Concepts for C++0x
Revision 1

Douglas Gregdr Jeremy Siek Jeremiah Willcock Jaakko arvi?
Ronald Garcia Andrew Lumsdaine

1. Indiana University, Open Systems Lab, Bloomington, IN 47405

2. Texas A&M University, Computer Science, College Station, TX 77843

3. Rice University, Department of Computer Science, Houston, TX 77005

Document number: N1849=05-0109

Revises document number: N1758=05-0018

Date: 2005-08-26

Project: Programming Language-€ Evolution Working Group
Reply-to: Douglas Gregor.dgregor@cs.indiana.ecu

Contents
1 Changes from N1758 2
2 Overview 3
3 Design rationale 3
3.1 Backgroundresearch L 4
3.2 Template compilationmodel 5
3.3 Specific language featuresinthedesignspace. 7
3.3.1 Named conformance vs. structural conformance 7
3.3.2 Pseudo-signatures vs. valid expressions.o oo 7
3.3.3 Associated types e 8
3.3.4 Same-typeconstraints L e 9
4 Proposed language features 10
4.1 CONCEPLS . . o o o o i e e 10
4.1.1 Refinements. 10
4.1.2 Pseudo-signatures e e e e e e e 11
4.1.3 Associated types 12
4.1.4 Nestedrequirements o o 13
4.2 Models e 13
4.2.1 \Verifyingmodel correctness 14
4.2.2 Implicit model member definitions. L L 16
4.2.3 Refinementsandmodels. L 18
4.2.4 Modelidentifiers. 19
425 Modeltemplates. L 19
426 Friendmodels. e 20
4.3 Whereclauses. e 21
4.3.1 Modelrequirements. e e e e 22
4.3.2 Same-typerequirementS. 23

mailto:dgregor@cs.indiana.edu

Doc. no: N1849=05-0109 2

4.3.3 Integral constant expressionrequirements. 23

4.3.4 Constraintpropagation. 24

4.3.5 Partial ordering witlvhere clauses oL 24

4.3.6 Syntactic shortcut for single-parameterconcepts 25

4.4 Typecheckingtemplates 26
4.4.1 Non-dependenttemplate parameters. 26

442 Namelookup. 27

443 Typeequivalence 30

45 EXIENSIONS e 31
4.5.1 Partial specialization of functiontemplates. oL 31

452 Associatedvalues. 31

4.5.3 Nestedclasstemplaterequirements 31

4.5.4 Remote specializationsandmodels. Lo .o 32

455 Exporting defaulted requirements. 32

5 Impact 33
51 ImpactonuUSErS o e e e 33
5.2 Impactonthe standardlibrary L 33
5.3 Impactoncompilervendors. 34

6 Acknowledgments 34
A Example: Standard library concepts and declarations 34
Al HelperconCepts o e e 34
A2 lterator CONCEPIS o o o e e 35
A.3 Container CoONCEPLS o o e 42
A4 Models e e 48
A5 Algorithms L . e e a4

1 Changes from N1758

This section summarizes the major changes this document makes to our previous proposal SKEG'TH].
¢ We have produced a prototype implementation, called ConceptGCC, that is described in more detail irGSIAB [
e We have added structural concepts, for which models can be implicitly generated.

e We have tightened the specification of concepts, including a summary of the grammar and more complete
specification of semantics, including:
— Name lookup in constrained templates
— Partial ordering of templates basedwimere clauses
— Verifying model correctness

e We have introduced several syntactic changes, to reduce the number of keywords (re)used and simplify the use
of concepts.

e We have provided a discussion of the background research we have conducted on language support for generic
programming, comparing the features of several other programming languages.

Doc. no: N1849=05-0109 3

2 Overview

This proposal describes language extensions that provide direct language supponciptsn C++. Concepts are
at the core of generic programming and are used to specify the abstractions that facilitate generic libraries such as
the G-+ standard library. Despite their importance, concepts are not explicitly supporteg-inRather, they exist
primarily as documentation (e.g., the requirements tables in the standard) in conjunction with a loose set of program-
ming conventions. The extensions in this proposal allow concepts to be expressed direetlyandCincorporate
the features of current best practice in generic programming. First-class concepts will provide enhanced quality and
usability of generic libraries and of generic programming in general.

The advantages of adding direct support for concepts+oiciude:

1. Improved error messageswhen using generic libraries. Error messages due to the incorrect use of function
and class templates are notoriously poor. By expressing constraints on templates via concepts the situation can
be improved: the compiler will issue a concise and clear diagnostic if the requirements of a template are not
satisfied by the user.

2. Improved type checking for template definitions. Currently, compilers delay full type checking of template
definitions until instantiation. This makes debugging more difficult for library authors, especially with respect
to verifying whether the documented constraints provide enough functionality for the template definition to type
check. With this proposal, the compiler immediately type checks some definitions, based just on the constraints
(and of course the context of the definition) but without knowledge of any instantiations.

3. Lowering barriers to entry for programmers wishing to write generic libraries. Writing a generic library now
requires a deep understanding of+CGand a plethora of template tricks—including type traits, tag dispatching,
and SFINAE—that emulate basic generic programming constructs. This proposal replaces this grab bag of tricks
with a single, coherent model for generic programming.

N1758 [SGGF05] provides an overview of generic programming terminology that will be used throughout this
proposal. A short review of this terminology follows. SectiBrliscusses the rationale behind the design of the
proposed extension. Sectidrdetails the proposed language features while Seétidiscusses their impact on users,
the standard library, and compiler vendors. Appentlixliscusses the implementation of a concept-enabled C
standard library.

Terminology review The key terms of generic programming are:
e A conceptis a set of requirements on types.

A conceptrefinesanother concept if it adds new requirements to the original concept.

A set of typesamodel (or area model of) a concept if they meet its requirements.

Concept operationsare syntactic requirements that certain functions or operators be defined by a model.

Associated typesare part of a concept’s specification and name the types that must be accessible via types that
model the concept. They often denote parameter or return types of concept operations.

Concept-based partial orderinginvolves selecting the most specific implementation of a component from a
set of possibilities, based on the most refined concepts used in the component’s specification.

3 Design rationale
We consider the following language features vital to support generic programming:

1. A way to define concepts, including associated types, concept operations, and concept refinement.

2. A syntax to explicitly declare how a set of types models a concept.

Doc. no: N1849=05-0109 4

3. A way to express constraints on template parameters using concepts.

4. A way to order (partial) specializations and perform function selection based on the concept refinement rela-
tionships.

The features we enumerate above yield a large design space for generic programming facilities, much of which is
explored in BGG"05, SDR03a Str03 SDR03K. The following set of goals directed our extended evaluation of the
viable design points and ultimately shaped the extensions we propose:

1. Earlier and more complete checking of template definitions.
2. Earlier and more complete checking of template uses.

3. Clearer and more helpful error messages.
4

. Selection of template specialization/generic algorithm implementations based on attributes of template argu-
ments.

. Zero abstraction penalty.
. Implementable in existing compilers.
. No C++03 programs become ill-formed, unless those programs only work due to defeats(B8.C

. Ability to express a new, concept-aware standard library that is easier to use.

© 00 N o O

. A simple migration path from the old standard library to the new.
10. A simple migration path for template library authors that want to add concepts.
11. Simple but powerful expression of constraints, including composition of constraints.

This section describes and motivates some of the key design decisions we reached in light of the above language
requirements and goals. We discuss the compilation model for templates and the form of language features needed to
support generic programming.

3.1 Background research

This proposal is the result of extensive research on applying the ideas of generic programming in several programming
languages, experimentation on language features for generic programming within research languages, and formally
analyzing language features relevant to generic programming.

In a comparative study between several programming languages, we evaluated the level of support for generic
programming in eight language&JL™03, GJLT05]. The study involved a partial implementation of the Boost Graph
Library [SLLO2, SLLO1]] in each of these languages. The goals of the study were to understand which language features
are necessary to support generic programming; to understand the extent to which specific languages support generic
programming; and to provide guidance for development of language support for generics. ITatdscollect the
results of the comparative study, listing the language features found crucial or useful for generic programming, and
the level of support for each feature within the studied languages. The last row, and the two rightmost columns, are
not based on the study. Regarding the chart in Tajbee point out the following:

e The “Concept@+" column reflects our understanding on how4C enhanced with concepts as described in this
proposal, would be evaluated according to the criteria used.

e The “G” column describes the support for generic programming of the research languy&ie05 SL054.
This language implements the core features necessary for generic programming in a pure form, which has
allowed us to model their semantics formally, enabling a thorough study of the language mechanisms for generic
programming. The current proposal draws from the desigharfid experimentation with the language, such as
implementing the analog of the STL ¢h[SLO54.

Doc. no: N1849=05-0109 5

C++ SML OCaml Haskell Eiffel Java C# CecilG ConceptG+

Multi-type concepts - @ O o+ O O O - [[J
Multiple constraints - e - (] ot [) o { { {
Associated type access (]] - =T - =] =] - [[
Constraints on assoc. types - @ [) ° - = = { [) {
Retroactive modeling - @ e ® O O (=) [J [) [J
Type aliases [J] [) O O O @)] [
Separate compilation O] =] [J J] [- [-
Implicit arg. deduction ° O [) ° O [) = - (] {
Concept-based overloading @ O O O O =) =) [- []

*Using the multi-parameter type class extension to HaskelP981p7. fPlanned language additioridVe did not evaluate the
recently proposed extensions to Haskell to support associated §&M05 CKP0]

Table 1: The level of support for language features important for generic programming within several programming
languages. A black circle indicates full support, a white circle indicates poor support, and a half-filled circle indicates
partial support. The rating of “-” in the & column indicates that & does not explicitly support the feature, but

one can still program as if the feature were supported due to the permissiveness te#ndplates. The table is
based on the results of an experimental study reporte@Jbh{03, GJLT05], with the addition of columns fog and
ConceptG+and row for concept-based overloading.

e The last row with the additional criterion abncept-based overloadingias added to clarify additional capa-
bilities that concepts can bring to+&€. In C++, overloading, or dispatching, based on which concepts a type
models can be arranged tag dispatchingr using thesnable_if template JWHLO3J. The Standard library uses
tag dispatching, for example, in the implementations o&thence anddistance functions. With concepts, such
overloading can be implemented directly and naturally, without resorting to trickery.

e ConceptG+ has partial support for separate compilation. The C++ compilation model of templates (instantia-
tion) does not need to change with the introduction of concepts, but generic definitions can be type checked sep-
arately from their uses. There is a small caveat in type-checking, though. As specified currently, type-checking
does not guarantee that certain kinds of overloads would not result in errors at instantiation time. These cases are
known (see Sectiod.4.2and PWLO04]), and represent a fundamental tension between separate type checking
and the ability to specialize algorithms using concept-based overloading. Note that the evaluations for separate
compilation and concept-based overloadingdoare reversed, compared to the evaluations for ConesptC
the design choice made in languagés the opposite to what we propose for€ G favors full separate type
checking and compilation for concept-based overloading and algorithm specialization.

3.2 Template compilation model

Adding concepts to &+ leaves the template compilation model largely unchanged. The language retains the in-
stantiation model, where templates are in essence “patterns” that are stamped out for each combination of template
parameters. Instantiations are still compiled in the same way, e.g., via the inclusion model or link-time instantiation,
and the semantics of exported templates are likewise unchanged. However, see®3888 for a discussion of the

various alternative compilation models and how they can be implemented with concepts. Most importantly, existing
templates will continue to work as expected, and can interact with the proposed extensions both at the language level
and at the object code level.

This proposal introduces facilities for improved type checking of both template uses and definitions. The new
type checking does not affect existing templates, and therefore cannot break backward compatibility. Rather, we
introduce additional interface checking for templates and new non-dependent template parameters that bring with
them additional type safety and eliminate many of the confusing aspects of templates.

Improved type checking for uses of templates solves one of the most frustrating aspects of using generic libraries
in C++03: errors in the use of function templates are reported deep within the library implementation and typically
refer to library implementation details. With the proposed extensions, a generic library can publish its requirements in

Doc. no: N1849=05-0109 6

Criterion Definition

Multi-type concepts Multiple types can be simultaneously constrained.

Multiple constraints More than one constraint can be placed on a type pa-
rameter.

Associated type access Types can be mapped to other types within the context

of a generic function.
Constraints on associated types Concepts may include constraints on associated types.

Retroactive modeling Indicates the ability to add new modeling relationships
after a type has been defined.

Type aliases A mechanism for creating shorter names for types is
provided.

Separate compilation Generic functions can be type checked and compiled
independent of calls to them.

Implicit argument deduction Indicates that the arguments for the type parameters of

a generic function can be deduced and do not need to
be explicitly provided by the programmer.

Concept-based overloading Generic functions can be overloaded on the concepts
that their type parameters are required to model.

Table 2: Glossary of Evaluation Criteria

the function interface, so that the compiler will check these requirements at the call site. Then, the user will receive
an error messagg the call siteand it will refer to an interface violation, e.g., “the typaloes not model the required
concepic”.

Improved type checking for template definitions also simplifies the task of writing correct function and class
templates. Since a function template’s interface expresses the constraints on its parameters, the compiler can check
that the definition does not require functionality beyond what is guaranteed by the constraints. For instance, if the
constraints state that the input typer must model theBidirectional Iterator concept but the definition uses tke
operator, the compiler will produce an error message at template definition time. With exis#08 @mplates, this
error would go undetected until a user attempts to instantiate the template with a type that does notksupport
instance, the following function uses operations not providethfnytiterator, but the error will not be detected until it
is instantiated with an iterator that does not provigerator <:

template <typename Inputlterator, typename Outputlterator, typename Pred>
Outputlterator
copy_if(Inputlterator first, Inputlterator last, Outputiterator out, Pred pred) {
while (first < last) {
if (pred(xfirst)) xout++ = xfirst;
++first;

}

return out;

We can rewrite this unsafe algorithm using concept constraints. By introducing requirements on the template parame-
ters (renamed tmiter, Outlter, andPred, respectively), both in the template header andithere clause, the compiler
can verify that the template is corretdefinition time Here is the type-safe version of the template:

template <Inputlterator Inlter, typename Outlter, typename Pred>
where { Predicate<Pred, reference>, Outputliterator<Outlter, reference> }
Outlter
copy-if(Inlter first, Inlter last, Outlter out, Pred pred) {
while (first < last) {
if (pred(xfirst)) xout++ = xfirst;
++first;

}

return out;

}

Doc. no: N1849=05-0109 7

ConceptGCC produces the following diagnostic, indicating that there is no match fardperator on input iterators.
The second part of the error message indicates that the only non-built-in operatawn to the compiler is for the
difference_type of the input iterator.

copy_if_bad.C: In function 'Outlter copy_if(Inlter, Inlter, Outlter, Pred)”:

copy_if_bad.C:9: error: no match for 'operator<’ in "first < last’

<path>/include/c++/4.0.1/bits/concepts.h:150: note: candidates are:bool std::Signedintegral<typename std::Iterator
AssociatedTypes< _Iter>::difference_type>::operator <(const typename std::IteratorAssociatedTypes< _lter>
::difference_type&, const typename std::lteratorAssociatedTypes < _Iter>::difference_type&)

3.3 Specific language features in the design space

The decisions above still leave a large design space. Here we illuminate some points of that space and justify our
choices. Rationale for other design decisions is provided in N13&%5 05].

3.3.1 Named conformance vs. structural conformance

In general, there are two basic approaches to establishing that a set of types models a concept: structural and named
conformance. Structural conformance relies only on the signatures within a concept, ignoring the name of the concept
itself. With structural conformance, a set of types models a concept if all of the syntactic requirements of that concept
are met; any semantics required by the concept are implied by the structure. Named conformance, on the other hand,
means that the name of a concept is significant: two concepts with identical structure but with different names are
considered different. With named conformance, a set of types models a concept only if the user has explicitly declared
that the semantics of the concept are met; the syntactic requirements are checked when this declaration is made.
Systems based on named conformance often allow the syntax to be adapted within the model declaration.

Both structural conformance and named conformance are important for the design of generic libraries. Some
concepts are “purely structural”, in the sense that they have little or no semantics and therefore should not require
explicit model declarations. For these concepts, structural conformance is important. Other concepts, however, have
many semantic requirements that users must consider before concluding that a set of types does model a concept.
Particularly in the case where two concepts are structurally similar but semantically differeninfeuterator and
Forwardlterator), structural conformance can lead to run-time errors whereas named conformance woGIS Otd.|

This proposal provides support for both named and structural conformance. Concepts use named conformance by
default (because it is safer in general). However, so-cattad: concept s use structural conformance, but still permit
explicit model declarations.

N1782 [SD0Y also supports both structural and named conformance. In that proposal, structural conformance is
the default but the use of “negative asserts” can emulate named conformance.

3.3.2 Pseudo-signatures vs. valid expressions

There are several ways to express the syntactic requirements of concepts. The two most feasible opsensare
signaturesandvalid expressiongsometimes calledsage patterns N1782 SDR033 presents other potential solu-
tions and give solid reasons to discount all but these two. Both approaches are equivalent, in the sense that they can
express the same constraint®|[L04], and each can emulate the other.

The pseudo-signature approach describes the syntax via a set of function declarations, as illustrated on the left
side of Figurel (we describe the full syntax of concept definitions in Sectidi). In a simple signatures approach, a
type T would have to have functions that match those signatexastly A pseudo-signature approach, on the other
hand, treats these declarations more loosely. For instance, the declaratjgmatdr < requires the existence of a
< operator, either built in, as a free function, or as a member function, that can be passed two values convertible
to type T and returns a value convertible bool. Note that pseudo-signatures differ from the abstract signatures
described by N17823D085, because abstract signatures do not permit conversions of the argument and result types.
Pseudo-signatures do permit these conversions.

The valid-expression approach describes the valid syntax by writing it directly. The right side of Fillustrates
the description ofess Than Comparable using the syntax of N1785D05.

Doc. no: N1849=05-0109 8

template <typename T>

concept LessThanComparable { concept LessThanComparable<typename T> {
bool operator <(const T& X, const T&y); TX, V;
bool operator >(const T& X, const T& y); (bool)(x < y);

bool operator <=(const T& X, const T&y); (bool)(x >y);
bool operator >=(const T& X, const T&y); (bool)(x <=y);

b (bool)(x >=y);

Figure 1:Less Than Comparable concept expressed via pseudo-signatures (left) and valid expressions (right).

We have opted to use pseudo-signatures for several reasons. First, they match closely with the declarations of op-
erations that fulfill these requirements, e.g.,dherator < on an STLvector has essentially the same declaration as the
pseudo-signature faperator < in Figurel. Second, pseudo-signatures can appear both as requirements in concepts
and as implementations of those requirements in models, simplifying the task of writing a complete model for a con-
cept. Third, the implementation of pseudo-signatures matches so long as one can forward from the pseudo-signature
to the corresponding implementation and back. Finally, pseudo-signatures are more precise than valid expressions,
specifying precisely how arguments are passed and the exact return types, which is crucial for type-checking of tem-
plates.

3.3.3 Associated types

In C++03, associated types are typically expressed using traits cladge8%, but checking of template definitions
precludes the use of traits in type-safe templates because traits can be specialized in relatively unconstrained ways.
First-class support for associated types would replace traits and permit checking of template definitions.

Associated types can be represented directly as types inside the concept. For exanmpleatidterator con-
cept’s associated types are expressed as follows:

template <typename Iter>

concept Forwardlterator {
typename value_type;
typename difference_type;
typename reference;
typename pointer;

/I more requirements...

Associated types can be accessed like member types of the conceptpevgrditerator<X>::value_type whereXx
is a model ofForward Iterator. This usage is very similar to traits (e.g@ierator_traits) and reflects existing practice.
References to associated types in generic functions do not requisg¢heme keyword because the concept states
that the member (e.gvalue_type) must be a type Alternatively, associated types are looked up in the scope of the
where clause. Thus, iforwardlterator<X> is in thewhere clauseyalue_type will find Forwarditerator<X>::value_type.

An alternative to placing associated types in the concept definition is to make them nested types of one of the type
parameters. For instance, N1782 places the associated types of an iterator inside the iterator type itself, e.g.,

concept Forwarditerator<class Iter> {
Value_type lter::value_type;
SignedIntegral Iter::difference_type;
/l more requirements...

h;

Forwarditerator<X>> is not a dependent type, because it refers to a concept.

Doc. no: N1849=05-0109 9

Then, if typeX is aForwardlterator, X::value_type refers to thevalue_type of the iterator. This formulation ties associated
types to a particular type in the concept. While this may work well for single-parameter concepts, it can cause
ambiguities and confusion. Consider the following concept, which states that the ¢gpebe called with a parameter

of typeT1, and the identity function objeét:

template <typename F, typename T1>
struct concept Callablel
CopyConstructible F::result_type;
F::result_type operator ()(F&, const T1&);

struct identity_t

{
template <typename T> T operator ()(T t) { return t; }
b

There are modelgallablel<identity_t, T> for everyT that isCopyConstructible, and the type returned perator ()
will always beT. Thus,F:result_type in the following function will beint whenforward<identity_t, int > is instantiated
andfloat whenforward<identity_t, float > is instantiated, even thougfsidentity_t in both cases:

template <typename F, typename T1> where {Callablel<F, T1>}
F::result_type forward(F& f, const T1& t1)

{

return f(t1);

}

That F::result_type can take on different types even wherns fixed toidentity_t is somewhat surprising. It indicates
that theresult_type isn't really a property of; rather, it's a property of the conceptilablel<F, T1>. This fact can
cause some interesting ambiguities when the same nested:typalt_type can get different definitions from different
concepts, as in the following example:

template <typename F, typename T1, typename T2>
where {Callablel<F, T1>, Callablel<F, 72>}
F::result_type forward(F& f, const T1& t1, const T2& t2)
{

F:result_type rl = f(t1);

F::result_type r2 = f(t2);

}

In this example,F:result_type can refer to either thé&::result_type from Callablel<F, T1> or F:result_type from
Callablel<F, T2>, which may be different. With associated types as part of the concept, this ambiguity does not
occur, because the associated type is part of the concept, not part of a specific type.

We have opted to express associated types as nested types within concepts, because it closely matches existing
practice (traits), provides convenient access to associated types, and eliminates the problems of ambiguities.

3.3.4 Same-type constraints

A generic function that accepts several type parameters often requires that two types (often associated types) be equal.
For instance, several standard library algorithms require the value types of different iterator types to be the same. To
support such requirementswaere clause may contaisame-type constraintsrhich assert that two types are always

the same. Same-type constraints are written using the equality operatdfor example, consider the following
concept-enabled standard library algorithm declaration:

template <Inputlterator Inputlteratord, Inputlterator Inputlterator2>
where { Inputlterator<Inputlteratorl>::value_type == Inputlterator<Inputlterator2>>::value_type,

2We have invented this syntax just for this example. It does not reflect the proposed syntax.

Doc. no: N1849=05-0109 10

LessThanComparable<Inputiterator<Inputlterator1>::value_type> }
bool includes(Inputlteratorl firstl, Inputlteratorl lastl, Inputlterator2 first2, Inputlterator2 last2);

In this declaration, the typesputiteratorl andinputiterator2 are required to model the conceyiut Iterator. The value
types of these concepts must be equivalent, and modektserhan Comparable concept.

Same-type constraints cannot be emulated wihraeType concept, because their use in type-checking templates
requires nontrivial changes to a compiler. Sectlof.3describes same-type constraints and type equality issues in
more detail; implementation details and strategies are discussed in a separate doG8a6Ht [

4 Proposed language features

This proposal introduces three new kinds of entities into the Bnguage: concepts, models, amtkre clauses. It

also changes the nature of type-checking in templates, by introducing non-dependent template parameters for which
all type checking occurs when the template is parsed. We will cover the syntactic entities (and their semantics) first,
then discuss type-checking of constrained templates, and finish with potential extensions to these features.

4.1 Concepts

template-declaration
template < template-argument-list struct,,: concept identifier concept-definitiaf; ;

concept-definition
refinement-clausg, concept-body

concept-body
{ requirement-specificatiop; }

requirement-specification
pseudo-signature-req requirement-specificagjgn
associated-type-req requirement-specificagjpn
nested-req requirement-specificatign

Concepts are namespace-level entities that bundle together a set of requirements. V¥test tkeyword pre-
cedesconcept , the concept is a structural concept. The syntax of concepts closely mimics class templates. Concepts
consist of an (optional) refinement clause and three kinds of members: pseudo-signatures, associated types, and nested
requirements.

The following code defines a concept nanfeevarditerator with a single template parametéer:

template <typename Iter>
concept Forwarditerator { ... };

4.1.1 Refinements

refinement-clause
: refinement-specifier-list

refinement-specifier-list
refinement-specifier
refinement-specifier refinement-specifier-list

refinement-specifier
model-id

The refinement clause contains a listefinement-specifistthat indicate which concepts are refined by the concept
being defined and how parameter substitutions affect this refinement relationsmipdel-idis atemplate-idwhose

Doc. no: N1849=05-0109 11

template-nameefers to a concept. Concept refinements shall not be recursive. The intuition is that a refinement adds
the requirements of the refined concept to the refining concept. Thus, the requirements in the refining concept are a
superset of those in the refined concept, and any set of types that models the refining concept also models the refined
concept.

The following code defines a concegitlirectionaliterator that refinesorwarditerator:

template <typename lIter>
concept Bidirectionallterator : Forwarditerator<lter> { ... };

In addition to organizing and aggregating requirements, refinements affect the implicit generation of models (Sec-
tion 4.2.3 and partial ordering based amere clauses (Sectiod.3).

4.1.2 Pseudo-signatures

pseudo-signature-req
simple-declaration
function-definition
template-declaration

Pseudo-signatures express concept operations. During type checking, they serve two purposes. When checking a
model definition, pseudo-signatures specify the operations required of the model. When checking a template definition,
pseudo-signatures specify some of the operations that may be legally used in its body.

Syntactically, a pseudo-signature is a function declaration or definition. A pseudo-signature may be followed by a
function body, providing a default implementation to be used if a model does not define the function (seedsection
for more details and an example).

The following definition of theEqualityComparable concept includes two pseudo-signatures and provides a default
implementation for the second.

template <typename T>

concept EqualityComparable {

bool operator ==(const T&, const T&);

bool operator !=(const T& x, const T&y) { return (x ==vy); }

I

Operators should always be written like free functions within a concept, even if those operators may only be defined
as members within a class. For instance,Ghevertible concept is written as a free function, even though conversions
can be built-in, performed through constructors, or written as member operators in a class.

template <typename T, typename U>
struct concept Convertible {
operator U(const T&);

I3

The requirement that a modeling type have a member function is expressed with a pseudo-signature qualified by the
type. The following excerpt from th@ontainer concept shows the pseudo-signature forettagty() member.

template <typename X>
concept Container {
bool X::empty() const ;

Vo

A concept may require a constructor by using a type for the function name. The modelingrigpe not be a class
type: any type that may be constructed with the given signature is permitteteTeuiConstructible concept includes
a requirement for a constructor.

template <typename T>
concept DefaultConstructible {

Doc. no: N1849=05-0109 12

T:T();
¥
A concept may require a function template via a pseudo-signature template. The following is an example of a pseudo-
signature template:

template <typename G>
concept MutableGraph : Graph<G> {

template <typename P> where { Predicate<P, edge> }
void remove_edge._if(P p, G& g);

N

Similarly, a concept may require a member function template by qualifying the pseudo-signature template with the
model type, such as the constructor template foiS#xgience concept.

template <typename X>

concept Sequence : Container<<X> {
template <typename Iter> where { Inputlterator<lter> }
X::X(Iter first, Iter last);

o

4.1.3 Associated types

associated-type-req
typename identifier
typename identifiex type-specifier;

A concept may require that a model provide a type definition for a particular type nametyiedaf . These
requirements are callexbsociated typeequirements. For example, the followiggaph concept requires that a model
declaration foiGraph specify a type foedge andvertex.

template <typename G>

concept Graph {
typename edge;
typename vertex;

b
The type name introduced by an associated type requirement may be used in the concept body and in refining concepts.
Consider the following example.

template <typename T>
concept A {
typename s;
¥
template <typename U>
concept B: A<U> {
void foo(s);
b
The use of type namein concepB is valid because refinesA, which requires the associated type
A concept may provide a default for an associated type. If a model does not specify a type definition for that type,
then the model uses the default. The default type need not be well-formed if the model provides the type definition.
The followingInputiterator concept requires four associated types that default to nested type definitions in the iterator.

Doc. no: N1849=05-0109 13

template <typename lIter>
concept Inputlterator
: CopyConstructible<Iter>, Assignable<Iter>, EqualityComparable<lter> {
typename value_type = Iter::value_type;
typename reference = Iter::reference;
typename pointer = Iter::pointer;
typename difference_type = Iter::difference_type;

o

4.1.4 Nested requirements

nested-req
where requirement-list;

Nested requirements are additional requirements that a concept places on its type parameters, associated types,
etc. For instance, a concept may require certain types to model another concept with ahastethuse that names
the requiredmodel-id The Container concept requires that the associated tigpetor satisfy the requirements of
Inputlterator, which is written as:

template <typename X>
concept Container {

typename iterator;
where Inputlterator <iterator>;

Vo

Nested requirements may contain the same kinds of requirementghageaclause; see Sectigh3.

4.2 Models

template-declaration
template < template-argument-lisy; > where-clausg,; concept model-id model-body; ;

model-body
{ model-member-specificatign }

model-member-specification
pseudo-signature model-member-specification
associated-type model-member-specificatjpn

A model definition establishes that a set of types meets the requirements of a concept. Syntactically, a model is
like a (partial) specialization of a concept. Consider the following example:

class student_record {
public :

string id;

string name;

string address;

I

template <>
concept EqualityComparable<student_record> {
bool operator ==(const student_record& a, const student_record& b)

Doc. no: N1849=05-0109 14

{ return a.id == b.id; }

¥
A model of theEqualityComparable concept (from Sectiod.1.2) is defined forstudent_record. The
EqualityComparable concept has two requirements; this model satisfies the requiremepiefator ==, and then uses
the default defined iEqualityComparable for operator !=, whose implementation invokes thigerator ==.
4.2.1 Verifying model correctness
All of the requirements of the modeled concept, and the concepts it refines (transitively, according to the refinement
relation) must be satisfied according to the following rules, otherwise a diagnostic is required.

Pseudo-signatures

pseudo-signature
pseudo-signature-req

A pseudo-signature requirement in a concept may be satisfied by a model according to the following rules. A
pseudo-signature may contain occurrences of the concept template parameters and associated types. To obtain the
pseudo-signature that must be satisfied by the model the template arguments and associated types provided by the
model are substituted for the concept’s parameters and associated types. To illustrate, suppose the following definition
of concepta and model<int >.

template <typename T>
concept A {

typename s;

s foo(T);

I3

template <>
concept A<int> {
typedef char s;

b
The modela<int > must satisfy the requirement for a function with the signature

char foo(int);

This requirement may be satisfied according to the following rules.

1. A model may satisfy the pseudo-signature requirement with a function definition in the model body.

template <>

concept A<int> {

typedef char s;

char foo(int x) { return "a’; }

t
Similarly, the pseudo-signature may be declared inside the model definition but defined outside:

template <>
concept A<int> {
typedef char s;
char foo(int x);

I3

char A<int >::foo(int x)

Doc. no: N1849=05-0109 15

{

return ’'a’;

}

2. If the pseudo-signature is from a refinement, and there is a model definition for the refinement, then the model
need not (and may not) provide a definition for the function.
template <typename U>
concept B: A<T>{ };

template <>
concept B<int> { }; // no definition of foo() needed, because it is provided by model A<int>

3. If the pseudo-signature is not satisfied by one of the above rules (a declaration or definition in the model body or
by a model of a refinement), then the pseudo-signature shall be implicitly defined. For details, seedS&etion

Associated types

associated-type
typedef type-specifier identifief

A requirement for an associated type may be satisfied in one of the following ways.

1. Atype definition in the body of the model will satisfy an associated type requirement. For example, the following
conceptA requires an associated typ& he model provides a typedef wibiool for t.

template <typename T>
concept A {
typename t;

I3

template <>
concept A<float > {
typedef bool t;

I3

2. If the associated type is from a refinement, and there is a model definition for the refinement, then the model
need not (and may not) provide a typedef for that associated type. In the following example, ®refapes
the conceph defined above. The model declaration #«float > does not include a typedef fosince there is
one in modeA<float >.

template <typename T>
concept B: A<T> { };

template <>
concept B<float > { }

The following definition of modeB <float > is ill-formed, since it tries to redefirte

template <>
concept B<float > {
typedef char t; // Error, A<float> is already defined.

b

Doc. no: N1849=05-0109 16

3. If the associated type is from a refinement, and there is not yet a model definition for the refinement, then the
model must satisfy the requirement by providing a type definition. For example, below we define a model
B<double > and assume there is no previous definition for m@dedouble >. The requirement for the associ-
ated typea from concept is satisfied by the typedef in modekdouble >.

template <>
concept B<double > {
typedef long t;

I3

4. If there is a default for the associated type in the concept, then the model need not provide a type definition. In
the example below, the associated tyjf@ modelC<float > will be int.

template <typename T>
concept C {
typename t=int;

b

template <>
concept C<float > { };

Nested requirements Once a model has been defined, the nested requirements of the corresponding concept (and
its refined concepts) must be verified to be true. This verification is the same as verifying thattheclause of a
template is satisfied (Sectiods3.14.3.3.

For instance, a nested model requirement must be satisfied by a previous model definition. Consider the following
example.

template <typename T>
concept A { };

template <typename U>
concept B {
where A<U>;

b

template <>
concept A<int> { };

template <>
concept B<int> { };

ConceptB contains the nested requirement fertU>. The modeB<int > is valid because there is a previous model
definition for A<int >. Note that occurrences of template parameters and associated types in the nested requirement,
such agJ in where A<U>;, are replaced by the arguments and type definitions in the modelisseplaced bynt.

4.2.2 Implicit model member definitions

Since every model must contain precisely the same members (pseudo-signatures, associated types, etc.) as the concept
it is associated with, members not explicitly defined by the user will be defined implicitly by the implementation. This
behavior is very similar to the handling of implicitly-defined default constructors, copy constructors, and assignment
operators.

This section describes how the implicitly-generated model members shall be defined.

Doc. no: N1849=05-0109 17

Pseudo-signatures Implicitly-defined pseudo-signatures are implemented by creating a forwarding function whose
signature exactly matches the pseudo-signature. The body of this function consists of a function call to the result of
the function lookup (for function pseudo-signatures) or uses the operator in the least restrictive manner (for operator
pseudo-signatures). The normal«dookup rules are applied when compiling this function. In the following example,

the requirement fooperator + is satisfied byX::operator +.

template <typename T>

concept C {

bool operator +(const T&, const T&);
class X {

int operator +(const X&) const { return false ; }

I3

template <>
concept C<X>{ };

The definition of the implicitly-generated pseudo-signature looks like this:

bool C<X>>::operator +(const X& x, const Y&y) {
return x +vy,

}

When compiling this function, the operation resolves tg::operator +, and thent result ofX::operator + is implicitly
converted to thevool result type required by the concept. Free functions are translated to unqualified calls. For
instance, consider the following example for the con&tppable:

template <typename T>
concept Swappable {
void swap(T& x, T& y);

I3

template <typename T> where { CopyConstructible<T>, Assignable<T> }
void swap(T& x, T&y) { // #1

T tmp(x);

X=Y;

y=X

}

template <>
concept Swappable<int> { };

/I implicitly—generated!
void Swappable<int >::swap(int& x, int&y) {
swap(x, y); // ignores Swappable<int>::swap but finds #1

}

For a more precise formulation of implementations for these synthesized pseudo-signatures, see our paper “Imple-
menting Concepts"GS05h.

If the implicitly-generated definition fails to type-check and the pseudo-signature requirement in the concept con-
tains a default implementation, that default implementation will be used instead. The example at the beginning of
Sectiond.1.2 with the modeEqualityComparable <student_record>, demonstrates the use of default implementations
in concepts.

If the implicitly-generated definition fails to type-check and there is no default implementation, the compiler shall
produce a diagnostic indicating that the model is invalid.

Doc. no: N1849=05-0109 18

Associated types If a model definition does not providetgpedef for an associated type, the default type value will
be used if provided in the concept. For instance, the following modeebafiterator retrieves thalifference_type type
from Mylter:

template <typename lIter>
concept Inputlterator{
typename difference_type = Iter::difference_type;

I3

struct Mylter {
typedef int difference_type;

I3

template <>
concept Inputlterator<Mylter> { };

4.2.3 Refinements and models

If there is a model definition for a concept that refines other concepts, and models for the refinements are not already
defined, then model definitions for the refinements are implicitly generated. Consider the following example.

template <typename T>
concept A {
void foo();

I3

template <typename T>
concept B:A<T>{ };

template <>
concept B<int> {
void foo() { }

I

ConceptB refinesA. There is a model definition fa@<int >, but no explicit definition fora<int>. Thus, a model
definition forA<int > is implicitly generated by the €& implementation from the definition &<int >.

Models for refined concepts will be defined even for model templates. These implicitly defined models will have
the same template parametevsere clauses, and template arguments as the model originally defined by the user. For
instance, ifForwarditerator refinesinputiterator, the following model oForwarditerator will result in a similar model of
Inputlterator:

template <typename T>

concept Forwardlterator<<Tx+> {
typedef T value_type;

typedef std::ptrdiff_t difference_type;
typedef const T& reference;
typedef const Tx pointer;

I3

/I Implicitly generated, unless it already exists...
template <typename T>
concept Inputiterator<Ts> {

typedef T value_type;

typedef std::ptrdiff_t difference_type;

typedef const T& reference;

Doc. no: N1849=05-0109 19

typedef const Tx pointer;
b
If the template parameters of an implicitly defined model are not all deducible from the template arguments of that
model, the model shall not be defined. For instance, consider the following concept and model:

template <typename V, typename S>
concept VectorSpace : AbelianGroup<V>, Field<S> { ... };

template <typename T, typename U>
where { Convertible<U, T> }
concept VectorSpace<std::complex<T>, U>{ ... };

Within the above rule, the implementation would attempt to implicitly define:

template <typename T, typename U>
where { Convertible<U, T> }
concept AbelianGroup<std::complex<T> > { ... };

template <typename T, typename U>
where { Convertible<U, T> }
concept Field<U> { ... };

However, both of these are invalid partial specializations (and, hence, invalid model declarations), bexzurset
be deduced in the first definition amccannot be deduced in the second definition.

4.2.4 Model identifiers

model-id
template-id

A concept name followed by a list template arguments is a model identified€l-id. Model identifiers may be
used to qualify access to entities in the scope of a model, such as type definitions and functions. In the example below,
the model identifieB<int > is used to qualifyero().

model B<int> {
int zero() { return 0; }

int main() { return B<int >::zero(); }

Lookup into amodel-idis only well-formed when there exists a model for thatdel-id The method used to determine
if a model exists is described in Sectiérs.1

4.2.5 Model templates

A model template establishes that a family of types models a concept. For example, the following model definitions es-
tablish pointers and pointers to constant values as mod#lstableRandomAccessiterator andRandomAccessiterator,
respectively.

template <typename T>

concept MutableRandomAccessiterator<Ts> {
typedef T value_type;

typedef T& reference;

typedef T pointer;

typedef ptrdiff_t difference_type;

I3

template <typename T>

Doc. no: N1849=05-0109 20

concept RandomAccesslterator<const T#> {
typedef T value_type;

typedef const T& reference;

typedef const Tx pointer;

typedef ptrdiff_t difference_type;

I3

In the upcoming SectioA.3we extend templates withhere clauses to express constraints on template parameters.
The template may only be instantiated with arguments that satisfy the constraints. The following example demonstrates
how constraints are useful in model templates.

template <typename T, typename Alloc> where { EqualityComparable<T> }
concept EqualityComparable< vector<T, Alloc> > { };

This model template states thateztor is a model ofEqualityComparable if the value typeT is EqualityComparable.

4.2.6 Friend models

member-declaration
friend concept model-id;
template < template-argument-list friend concept concept-name

Models can be friends of a class, permitting the definition of those models to acigass or protected members
of the class. For instance, we can rewrite the prevésudent record example with all its membersivate :

class student_record {
private :

string id;

string name;

string address;

friend concept EqualityComparable<student_record>;

+

template <>

concept EqualityComparable<student_record> {

bool operator ==(const student_record& a, const student_record& b)
{ return a.id == b.id; }

I3

Doc. no: N1849=05-0109 21

4.3 Where clauses

template-declaration
export,,; template < template-parameter-list where-clausg,; declaration

member-declaratian
where-clause member-declaration

where-clause
where { requirement-list,; }

type-parameter
class!,,; identifier,,;
class!,,: identifier,,; = type-id
typename ,,,; identifier,
typename ,,,; identifier,,, = type-id
template< template-parameter-list;, > class !, identifier,,,
template< template-parameter-ligt;, > class !, identifier,,, = id-expression

requirement-list
requirement, requirement-list

requiremertt
model-requirement
same-type-requirement
ice-requirement

This proposal introduces constraints on templates in the formmbkee clause. The syntax of template declara-
tions (and definitions) is extended to includegere clause, which consists of a set of requirements. Any template
that contains avhere clause is called aonstrained templateT he following is a simple example:

template <typename T> where { Assignable<T>, CopyConstructible<T> }
void swap(T& a, T& b);

where clauses can also be placed on the members of class templates. For instaniees T>::sort can only be
applied wherT is a model of_essThanComparable:

template <typename T> where { CopyConstructible<T> }
class list {
public :

where { LessThanComparable<T> } void sort();

¥

The requirements inahere clause play two roles in type checking:

1. When a template identifier is used, suctvegtor<int >, all of the requirements in the template/gere clause
must be satisfied, otherwise the program is ill-formed.

2. When type checking the body of a template, the constraints add assumptions to the context of the compilation.

The first of these roles is discussed in this section, which describes how checking for each of the kinds of requirements
shall occur. Failure to satisfy the requirements efare clause means that the template cannot be used (e.g., called
or instantiated). For instance, consider the following simple example:

list<int > [;
sort(l.begin(), I.end()); // Error.

A diagnostic message shall be issued bechstsent >::iterator is not a model oRandomAccessiterator. ConceptGCC
emits the following message:

Doc. no: N1849=05-0109 22

sort.C:7: error: no matching function for call to 'sort(std::_List_iterator<int>, std::_List_iterator<int>)’
<path>: note: candidates are: void std::sort(_lter, _Iter) [with _lter = std::_List_iterator<int >] <where clause>
sort.C:7: note: unsatisfied model requirement 'std::MutableRandomAccesslterator<std::_List_iterator<int> >’

Discussion of the second role where clauses, as constraints that add assumptions to the context of the compilation,
is deferred to Sectiod.4.

4.3.1 Model requirements

model-requirement
model-id

A model requirement is enodel-id which names a concept and provides it with template arguments. A model
requirement is only satisfied if there exists a model declaration that best matches the template arguments, otherwise
a diagnostic is required. The set of matching model declarations is determined in a similar fashion to how class
specializations are chosen in (14.5.4.1) of therGtandard. For each matching model template, the requirements
in the model template’sshere clause must be satisfied, otherwise the model is removed from consideration (as is
done with class and function templates). Partial ordering of model templates occurs in the same manner as partial
ordering of class templates; this proposal extends the partial ordering rules to also cehsideclauses, described
in Section4.3.5 Consider the following example:

template <typename T>
concept A { };

template <typename T> where { A<T> }
void foo(T) { }

template <typename T>
concept A<Tx> { };

template <>
concept A<intx> { };

int main() { intx x; foo(x); }

For the call tofoo() there must be a model af<int«>. Both model definitions match, but the second definition is a
better match.

Model requirements in templates Model requirements can also be satisfied by model requirements expressed or
implied in thewhere clause of an enclosing scope. For instance, the c#dlter bound insidebinary_search is valid
becausainary_search’s where clause contains all of the models requireddwer_bound:

template <typename lIter>
where { Bidirectionallterator<Iter>, LessThanComparable<value_type> }
Iter lower_bound(lter first, Iter last, value_type value);

template <typename lIter>
where { Bidirectionallterator<Iter>, LessThanComparable<value_type> }
bool binary_search(lter first, Iter last, value_type value) {

Iter result = lower_bound(first, last, value);

...

}

Doc. no: N1849=05-0109 23

Model requirements for structural concepts If a model requirement cannot be satisfied with any existing model
and the corresponding concept is a structural concept, the model requirement can be satisfied by a sthicceasdll
match A structural match occurs when a set of types fulfills all of the syntactic requirements of a structural concept.

Structural matches are attempted only when no other models exigriogel-id When a structural match fails, the
model requirement is unsatisfied but the program is not necessarily ill-fotnfeat instance, consider the following
example:

template <typename T, typename U>
struct concept Convertible {
operator U(const T&);

I

template <typename T> where { Convertible<T, int > }
int f(const T& t);

void g(char ch) {
f(ch); // ok

}

There is no explicit model declarati@onvertible<char, int>, so a structural match is attempted. It succeeds, so the
program is well-formed.

Structural matches are performed as if an empty, non-templated model definition were created at the point where
the model is required. For instance, the model definition generated for the above example is:

template <> concept Convertible<char, int> { };

4.3.2 Same-type requirements

same-type-requirement
type-specifiee= type-specifier

A same-type constraint is satisfied if the two types are equivalent. Consider the following example:

template <typename T, typename U> where { T==U }
void foo(Tt, Uu) { }

int x;

foo(x, x); // OK, int == int
float z;

foo(x, z); // Error, int I= float

Within a template, determining if a same-type constraint is satisfied may require comparisons based on same-type
constraints expressed in or implied by thigere clause of an enclosing scope. See Sedli@gn3for more details on
type equivalence with same-type constraints.

4.3.3 Integral constant expression requirements

ice-requirement
assignment-expression

An integral constant expression requirement is satisfied if the integral constant expression, when converted to a
bool, evaluatesrue. For instance, the following class template accepts only odd integers: any attempt to provide it
with an even integer will result in a diagnostic:

3Readers concerned about the implementability of this feature may wish to read section 3.6 of G$84805].

Doc. no: N1849=05-0109 24

template <int N> where { N % 2 }
struct only_odd { };

only_odd<5> five; // OK
only_odd<6> seven; // Error: N % 2 does not evaluate true

4.3.4 Constraint propagation

It is often the case that certain requirements on template parameters are apparent from the declaration of a constrained
template, even if they are not explicitly stated. These requirements (constraints) are implicitly addedter¢he
clause of the template through the processarfstraint propagationConstraint propagation must generate the small-
est set of implicit constraints that guarantee that the declaration of a template will always instantiate properly.

One immediate example of an implicit constraint is that pass-by-value parameters and return types are assumed to
modelCopyConstructible. Thus, the following template is well formed:

template <typename T> where {} T identity(T x) { return x; }
The constraint propagation rule has some interesting implications. Take the following definitimtoof

template <typename T> where { CopyConstructible<T>, Assignable<T> }
class vector { ... };

A function template withvector appearing in the declaration will have the implicit constraint that the type argument
for vector must modetopyConstructible andAssignable.

template <typename U> where {} // CopyConstructible<<U> and Assignable<<U>> are implicit constraints
void foo(vector<U>&v) {
U u(v[0]); // OK to use copy constructor here.

}

In the following declaration, the template includes an implicit constraintTtit@nnot be a reference type:

template <typename T> where {}
T ptrid(T+ x) { return x; }

4.3.5 Partial ordering with where clauses

Function and class templates can be partially ordered based on their function arguments and template arguments,
using the rules in 14.5.5.2 and 14.5.4.2 of therGtandard, respectively. This proposal extends this ordering when
two templates are considered identical after removingtieee clauses and modulo the names of template parameters.
In this case, the templates are partially ordered based on the requirementstierthelauses.

The following examples illustrate intuitively how this partial ordering should work. In the following example, the
second should be chosen becauseefinesA.

template <typename T> concept A { };
template <typename T> concept B: A<T> { };

template <typename T> where { A<T> } void (T x) { std::cout << "1"; }
template <typename T> where { B<T> } void (T x) { std::cout << "2"; }

template <> concept B<int>;
int main() { f(1); }

The output is:
2

In the next example, the second definitiorf should be chosen because its constraints are a superset of the constraints
of the first definition.

Doc. no: N1849=05-0109 25

template <typename T> concept A { };
template <typename T> concept C { };

template <typename T> where { A<T> } void (T x) { std::cout << "1"; }
template <typename T> where { A<T>, C<T> } void f(T x) { std::cout << "2"; }

template <> concept A<int>;
template <> concept C<int>;
int main() { f(1); }

The output is:
2

The following example should be ill-formed because the function call is ambiguous. The corstraintin the first
fis more specific thaa<T> in the second, but the seconélhas a second constraint that is not in the first

template <typename T> concept A{ };
template <typename T> concept B: A<T>{ };
template <typename T> concept C { };

template <typename T> where { B<T> } void (T x) { std::cout << "1"; }
template <typename T> where { A<T>, C<T> } void (T x) { std::cout << "2”; }

template <> concept B<int >;
template <> concept C<int>;
int main() { f(1); } // ambiguous

Given two templated; and 75 that are equivalent modulo template parameter namesvaa@ clauses, use the
following procedure to determine a partial ordering between the templates.

1. Introduce the requirements from tivdere clause ofl} into a new environment.

2. Check each of the requirements in thieere clause ofl; to determine if they are satisfied in the new environ-

ment. If s0,T} is at least as specialized &s.
3. Repeat the process with a new environment, to determifigif at least as specialized @s.
4. If Ty is at least as specialized &5, butT; is not at least as specialized &g thenT; is the more specialized
template. Similarly, we can determin€li§ is more specialized thaf .

4.3.6 Syntactic shortcut for single-parameter concepts

template-parameter
concept-name,,,; identifier
concept-name,,,; identifier= assignment-expression

type-parameter
concept-name,,, identifier= type-id
concept-name,,,; identifier= id-expression

It is common for many concepts in a program to have only a single template parameter, typically a template type
parameter. To make these concepts more easy to use in a template, we provide a shortcut (also iIS8DIFB2 [

wherein the concept name may be written as the “type” of the template parameter, ingtgadaohie or class. For
instance, here is a declarationaafvance() that uses this shortcut:

template <Inputlterator Iter> void advance(lter& x, difference_type n);

Using this shortcut is identical to writing out the template withrere clause, e.g.,

Doc. no: N1849=05-0109 26

template <typename lIter> where { Inputlterator<lter> }
void advance(lter& x, difference_type n);

4.4 Type checking templates

The requirements placed on template parametersibigi@ clause have two roles. When using a constrained template,

the requirements of thehere clause must be satisfied by the user. However, those same requirements are also taken
as assumptions against which the body of the template can be fully type-checked. This section focuses on the latter
role.

4.4.1 Non-dependent template parameters

This proposal introduces non-dependent template parameters, which, unlike normal template parameters, do not make
expressions based on them dependent. In essence, a non-dependent template parameter acts more like a regular, non-
dependent typeclass X, int, char*) than a template parameter. Name lookup and type-checking for non-dependent
types and expressions occurs when a template is initially defined, whereas lookup and checking for dependent types
and expressions is delayed until instantiation time. With non-dependent template parameters, all type-checking and
name lookup can occur at template definition time, so that errors can be detected prior to instantiation. Modulo
certain ambiguities and problems with incorrectly specified specializations, a well-formed template that uses only
non-dependent template parameters is guaranteed to instantiate properly.

When any requirements orwhere clause is provided for a template, all template parameters are considered
non-dependent unless specifically marked as “dependent.” An emhgty clause also suffices to make template
parameters non-dependent. Let us start with a gef@riach algorithm and introduce an empiyhere clause, to
enable type-checking:

template <typename lIter, typename F> where {}
F for_each(lter first, Iter last, F f)
{
while (first I= last) {
f(xfirst);
++first;

}

return f;

}

This program is ill-formed, because we have stated that there are no requirements on the template pacaaeders
F, but we are using many operators. For this code snippet, ConceptGCC produces the following output:

for_each.C: In function 'F for_each(lter, Iter, F)’:
for_each.C:6: error: no match for 'operator!="in ‘first != last’
for_each.C:7: error: no match for 'operatorx’ in "xfirst’
for_each.C:7: error: 'f’ cannot be used as a function
for_each.C:8: error: no match for 'operator++’ in '++first’
for_each.C:10: error: 'F’ has no copy constructor

To eliminate the error messages related to the iterator operatiprsand++, we need to state that ther type is
actually aninputiterator. We do so using thetd::Inputiterator concept, which will presumably be a part of a concept-
enabled Standard Library (as it is in ConceptGCC's standard library implementation). Doing so results in the following
code:

template <std::Inputiterator Iter, typename F> where {}
F for_each(lter first, Iter last, F f)
{
while (first != last) {
f(xfirst);
++first;

Doc. no: N1849=05-0109 27

}

return f;

}

Is this code now correct? Attempting to compile it with ConceptGCC produces the following error messages:

for_each.C: In function 'F for_each(lter, Iter, F)’:
for_each.C:7: error: 'f cannot be used as a function
for_each.C:10: error: 'F’ has no copy constructor

F needs to be some type thatGspyConstructible so thatf can be returnéd F must also be a function pointer or
function object (or anything else “Callable”). With these constraints added, the definitianeath becomes:

template <std::Inputlterator Iter, std::CopyConstructible F>
where { std::Callable1<F, reference> }
F for_each(lter first, Iter last, F f)
{
while (first I=last) {
f(xfirst);
++first;

}

return f;

}

The reference type refers tostd::Inputlterator<lter>::reference, the return type obperator x. This final definition of
for_each is now well-formed and compiling it with ConceptGCC produces no errors.

There are many template libraries in existence now that would benefit from the introduction of concepts. However,
introducing concepts into an existing library is not a trivial task, as we have found while updating the &GNU C
standard library implementation. To ease the transition, it is possible to mark template parameters as “dependent”
even when we have placed requirements on them wieege clause. To do this, we place! @ front of the name of
the template parameter:

template <std::Inputlterator !lter, std::CopyConstructible !F>
where { std::Callable1<F, reference> }

F for_each(lter first, Iter last, F f) {
/I Do some metaprogramming and perhaps parallelize the loop
return f;

}

With the ! operators in place, the template parameters are dependent, so the Badyaoh is largely unchecked.

Thus, we can use whatever template metaprogramming we want, even if it would be hard or impossible to do in a fully
type-checked template. The type-checking for ttrisach is essentially one-sided: users must meet the requirements

of thewhere clause when callingpr_each, but there are no requirements on the implementdorofach. Practically
speaking, this allows template library authors to introduce concepts gradually, providing better error messages and
checking for users initially while evolving the implementation to a completely type-checked, safe version.

4.4.2 Name lookup

This proposal introduces two additional rules that affect name lookup in templates. The first rule involves introducing
the ability to perform lookups in the model requirements imhare clause, so that pseudo-signatures and associated
types may be used unqualified within constrained templates. The second rule involves the lookup of unqualified names
for function calls in constrained templates.

4This is actually due to a bug in ConceptGCC, which does not support constraint propagation. However, explicitly writing the constraints is not
harmful.

Doc. no: N1849=05-0109 28

Lookup in where clauses Thewhere clause introduces names into the scope of the template definition. For each
model requirement, the pseudo-signatures from the corresponding concept, its refinements, and all nested requirements
(including their refinements!) are in scope. Additionally, the associated types from the concept and its refinements
(but not nested requirements) are in scope. The scope of these requirements is the same as the scope of the template
parameter list.

Pseudo-signatures Pseudo-signatures of model requirements introduce function declarations into the template
parameter list scope. For example, consider the definiticwad().

template <typename T> where { Assignable<T>, CopyConstructible<T> }
void swap(T& a, T& b) {

Ttmp = a;

a=b;

b =tmp;

}

The model requirementssignable<T> brings the declaration
T& operator =(T&, const T&);

into scope for the body afwap(). This declaration allows the expressians b andb = tmp to type check. Similarly,
the model requiremertopyConstructible<T> brings the declaration

T:T(const T&);

into scope, allowing the variable initializatidntmp = a to type check.

Associated types Associated type requirements introduce type names but not the actual type bindings. The
following example demonstrates howvaere clause brings associated types into scope:

template <Container C, typename F> where { Callable1<F, value_type> }
void for_each_c(const C&c, Ff) {
for (const.iterator i = c.begin(); i != c.end(); ++i)

f(i);
}

The typevalue_type andconst_iterator are associated types from t@entainer concept.
If the same type name is introduced into scope from two or more concept constraints, then access to those types
must be qualified by the model identifier unless the types can be proven equivalent. Consider the following example:

template <typename C>

concept BackinsertionSequence : Sequence<C> { // and remember, Sequence refines Container
reference C::back();

const_reference C::back() const ;

void C::push_back(value_type);

void C::pop_back();

I3

template <typename C1, typename C2>
where { Container<C1>, BackinsertionSequence<C2> }
void copy-c(const C1& cl, C2& c2) {
for (Container<C1>::const.iterator i = c1.begin(); i != c1.end(); ++i)
c2.push_back(xi);
}

The const_iterator associated type is introduced by both constraints, so the model ide@tifiginer<C1> is used to
disambiguate.

Doc. no: N1849=05-0109 29

Non-dependent names When name lookup in a template resolves to something outside the scope of the template
itself (or itswhere clause), the name may reference an overloaded function. The handling of this name depends on
whether any arguments to the function are dependent or not. If any are dependent, the call expression is dependent
and the overload set will be augmented by functions found through argument-dependent lookup (ADL) at instantiation
time. If they are not dependent, this overload set is complete and the compiler will perform overload resolution when
a single function is needed.

The introduction of constrained templates does not change this aspect of name lookup. Consider the following
example, in whichower_bound makes an unqualified call talvance:

template <Inputlterator Iter>
void advance(lter& x, difference_type n); // #1

template <Bidirectionallterator Iter>
void advance(lter& x, difference_type n); // #2

template <Bidirectionallterator Iter>
Iter lower_bound(lter first, Iter last, const value_type& value)
difference_type n = distance(first, last);
Iter mid = first;
advance(mid, n/2);
...

}

template <RandomAccesslterator Iter>
void advance(lter& x, difference_type n); // #3

Name lookup oradvance finds the twoadvance overloads, with different concept requirements. Simagandn/2
are non-dependent expressions, overload resolution is performed immediately. Both #1 and #2 match, but #2 is more
specialized so it will be selected. If #3 was visible (i.e., declared pritavter_bound), it would have been rejected
becauseter is not necessarily RandomAccessiterator.

When an call expression is non-dependent but contains (non-dependent) template parameters, the overload set
returned by name lookup withot be augmented by functions found through ADL at instantiation time. Instead, it
will be augmented with thenplied specializatiorfsof advance, i.e., any other declarations afivance in the same
namespace that are (1) identical modulo template parameter nameseaaacdtlauses and (2) more specialized, based
on thewhere clause. Definitior#3 fits the criteria of an implied specialization, so it will be found and added to the
overload sett instantiation time Continuing the example above, we define an iterator typéter that has its own
advance:

namespace other {
struct my_iter { typedef int difference_type; ... };

void advance(my._iter& x, int n); // #4

}

namespace std {
template <> concept RandomAccesslterator<other:my_iter> {};

}

When lower_bound<other::my_iter> is instantiated, which declaration aflvance will the call in lower_bound re-
solve to? #1 and#3 are implied specializations, so they will enter the overload s&t.will not be found be-
cause ADL is not employed for non-dependent expressions at instantiation time. oieceny_iter is a model of
RandomAccesslterator, and #3 is the most specialized function in the overload set, it will be used.

5This notion comes from N1785P03.

Doc. no: N1849=05-0109 30

These name lookup rules permit specializations of algorithms to occur and be used by other, type-safe generic
algorithms without the problems caused by argument-dependent lookup. For instance, the resolution of Library DR
225 ("std:: algorithms use of other unqualified algorithms”) is automatic when the algorithms in namstsipaee
constrained templates.

Lookup in uninstantiated templates Type checking the definition of a constrained template is performed without
knowledge of the bindings for the template parameters. Thus it is impossible to instantiate templates according to
template identifiers that appear in the body. Instead, the best matching specialization will be chosen (and used for type
checking purposes) with the information at hand.

Consider the following well-formed 03 program. The function templat@ is instantiated withtu=int and the
template identifiefoo<U> resolves to the specializatidwp<int >.

template <typename T> class foo { };

template <> class foo<int> { void bar(); };
template <typename U> void f() { foo<U>::bar(); }
int main() { f<int>(); }

If f() is changed to a constrained template, the body is checked without knowledge off wiilabe. In this case,
foo<U> will refer to the primary template, which does not have a membsy, and a diagnostic will be issued. The
rationale behind these type checking rules is that if the temfg)asetruly generic it should work with any type bound
to parametel, not justint.

template <typename U> where { EqualityComparable<U> }
void f() { foo<U>::bar(); } // error

It is possible for a specialization to be chosen. For example, if there was a specializadiofoofr+, and a use of the
template identifiefoo<Ux>.

Oncef is instantiated, template instantiation will occur inside the definitioh @ usual. This may result in
different specializations than were used during type checking, and thus may result in compilation errors that were
missed by the initial type checking. For example, the definitiog(pin the program below will type check based on
the primary template foivo but will fail when g is instantiated and the specialization<int > is selected.

template <typename T> class foo { int bar(); }

template <> class foo<int> { void bar(); }

template <typename U> int g() { return foo<U>::bar(); }

int main() { return g<int>(); } // instantiation—time diagnostic

4.4.3 Type equivalence

A same-type constraint expresses the requirement that two type expressions denote the same type. For instance, in
the following example we state the relationship betweerptiger, reference, andvalue_type associated types in a
Mutable Forward Iterator:

template <typename X>
concept MutableForwardlterator {
typename value_type;
typename reference;
typename pointer;
where reference == value_type&;
where pointer == value_typex;
i
The same-type constraints ofvaere clause induce a partition of type expressions into equivalence classes. A same-
type constrains == T merges the equivalence classes thandT belong to. Two types are considered equivalent if
they are in the same equivalence class. Same-type constraints introduce “deep” equivalence between the two classes.
For instanceS == T implies Sx == Tx, vector<T> == vector<U>,
vector<T>::value_type == vector<U>::value_type, etc. Also, for any concept, A<S>::type is equivalent teA<T>::type

Doc. no: N1849=05-0109 31

if S andT are equivalent. Further, B is a refinement oA, thenB<U>::type is equivalent toA<S>::type if B<U>
refines (transitivelypn<T> ands is equivalent tor. Similarly, the same-type constra® == Tx impliesS == T, and
everything implied by it.

45 Extensions

This section documents potential extensions to the features we are proposing. The list of extensions is not exhaustive,
but contains only features that we know would be useful but we do not require because either (1) we are not sure they
are implementable or (2) we have not had the time to adequately specify them.

4.5.1 Partial specialization of function templates

The implied specializations described in SectdbA.2are similar in spirit to partial specializations of function tem-
plates. They use the same name as the function template, have equivalent declarations modulo parameter names, and
havewhere clauses that are more restrictive than the original template. If partial specializations of function tem-
plates were allowed, the partial specializations of the functions in the overload sets should augment the overload set at
instantiation time (as the implied specializations do now).

Consider the following declarations obpy, one of which uses arbitrary input and output iterators and the other
uses pointers:

template <Inputlterator Inlter, typename Outlter>
where { Outputlterator<Outlter, Inputlterator<Inlter>::value_type> }
Outlter copy(Inlter first, Inlter last, Outlter out); // #1

template <typename T>
Tx copy(T= first, Tx last, Tx out); // #2

If a generic function taking input and output iterators contained a calbiip, only #1 would enter the overload set
because #2 would not match to arbitrary input and output iterators. Thus, we miss out on the opportunity to pick up a
better match. However, if #2 was written as a partial specialization of a function, it would be picked up when the call
to copy is instantiated:

template <typename T>
T copy<Tsx, Tx>(Tx first, Tx last, Tx out); // #3

We note that the behavior of #3 can be emulated with the current proposal, but leave the formulation as an exercise
for the reader.

4.5.2 Associated values

Concepts permit associated type requirements to be defined, but there is no analogue for “associated values”, i.e.,
integral constant expressions that are part of the concept. Associated value requirements would contain the type of the
associated value, but the value itself would be unknown until instantiation time.

This extension was proposed by Danieligter oncomp.std.c++. We do not yet have a favored syntax for
associated values nor have we attempted to implement them, but we do not believe that there is anything fundamentally
difficult in their implementation.

4.5.3 Nested class template requirements

Concepts may include pseudo-signature templates that require their models to have templated operations. One could
also consider permitting concepts to require nested class templates, and then place requirements on the members of
those class templates. For instance, we could speciilasator concept similar to the one in the standard library

with such an extension:

template <typename Alloc>
concept Allocator {
template <typename T>

Doc. no: N1849=05-0109 32

struct Alloc::rebind {
typename other;
where Allocator<other>;
i
...
¥
In this example, we want to say that every modeAitdcator has a member templateuct namedebind that contains
a type namedther that itself models thallocator concept.
The ability to specify these kinds of requirements may make it possible to express type-safe template metaprograms
using concepts. However, at this time we are not sure that such an extension is implementable, and it is an active
research area.

4.5.4 Remote specializations and models

Specializations (and models) need to be written in the same namespace as the primary template (or concept). This
restriction is rather inconvenient when the types used in the specialization come from a different namespace. We

could allow “remote” specializations that can be written in any namespace. These specializations would have the same
semantics as existing specializations, except that name lookups within the specializations themselves would reflect
their point of declaration. For instance:

namespace std {
template <typename X>
concept Inputlterator { ... };

}

namespace boost {
template <typename Func>
class counting_iterator {
...

;

template <typename Func>
concept std::Inputlterator<counting_iterator<Func> > {
...

};

4.5.5 Exporting defaulted requirements

Default implementations of pseudo-signatures allow generic functions to use a richer syntax than is required by the
concepts themselves. For instance,lteesThanComparable concept only requiresperator < to be defined, but any
function requiringLessThanComparable<T> may use operators, >, <=, and>=:

template <typename T>
struct concept LessThanComparable {
bool operator <(const T&, const T&);
bool operator <=(const T& x, const T&y) { return I(y < x); }
bool operator > (const T& X, const T&y) { return y < x; }
bool operator >=(const T& x, const T&Y) { return (x <y); }
b
We could invent a syntax that couples remote models (SedtwHd) with the idea of “exporting” the default imple-
mentations for a class when it is defined. This might be similar to the way in vidigahi functions defined in a class
template are exposed. For instance, we might define a xl#ésat itself contains onlyperator <, but by exporting
default requirements we ggt, <=, and>=:

Doc. no: N1849=05-0109 33

struct X {
friend bool operator <(const X& X, const X&y);
export concept std::LessThanComparable <X>;

b

bool equiv(X x, X y) {
return I(x <y) && !(y < x); // Ok!

}

This feature would make it possible to get the benefits of the Boost Operators liBi@dy][from concepts, so that
model declarations can actually reduce the amount of typing required to define a type.

5 Impact

This section describes the impact of the proposed changes on users, the standard library, and compiler vendors.

5.1 Impact on users

When a generic library written using«€03 is updated to use concepts, the way in which users interact with the library
will change. The two major changes are as follows:

1. The compiler will provide improved diagnostics and type safety for templates, both uses and definitions.

2. The user will be required to introduce model declarations for some of their types.

The first item is a clear advantage: by introducing direct support for generic programming++i8,Ghe prob-
lems of weak type checking and horrible error messages can be eliminated, making generic libraries (and generic
programming in general) more accessible. The second item is both an advantage and a disadvantage. It is advanta-
geous because the introduction of explicit models adds additional type checking (i.e., checks whether the syntax of
the model matches the syntax of the concepts) and asserts semantic properties that were otherwise only assumed to
exist. The disadvantage is that porting will require some effort to write these model declarations. This disadvantage
can be mitigated by careful generic library design (e.g., providing model templates that map from traits structures; see
AppendixA), by careful use of structural concepts, and by proper compiler diagnostics that describe what models are
required. For instance, compiling the entire ConceptGCC testsuite (for both GCC and its standard library) with the
concept-enabled-G- standard library required the introduction of only one explicit model declaration; that declaration
could be avoided if GCC supported thecitype proposal §S03.

5.2 Impact on the standard library

The C++ standard library is itself a generic library that could be extended to support concepts. This extension would
require several specific changes, all of which are demonstrated in S&ctind prototyped in ConceptGCC:

1. Replace the requirements tables and traits for concepts with new concept defiritimshange formalizes the
semantics of concepts and will likely eliminate ambiguities that have arisen due to the use of valid expressions
in the descriptions and the lack of automated checking.

2. Provide or require model definitions for all standard library componeiitse standard already specifies when a
particular library component meets the requirements of a concept; we need only state that these library compo-
nents have model declarations for those concepts. In some cases, these will be model templates with constraints,
e.g.,vector<T> modelsEquality Comparable whenT modelsEquality Comparable.

3. Specify requirements vighere clauses The templates in the standard library list requirements informally, e.qg.,
by naming template parametétandomAccessiterator when they must modétandom Access Iterator. We can
replace these informal requirements witlere clauses that convey the same information in a formal way. This
will simplify the description of some parts of the standard, e.g., the “do the right thing” clause for the container
constructors taking iterators. In addition, the improved type checking will verify the specification and most
likely unearth bugs that have been lurking in the standard.

Doc. no: N1849=05-0109 34

4. Provide model definitions for backward-compatibilifyhe conventions of the standard library, sucheastor_traits,
can be used to build model templates that will greatly simplify porting from the existing standard library to a
concept-enabled one. These models will be required in order to provide maximal backward compatibility, i.e., to
minimize the number of changes users will need to make to recompile their code with the new standard library;
see Sectior\.

The most interesting question regarding changes to the standard library revolves around what we can do with
components that have inconsistencies in their specification. For instaeoe,<bool > does not model the same
concepts as the primary template fector because its iterators do not model thendom Access Iterator concept: an
error that would have been caught given the extensions in this proposal. We expect that a full review of the changes to
be made to the standard library will uncover additional, subtle problems with the specification of the library.

5.3 Impact on compiler vendors

The extensions proposed here are numerous and will undoubtedly require a nontrivial amount of effort to implement in
any compiler. However, we have taken great care to ensure that this proposal retains the existing template compilation
model, extending it without requiring fundamental changes. The impact that this proposal will have on compilers, and
a discussion of the techniques we used to implement concepts for ConceptGCC grmbthpiler, are provided in a
separate documenBS054.

6 Acknowledgments

The formulation of concepts for+3 presented here was greatly influenced by discussions with David Abrahams.
We are grateful to Bjarne Stroustrup, Gabriel Dos Reis, and Mat Marcus for their valuable input. We thank Matthew
Austern for his work on the SGI STL documentation which inspired many aspects of this proposal. We thank Alexan-
der Stepanov and David Musser for bringing generic programming into£lhe&@mmunity. This work was supported

by a grant from the Lilly Endowment and NSF grant EIA-0131354. The third author was supported by a Department
of Energy High Performance Computer Science Fellowship.

A Example: Standard library concepts and declarations

In addition to adding concept support to the GNW+Ccompiler to create ConceptGCC, we also updated a large

part of the GNU G+ standard library implementatiobhjibstdc++, to use concepts. To demonstrate the syntax of our
proposal and that it is sufficient to express the type requirements ofthst@ndard library, we present some examples

from this updated standard library. The examples were chosen to stress-test the proposal; diversity of features was the
goal in selection. Wherever the standard provides a requirements table to specify a concept, the requirements table is
provided side-by-side with the definition of the concept. Table numbers refer to the table numbers in the standard.

A.1 Helper concepts

The definition of theLess Than Comparable concept demonstrates the use of default implementations for concept
operations. Here, default implementations serve the same purpose as the comparison operatats: el ibyes
namespace (but without its problems). This is a structural concept, so any typewibperator similar to the given
signature will model this concept, and will have the other operators defined automatically.

Doc. no: N1849=05-0109 35

Table 29 Less Than Comparable

requirementsIftog] template <typename T>
| expression return type ‘ struct concept LessThanComparable {
[a<b convertible tobool | bool operator <(const T&, const T&);
TypeT is a model ofLess Than Comparable anda, b bool operator <=(const T& x, const T&y)
are values of typ&. { return Iy < x); }

bool operator > (const T& X, const T&y)
{return y <x; }
bool operator >=(const T& x, const T& YY)

{return I(x <y); }
b

The definition ofCopy Constructible illustrates pseudo-signatures for constructors and destructors. We also see how
sometimes fewer pseudo-signatures than valid expressions are required to express a concept.

Table 30,Copy Constructible requirementsipto8]

| expression _return typg template <typename T>
T(t) struct concept CopyConstructible {
T(u) T::T(const T&);
T:T() T:T();
&t Tx Tx operator &(T&);
&u const Tx const Tx operator &(const T&);

TypeT is a model oiCopy Constructible, t is a value b
of typeT andu is a value of typeonst T.

A.2 lterator concepts

Concepts in the iterator hierarchy demonstrate several features of the proposal, such as associated types and concept
refinement. Before we can express the iterator concepts, a helper canoepble is needed to express the behavior

of the—> operator. Thedtrlike type parameter refers to an object that can be on the left-hand side-eftloperator,

e.g., a pointer or an object with an overloadedrator —>. TheValue type parameter is the return type produced by
following the chain of—> operators.

template <typename Ptrlike, typename Value>
struct concept Arrowable

{

typename arrow_result = Valuex;
arrow_result operator —>(Ptrlike);

i
The following model templates for pointers provide the base casegrarable:

template <typename T>
concept Arrowable<const Tx, T>

{

typedef const Tx arrow_result;

¥

template <typename T>
concept Arrowable<Tx*, T&>

{

typedef T arrow_result;

¥

Doc. no: N1849=05-0109 36

template <typename T>
concept Arrowable<Tx*, const T&>

{

typedef Tx arrow_result;

+

template <typename T>
concept Arrowable<const Tx*, T&>

{

typedef const Tx arrow_result;

Equipped with theArrowable concept, we can now write the iterator concepts. We choose to define a helper concept
Iterator Associated Types for the associated type requirements common to bt Iterator andBasic Output Iterator

(a concept for the common case of an output iterator whose reference type has a non-polymopanator). The
Iterator Associated Types concept demonstrates how associated types can have default definitions:

template <typename X>

concept IteratorAssociatedTypes

{

typename value_type = X::value_type;
typename difference_type = X::difference_type;
typename reference = X::reference;

typename pointer = X::pointer;

I3

Because the standard definitions of thput Iterator concept and its refinements require the result of the postfix
operator to be dereferenceable but not incrementable, a special concept is defined for this purpose.

template <typename PtrLike, typename Value>
struct concept Dereferenceable

{
Value operator *(PtrLike&);
i

In Input Iterator, the postincrement operator can return a proxy. Because of the pseudo-signatures used in this proposal,
a new associated type must be defined to represent the proxy type. Otherwise, this example is straightforward, but
please note the use of thAerowable concept.

Doc. no: N1849=05-0109 37

Table 73|nput Iterator requirementsiht98]

| operation type ‘ template <typename X>
Xu(a); X concept Inputlterator : IteratorAssociated Types<X>,
u=a, X& CopyConstructible <X>,
a== convertible tobool Assignable<X>,
al=b convertible tobool EqualityComparable<X> {
xa convertible toT where Signedintegral<difference_type>;
a—>m where Convertible<reference, value_type>;
1 X& where Arrowable<pointer, value_type>;
(void)r++
T+ convertible tor typename postincrement_result = X;
TypeX is a model ofinput Iterator, u, a, andb where Dereferenceable<postincrement_result, value_type>;

are values of typ&, typeT is a value type of _
iteratorX, m is the name of a member of type ~ Pointer operator —>(X);

T, andr is a reference to a non-constant X& operator ++(X&);
object. postincrement_result operator ++(X&, int);
reference operator *(const X&);

TheOutput Iterator concept has a second type parameter to represent the value type, since a single output iterator type
can accept many different value types. In particular, given an output itetattnat is able to directly store objects

of typeT (i.e., its dereference operation returns a type which has an assignment operator taking a parameter of type
T), objects of any typ& whereU is convertible tor are also valid for storage by the iterator. In order to handle the
common case of an iterator directly taking only one type, a special coBasiptOutput Iterator is defined, along with

a model template providing the correct conversion behavior. This model template states that for evemyemaidel

Basic Output Iterator and any type/alue which is convertible to the type storableltar, Iter andValue together model

Output Iterator. This one model template expresses this relationship for every possible combination of iterator and
value types. Also, note that there are no pointer or difference types for an output iterator, as these are never used and
are often not defined to sensible values.

Doc. no: N1849=05-0109 38

Table 74 Output Iterator requirementsliptog]

| operation type ‘ template <typename X, typename Value>
X(a) concept Outputlterator {
X u(a); typename value_type = Value;
u=a; typename reference = X::reference;
*I=0 result is not used
++r X& where CopyConstructible<X>;
r++ convertible toconst X& where Assignable<X>;
KI++=0 result is not used
TypeX is a model ofoutput Iterator, u anda where value_type == Value;
are values of typ#, o is a value whose type where Assignable <reference, value_type>;
is in the value type set for typ¢, andr is a
reference to a non-constaxbbject. typename postincrement_result = X;

typename postincrement_ref_result = reference;

where Dereferenceable<postincrement_result,
postincrement_ref_result>;

where VoidAssignable <postincrement_ref_result, value_type>;

where Convertible<postincrement_result, const X&>;

reference operator *(X&);
X& operator ++(X&);
postincrement_result operator ++(X&, int);

+

template <typename X>
concept BasicOutputlterator : IteratorAssociatedTypes<<X>,
CopyConstructible<X>,
Assignable<X> {
where Assignable <reference, value_type>;
typename postincrement_result = X;
typename postincrement_ref_result = reference;

where Dereferenceable<postincrement_result,
postincrement_ref_result>;

where VoidAssignable<postincrement_ref_result, value_type>;

where Convertible<postincrement_result, const X&>;

reference operator *(X&);
X& operator ++(X&);
postincrement_result operator ++(X&, int);

¥

template <BasicOutputlterator !X, typename !Value>
where {Convertible<Value, value_type>}

concept Outputlterator<X, Value> {

typedef Value value_type;

typedef BasicOutputlterator<X>::reference reference;

b

For Forward Iterator and all iterator concepts refining it, there are two variants of each concept: mutable and non-
mutable. The reference type requirement expressed in the standard (that the reference type of a forward iterator be
eitherconst value_type& oOr value_type&) is not expressible using our proposal, since we do not propose disjunctive
constraints. Much of the complication in these concepts is because a single table of iterator requirements in the

Doc. no: N1849=05-0109 39

standard really defines both the mutable iterator concept and the non-mutable iterator concept. A diagram of all of
the ConceptGCC iterator concepts is in Fig@rén the diagram, solid lines represent requirements and refinements
within concepts while dotted lines represent models.

Mutable Random Access Iterator Random Access Iterator
A

Forward Iterator

Input Iterator

Mutable Bidirectional Iterator

Mutable Forward Iterator
Basic Output Iterator

For all types convertible

- to the value type of the

. Basic Output Iterator
Iterator Associated Types
Figure 2: ConceptGCC iterator concepts

Doc. no: N1849=05-0109 40

Table 75 Forward Iterator

. requirementsIftog] template <typename X>
| operation type concept Forwardlterator : Inputlterator<X>,
Xu; DefaultConstructible<X> {
X() where Convertible<reference, const value_type&>;
X(a) where Arrowable<pointer, const value_type&>;
X u(a); where Convertible<postincrement_result, const X&>;
Xu=a; ¥
a== convertible tobool
al=b convertible tabool template <typename X>
r=a X& concept MutableForwardlterator : Forwardlterator<<X>,
*a T& if X& is mutable, other BasicOutputlterator<X> {
wiseconst T& where reference == value_type&;
a—>m U& if X is mutable, other where Arrowable<pointer, value_type&>;
wiseconst U& b
r—>m U&
++r X&
r++ convertible toconst X&
I+ T& if X is mutable, other-
wiseconst T&

TypeX is a model ofForward Iterator, u, a,
andb are values of typ&, typeT is a value
type of iteratorx, m (with typeu) is the
name of a member of type andris a
reference to a non-constaxiobject.

The remaining iterator concepts require relatively straightforward translations, requiring no new features. Again, the
standard’s requirements tables express both mutable and non-mutable versions of the concepts, which we present as
separate concepts.

Table 76 Bidirectional lterator

__requirements|t9g] template <typename X>

’ operation type concept Bidirectionallterator : ForwardIterator<X> {

——r X& typename postdecrement_result = X;

r—— convertible taconst X& where Dereferenceable <postdecrement_result, value_type>;

*r—— convertible tor where Convertible<postdecrement_result, const X&>;
TypeX is a model oBidirectional Iterator, T
is the value type oX, andr is a non-constant X& operator ——(X&);

reference to ai. postdecrement_result operator ——(X&, int);
¥

template <typename X>
concept MutableBidirectionallterator :
Bidirectionallterator<<X>,
MutableForwardlterator<X> {
where reference == value_type&;
where Arrowable<pointer, value_type&>;

¥

Doc. no: N1849=05-0109

Table 77 Random Access lterator
requirementsipt98]

41

template <typename X>

’ operation type concept RandomAccesslterator : Bidirectionallterator<X>,
r+=n X& LessThanComparable<X> {
a+n X X& operator +=(X&, difference_type);
n+a X operator +(X, difference_type);
r—=n X& X operator +(difference_type, X);

a—n X X& operator —=(X&, difference_type);
b—a Distance X operator —(X, difference_type);

a[n] convertible toconst T& difference_type operator —(X, X);

a<bhb convertible tabool reference operator [J(X, difference_type);
a>b convertible tobool I3

a>=b convertible tobool

a<=b convertible tobool template <typename X>

concept MutableRandomAccessilterator :
RandomAccesslterator <X>,
MutableBidirectionallterator<X> {
where reference == value_type&;
where Arrowable<pointer, value_type&>;

¥

TypeX is a model ofRandom Access
Iterator, T is the value type oX, a andb are
values of typex, coder is a non-constant
reference to aix, Distance is the difference
type ofX, andn is a value of typeistance.

To improve backward compatibility, a set of model templates are provided by the standard library to adapt existing
iterators (based oiterator_traits) to the new iterator concepts. Each model template is constrainedvbyra clause

that checks the iterator category against the standard tag clauses to determine which standard library iterator concepts
it models. ForForward Iterator and the concepts that refine it, mutability is determined by comparing the iterator’s
reference type againgtlue_type&. ThelteratorTraits concept provides a simplified way to accésstor_traits. Also,

if iterator_traits<Iter> is not valid for some typéter, there is no error: the modeératorTraits<lter> simply doesn'’t

exist, and so the compatibility models for the new iterator concepts for that type are also disabled without error.

template <typename Iter>

struct concept IteratorTraits {
typename iterator_category = iterator_traits<Iter>::iterator_category;
typename value_type = iterator_traits<<lter>::value_type;
typename difference_type = iterator _traits <lter>::difference_type;
typename pointer = iterator_traits <lter>::pointer;
typename reference = iterator_traits<Iter>::reference;

+

template <lteratorTraits ! Iter>

where { Convertible<iterator_category, input_iterator_tag>}
concept Inputiterator<lter> {

typedef IteratorTraits<lter>::value_type value_type;

typedef IteratorTraits<lter>::difference_type difference_type;
typedef IteratorTraits<Iter>::pointer pointer;

typedef IteratorTraits<Iter>::reference reference;

b

template <lIteratorTraits ! Iter>
where { Convertible<iterator_category, input_iterator_tag>,
Convertible<iterator_category, forward_iterator_tag>}
concept Forwardlterator<Iter> {
typedef IteratorTraits<Iter>::value_type value_type;
typedef IteratorTraits<lter>::difference_type difference_type;

Doc. no: N1849=05-0109 42

typedef IteratorTraits<lter>::pointer pointer;
typedef IteratorTraits<Iter>::reference reference;

I3

template <lIteratorTraits ! Iter>

where { Convertible<iterator_category, input_iterator_tag>,
Convertible <iterator_category, forward_iterator_tag>,
reference == value_type&}

concept MutableForwardlterator<lter> {

typedef IteratorTraits<lter>::value_type value_type;

typedef IteratorTraits<lter>::difference_type difference_type;

typedef IteratorTraits<lter>::pointer pointer;

typedef IteratorTraits<Iter>::reference reference;

b

/I Similar model templates for Bidirectionallterator and
/I RandomAccesslterator

A.3 Container concepts

As the current standard does not have algorithms using container concepts, they were not implemented in the library for
ConceptGCC. Hypothetical versions of them are presented here to show that they can be expressed in ConceptGCC,
however. Thesequence concept shows that a concept can require polymorphic functions, including member functions
and constructors.

Doc. no: N1849=05-0109 43

Table 68 Sequence

requirementsl|ptog] template <typename X>
’ expression return typ¢ concept Sequence: Container<X> {
X(n, t) X::X(size_type n, value_type t);
Xa(n, t)
X(,) template <Inputlterator Inputlter>
Xa(,]) where { Convertible<Inputlterator<Inputlter>::value_type,
a.insert(p, t); iterator value_type> }
a.insert(p, n, t); void X::X(Inputlter a, Inputlter b);
a.insert(p, i,)); void
a.erase(q); iterator iterator X::insert(iterator p, value_type t);
a.erase(ql, g2); iterator void X:insert(iterator p, size_type n, value_type t);
a.clear(); void
a.assign(i, j); void template <Inputlterator Inputlter>
a.assign(n, 1); void where { Convertible<Inputiterator<Inputiter>::value_type,
TypeX is a model ofSequence, a is a value._type> }
value of typex, n is a value of type void X::insert(iterator p, Inputlter a, Inputlter b);
X::size_type, t is a value of type
X::value_type, p is a valid iterator of, q iterator X::erase(iterator q);
is a dereferenceable iteratoraf iterator X::erase(iterator q1, iterator q2);
[91, q2) is a valid range i, i andj void X::clear();
denote iterators satisfying the input
iterator requirements, ariigj) denotes a template <Inputlterator Inputlter>
valid range. where { Convertible<Inputlterator<Inputlter>::value_type,
value_type> }

void X::assign(Inputlter i, Inputlter j);
void X::assign(size_type n, value_type t);

where MutableForwardlterator<iterator>;
where Forwardlterator<<const_iterator>;

A.4 Models

The definition ofstack, not yet implemented in the concept-enabled standard library, demonstrates that class templates
can also be concept-constrained, including using same-type constraints to express that the container used in a stack
must be able to store the same type as the stack stores.

template <typename T, BacklnsertionSequence Seq = std::deque<T> >
where { CopyConstructible<T>, Assignable<T>, typename Seq::value_type ==T }
class stack {

public :

typedef typename Seq::value_type value_type;

typedef typename Seq::reference reference;

typedef typename Seq::const_reference const_reference;

typedef typename Seq::size_type size_type;

typedef Seq container_type;

protected :
Seqc;

public :

Doc. no: N1849=05-0109 44

explicit stack(const Seq& = Seq());

stack(const stack&);

stack& operator =(const stack&);

bool empty() const ;

size_type size() const ;

value_type& top();

const value_type& top() const ;

void push(const value_type&);

void pop();

b

A stack will have a well-defined equality comparison operater)(when its element type modeiguality Comparable.
In this case, thetack itself will also modelEquality Comparable. The same logic applies to the less-than operatdr (
and theLess Than Comparable concept. After the following generic functions are defined, the models of these concepts
for stack are implicit because the concepts are structural:

template <EqualityComparable T, typename Seq>
bool operator ==(const stack<T, Seq>&, const stack<T, Seq>&){ ... }

template <LessThanComparable T, typename Seq>
bool operator <(const stack<T, Seq>&, const stack<T, Seq>&) { ... }

A.5 Algorithms

This section contains (sometimes simplified) definitions of several standard library algorithms, to illustrate how the
introduction ofwhere clauses into the standard library would affect their presentation. The definition of one of the
most basic algorithmsppy(), follows:

template <Inputlterator Inputlter, typename Outputlter>
where { Outputlterator<Outputlter, value_type> }
Outputlter copy(Inputlter first1, Inputlter last, Outputiter out) {
while (first I= last) xout++ = xfirst++;
return out;

}

The unarytransform() algorithm introduces function objects, which are identified bycthkable concept family. The
numbered conceptBallable0, Callablel, Callable2, etc., require that the first type parameter be an object that can be
called with a given set of parameter types (the rest of the type parameters to the concept). Function pointer types and
classes with overloadegperator ()s are examples dfallable types.

template <Inputlterator Inputlter, typename Outputlter, typename UnOp>
where { Callable1<UnOp, reference>,
Outputlterator<Outputlter, result_type> }
Outputlter transform(Inputiter first, Inputlter last, Outputlter out, UnOp f) {
while (first I= last) *out++ = f(xfirst++);
return out;

}

The binarytransform() algorithm is the first algorithm to have multiple input iterator types as parameters. Since
each iterator type haswalue_type, the algorithm qualifies referencesvalue_type. The Callable2 concept is used to
refer to a binary function object.

template <Inputlterator Inputlterl, Inputlterator Inputlter2,
typename Outputlter, typename BinOp>
where { Callable2<Func, Inputlterator<Inputiterl>::value_type,
Inputlterator<<Inputlter2>::value _type>,
Outputlterator<Outputlter, result_type> }

Doc. no: N1849=05-0109 45

Outputlter transform(Inputlterl firstl, Inputlterl last1, Inputiter2 first2, Outputlter out, BinOp f) {
while (firstl != lastl) xout++ = f(xfirstl++, xfirst2++);
return out;

}

Same-type constraints are required by several standard library algorithms, especially those that involve comparing
two sequences. The following declaration of theudes() algorithm requires that the two input iterator sequences
have the samealue_type.

template <Inputlterator Inputlterl, Inputlterator Inputlter2, typename Cmp>

where { Inputlterator<Inputlterl>::value_type == Inputlterator<Inputiter2>::value_type
StrictWeakOrdering<Cmp, Inputlterator<Inputlterl>::value_type> }

bool includes(Inputlterl firstl, Inputlterl lastl, Inputlter2 first2, Inputlter2 last2, Cmp cmp);

Theadvance function demonstrates the use of concept-based function selection, by providing multiple definitions with
differentwhere clauses.

template <Inputlterator Iter>
void advance(lter& i, difference_type n) {
while (n!=0) {++i; ——n;}

template <Bidirectionallterator Iter>
void advance(lter& i, difference_type n) {
while (n > 0) {++; ——n;}
while (n < 0) {——i; ++n;}

}

template <RandomAccesslterator Iter>
void advance(lter& i, difference_type n) {
i+=n;

}

References

[AS02] David Abrahams and Jeremy Siek. The Boost Operators libkafy. boost . org, 2002.

[CKPO5] Manuel M. T. Chakravarty, Gabrielle Keller, and Simon Peyton Jones. Associated type synonyms. In
Proceedings of the International Conference on Functional Programming (ICFR K&y York, NY,
USA, September 2005. ACM Press.

[CKPMO05] Manuel M. T. Chakravarty, Gabrielle Keller, Simon Peyton Jones, and Simon Marlow. Associated types
with class. INPOPL '05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languagepages 1-13, New York, NY, USA, 2005. ACM Press.

[GJLT03] Ronald Garcia, Jaakka@advi, Andrew Lumsdaine, Jeremy Siek, and Jeremiah Willcock. A comparative
study of language support for generic programming OMPSLA '03: Proceedings of the 18th annual
ACM SIGPLAN conference on Object-oriented programing, systems, languages, and appligaiimss
115-134, New York, NY, USA, 2003. ACM Press.

[GJILT05] Ronald Garcia, Jaakkdadvi, Andrew Lumsdaine, Jeremy Siek, and Jeremiah Willcock. An extended
comparative study of language support for generic programmiogrnal of Functional Programming
2005. submitted.

[GS05a] Douglas Gregor and Jeremy Siek. Explicit model definitions are necessary. Technical Report N1798=05-
0058, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Language C++, May
2005.

www.boost.org

Doc. no: N1849=05-0109 46

[GSO05b]

[GSW+05]

[Int98]

[JS03]

[JWHLO3]

[JWLO04]

[Mye95]
[PIM97]

[SDO5]

[SDR03a]

[SDRO3D]

[SGG'05]

[Sie05]
[SLO5a]

[SLOSb]

[SLLO1]
[SLLO2]

[Str03]

Douglas Gregor and Jeremy Siek. Implementing concepts. Technical Report N1848=05-0108, ISO/IEC
JTC 1, Information Technology, Subcommittee SC 22, Programming Language C++, August 2005.

Douglas Gregor, Jeremy Siek, Jeremiah Willcock, Jaakka JRonald Garcia, and Andrew Lumsdaine.
Concepts for C++0x (revision 1). Technical Report N1849=05-0109, ISO/IEC JTC 1, Information Tech-
nology, Subcommittee SC 22, Programming Language C++, August 2005.

International Organization for Standardizatid8O/IEC 14882:1998: Programming languages — C++
Geneva, Switzerland, September 1998.

J. BArvi and B. Stroustrup. Mechanisms for querying types of expressions: Decltype and auto revisited.
Technical Report N1527=03-0110, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Pro-
gramming Language C++, September 2003:.tp: //www.open-std.org/jtcl/sc22/wg21/docs/
papers/2003/n1527 . pdf.

Jaakko arvi, Jeremiah Willcock, Howard Hinnant, and Andrew Lumsdaine. Function overloading based
on arbitrary properties of type€/C++ Users Journal 21(6):25-32, June 2003.

Jaakko arvi, Jeremiah Willcock, and Andrew Lumsdaine. Algorithm specialization and concept con-
strained genericity. If€oncepts: a Linguistic Foundation of Generic ProgrammiAglobe Systems,
April 2004.

Nathan Myers. A new and useful technique: “trait€++ Report, 7(5):32—-35, June 1995.

Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: an exploration of the design space. In
Haskell WorkshopJune 1997.

Bjarne Stroustrup and Gabriel Dos Reis. A concept design (rev. 1). Technical Report N1782=05-0042,
ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Language C++, May 2005.

Bjarne Stroustrup and Gabriel Dos Reis. Concepts — design choices for template argument checking.
Technical Report N1522=03-0105, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Pro-
gramming Language C++, October 20@3:tp: //www.open-std.org/jtcl/sc22/wg21.

Bjarne Stroustrup and Gabriel Dos Reis. Concepts — syntax and composition. Technical Report
N1536=03-0119, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Lan-
guage C++, October 200Bttp://www.open-std.org/jtcl/sc22/ug21.

Jeremy Siek, Douglas Gregor, Ronald Garcia, Jeremiah Willcock, Jaakkipand Andrew Lumsdaine.
Concepts for C++0x. Technical Report N1758=05-0018, ISO/IEC JTC 1, Information Technology, Sub-
committee SC 22, Programming Language C++, January 2005.

Jeremy SiekA Language for Generic Programmin&hD thesis, Indiana University, 2005.

Jeremy Siek and Andrew Lumsdaine. Essential language support for generic programr®bb! 105:
Proceedings of the ACM SIGPLAN 2005 conference on Programming language design and implementa-
tion, pages 73-84, New York, NY, USA, June 2005. ACM Press.

Jeremy Siek and Andrew Lumsdaine. Language requirements for large-scale generic librdgie€Hn
'05: Proceedings of the fourth international conference on Generative Programming and Component
Engineering September 2005. accepted for publication.

Jeremy Siek, Andrew Lumsdaine, and Lie-Quan LeeBoost Graph Library Boost, 2001.
http://www.boost.org/libs/graph/doc/index.html.

Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaifiee Boost Graph Library: User Guide and Refer-
ence Manual Addison-Wesley, 2002.

Bjarne Stroustrup. Concepts — a more abstract complement to type checking. Technical Report
N1510=03-0093, ISO/IEC JTC 1, Information Technology, Subcommittee SC 22, Programming Lan-
guage C++, October 200Bttp://www.open-std.org/jtcl/sc22/ug21.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1527.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1527.pdf
http://www.open-std.org/jtc1/sc22/wg21
http://www.open-std.org/jtc1/sc22/wg21
http://www.open-std.org/jtc1/sc22/wg21

	Changes from N1758
	Overview
	Design rationale
	Background research
	Template compilation model
	Specific language features in the design space
	Named conformance vs. structural conformance
	Pseudo-signatures vs. valid expressions
	Associated types
	Same-type constraints

	Proposed language features
	Concepts
	Refinements
	Pseudo-signatures
	Associated types
	Nested requirements

	Models
	Verifying model correctness
	Implicit model member definitions
	Refinements and models
	Model identifiers
	Model templates
	Friend models

	Where clauses
	Model requirements
	Same-type requirements
	Integral constant expression requirements
	Constraint propagation
	Partial ordering with where clauses
	Syntactic shortcut for single-parameter concepts

	Type checking templates
	Non-dependent template parameters
	Name lookup
	Type equivalence

	Extensions
	Partial specialization of function templates
	Associated values
	Nested class template requirements
	Remote specializations and models
	Exporting defaulted requirements

	Impact
	Impact on users
	Impact on the standard library
	Impact on compiler vendors

	Acknowledgments
	Example: Standard library concepts and declarations
	Helper concepts
	Iterator concepts
	Container concepts
	Models
	Algorithms

