occurrence
of of auto, v as a variable name, amdan expression, is defined as a translation to the correspgodpy initialization
expressiol v = x. Examples:

const auto& y(x)—> const auto& y = x;
It follows that the direct initialization syntax is allowedth newexpressions as well:
new auto(1);

The expressioauto(1)has typdnt, and thushew auto(1)has typént«. Combining anewexpression usingutowith
anauto variable declaration gives:

autox X = new auto(1);

Here,new auto(1)has typdntx, which will be the type ok too.

3 Proposed wording

Section 7.1.5.1 Type specifiers [dcl.type.simple]
Add to the paragraph 1

— aut o can either be a storage class specifier, or a simple typefigpegut o can be combined with
any other type specifier, in which case it is treated as agtockass specifier. If theéecl-specifier-
sequenceontains no type specifier other thant o, then the following restrictions apply to the
decl-specifier-sequence

— It must be followed by one or moriait-declarators, each of which must have a non-empty
initializer of either of the following two forms:

= initializer—clause
(initializer—clause)
— The only other allowedecl-specifierarecv-qualifiersand the storage class specifi¢rat i c.
[Example:The following are valid declarations:

auto x = 5;

const auto *v = &, u = 6;

static auto y = 0.0;

static auto int z; // invalid, auto treated as a storage cl ass specifier
auto int r; // ok

— end example

Section 7.1.5.2 Simple type specifiers [dcl.type.simple]

In paragraph 1, add the following to the list of simple typedfiers:
aut o

To Table 7, add the line:
| aut o | placeholder for a type

Doc. no: N1794=05-0054 4

Section 8.3 Meaning of declarators [dcl.meaning]

New paragraph after paragraph 1:

If decl-specifier-sequena@®ntains thesimple-type-specifiesut o, the declarator is required to declare
an object and to specify an initial value; the type of the desd identifier is deduced from the type of its
initializer ([dcl.auto]).

Replace paragraph 4 with:

First, thedecl - speci fi er - seq determines a type; or, when it contains an occurrenceutfo, a
type schemeA type scheme yields a type when the occurrencauifo in the type scheme is replaced
by a type. In a declaration

TD

thedecl-specifier-sed determines the type, or type schemg,.“| Example:in the declarations
int unsigned i;
const auto& p = f();

the type specifiersnt unsi gned determine the typeunsi gned i nt”, and the type specifier
const aut o determines the type schemednst aut o” ([dcl.type.simple]).]

Section 8.3.1 Pointers [dcl.ptr]
Change the first paragraph to:

In a declaratiod DwhereD has the form

* cv—qualifier—seq,: D1

and the type, or type scheme, of the identifier in the dedtarat D1 is derived-declarator-type-list,then
the type, or type scheme, of the identifielif derived-declarator-type-list cv-qualifier-seginter toT.
The cv-qualifiers apply to the pointer and not to the objedieal to.

The change to this paragraph was the addition of the “or tgherme” in two places. Similar changes are needed
to Sections 8.3.2-5 discuss how references, arrays, awtidariypes in the declarator propagate to the type of the
declarator-id Details not shown.

New subsection: Auto [dcl.auto]

The section should be a subsection of Section 8.3 ([dcl.inghnThe text of the new subsection:

Once the type scheme ofi@clarator-idhas been determined, the type of the declared variable tlsng
declarator-idis determined from the type of its initializer using the sufer template argument deduction
([temp.deduct]). LeT be the type scheme that has been determined for a varialpigfieled, ande be
the initializer expression fat. ObtainUfrom T by replacing the occurrence afit o with a new invented
type template parametéerDefine a function template as follows:

tenpl ate <cl ass t>
void _ f(U__d) {}

Doc. no: N1794=05-0054

The type deduced for the variahdeis then the type that would be deduced for the parameterin a
callto__f with e as its actual argument. If the template argument deductmridifail, the declaration
is ill-formed.

If the list of declarators contains more that one declar#tertype of each declared variable is determined
as described above. If the type deduced for the templatenedest is not the same in each deduction,
the program is ill-formed.

[Example:

const auto & = expr;
The type scheme isonst aut 0&, and the type of is the deduced type of the arguménin the call
__f(expr) ofthe following function template:

tenplate <class t> void __f(const t& i);

— end example

Section 8.5 Initializers [dcl.init]

To paragraph 14 add a case:

If the destination type contains tla@it o specifier, see section [dcl.auto].

Section 5.3.4 New [expr.new]

Paragraph 1 specifies the valid forms of new expressions tieltbllowing form fornew-type-ido the grammar:

new-type—id:

cv aut o direct—new-declarator,,;

And the text:

If new-type-ids of the form ‘tvaut o direct-new-declaratay,.”, new-initializerwith exactly one initial-
izer argument must follomew-type-igdor the program is ill-formed. The allocated type is dedutedh
the type of this initializer argument as follows: Lie¢) be thenew-initializer, then the allocated type is
the type deduced for the variablen the declaration ([dcl.auto]):

cv auto x = e

Once the allocated type has been deduced, the semantiesrafthexpressiois as if the form
“cvaut o direct-new-declaratay,,” was written “T direct-new-declaratay,.”, whereT is the type de-
duced for the allocated typeEkample:

new auto(1); /1 allocated type is int

doubl e& foo();

new const auto[10] (foo()); // allocated type is const double

auto x = new auto('a’); // allocated type is char, x is of type char*

— end example

Doc. no: N1794=05-0054 6

4 Acknowledgments

We are grateful to Jeremy Siek, Douglas Gregor, Jeremialed@k, Gary Powell, Mat Marcus, Daveed Vandevoorde,
David Abrahams, Andreas Hommel, Peter Dimov, and Paul Madss for their valuable input in preparing this
proposal. Clearly, this proposal builds on input from mersl the EWG as expressed in face-to-face meetings and
reflector messages.

